kernel-fxtec-pro1x/arch/x86/kernel/pci-nommu.c
Joerg Roedel a3a76532e0 x86: add free_coherent dma_ops callback to NOMMU driver
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-08-22 08:34:49 +02:00

150 lines
3.6 KiB
C

/* Fallback functions when the main IOMMU code is not compiled in. This
code is roughly equivalent to i386. */
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/string.h>
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
#include <asm/iommu.h>
#include <asm/processor.h>
#include <asm/dma.h>
static int
check_addr(char *name, struct device *hwdev, dma_addr_t bus, size_t size)
{
if (hwdev && bus + size > *hwdev->dma_mask) {
if (*hwdev->dma_mask >= DMA_32BIT_MASK)
printk(KERN_ERR
"nommu_%s: overflow %Lx+%zu of device mask %Lx\n",
name, (long long)bus, size,
(long long)*hwdev->dma_mask);
return 0;
}
return 1;
}
static dma_addr_t
nommu_map_single(struct device *hwdev, phys_addr_t paddr, size_t size,
int direction)
{
dma_addr_t bus = paddr;
WARN_ON(size == 0);
if (!check_addr("map_single", hwdev, bus, size))
return bad_dma_address;
flush_write_buffers();
return bus;
}
/* Map a set of buffers described by scatterlist in streaming
* mode for DMA. This is the scatter-gather version of the
* above pci_map_single interface. Here the scatter gather list
* elements are each tagged with the appropriate dma address
* and length. They are obtained via sg_dma_{address,length}(SG).
*
* NOTE: An implementation may be able to use a smaller number of
* DMA address/length pairs than there are SG table elements.
* (for example via virtual mapping capabilities)
* The routine returns the number of addr/length pairs actually
* used, at most nents.
*
* Device ownership issues as mentioned above for pci_map_single are
* the same here.
*/
static int nommu_map_sg(struct device *hwdev, struct scatterlist *sg,
int nents, int direction)
{
struct scatterlist *s;
int i;
WARN_ON(nents == 0 || sg[0].length == 0);
for_each_sg(sg, s, nents, i) {
BUG_ON(!sg_page(s));
s->dma_address = sg_phys(s);
if (!check_addr("map_sg", hwdev, s->dma_address, s->length))
return 0;
s->dma_length = s->length;
}
flush_write_buffers();
return nents;
}
static void *
nommu_alloc_coherent(struct device *hwdev, size_t size,
dma_addr_t *dma_addr, gfp_t gfp)
{
unsigned long dma_mask;
int node;
struct page *page;
if (hwdev->dma_mask == NULL)
return NULL;
gfp &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
gfp |= __GFP_ZERO;
dma_mask = hwdev->coherent_dma_mask;
if (!dma_mask)
dma_mask = *(hwdev->dma_mask);
if (dma_mask < DMA_24BIT_MASK)
return NULL;
node = dev_to_node(hwdev);
#ifdef CONFIG_X86_64
if (dma_mask <= DMA_32BIT_MASK)
gfp |= GFP_DMA32;
#endif
/* No alloc-free penalty for ISA devices */
if (dma_mask == DMA_24BIT_MASK)
gfp |= GFP_DMA;
again:
page = alloc_pages_node(node, gfp, get_order(size));
if (!page)
return NULL;
if ((page_to_phys(page) + size > dma_mask) && !(gfp & GFP_DMA)) {
free_pages((unsigned long)page_address(page), get_order(size));
gfp |= GFP_DMA;
goto again;
}
*dma_addr = page_to_phys(page);
if (check_addr("alloc_coherent", hwdev, *dma_addr, size)) {
flush_write_buffers();
return page_address(page);
}
free_pages((unsigned long)page_address(page), get_order(size));
return NULL;
}
static void nommu_free_coherent(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_addr)
{
free_pages((unsigned long)vaddr, get_order(size));
}
struct dma_mapping_ops nommu_dma_ops = {
.alloc_coherent = nommu_alloc_coherent,
.free_coherent = nommu_free_coherent,
.map_single = nommu_map_single,
.map_sg = nommu_map_sg,
.is_phys = 1,
};
void __init no_iommu_init(void)
{
if (dma_ops)
return;
force_iommu = 0; /* no HW IOMMU */
dma_ops = &nommu_dma_ops;
}