kernel-fxtec-pro1x/Documentation/filesystems/ext4.txt
Theodore Ts'o 03010a3350 ext4: Rename ext4dev to ext4
The ext4 filesystem is getting stable enough that it's time to drop
the "dev" prefix.  Also remove the requirement for the TEST_FILESYS
flag.

Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2008-10-10 20:02:48 -04:00

299 lines
11 KiB
Text

Ext4 Filesystem
===============
This is a development version of the ext4 filesystem, an advanced level
of the ext3 filesystem which incorporates scalability and reliability
enhancements for supporting large filesystems (64 bit) in keeping with
increasing disk capacities and state-of-the-art feature requirements.
Mailing list: linux-ext4@vger.kernel.org
1. Quick usage instructions:
===========================
- Compile and install the latest version of e2fsprogs (as of this
writing version 1.41) from:
http://sourceforge.net/project/showfiles.php?group_id=2406
or
ftp://ftp.kernel.org/pub/linux/kernel/people/tytso/e2fsprogs/
or grab the latest git repository from:
git://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git
- Note that it is highly important to install the mke2fs.conf file
that comes with the e2fsprogs 1.41.x sources in /etc/mke2fs.conf. If
you have edited the /etc/mke2fs.conf file installed on your system,
you will need to merge your changes with the version from e2fsprogs
1.41.x.
- Create a new filesystem using the ext4 filesystem type:
# mke2fs -t ext4 /dev/hda1
Or configure an existing ext3 filesystem to support extents and set
the test_fs flag to indicate that it's ok for an in-development
filesystem to touch this filesystem:
# tune2fs -O extents -E test_fs /dev/hda1
If the filesystem was created with 128 byte inodes, it can be
converted to use 256 byte for greater efficiency via:
# tune2fs -I 256 /dev/hda1
(Note: we currently do not have tools to convert an ext4
filesystem back to ext3; so please do not do try this on production
filesystems.)
- Mounting:
# mount -t ext4 /dev/hda1 /wherever
- When comparing performance with other filesystems, remember that
ext3/4 by default offers higher data integrity guarantees than most.
So when comparing with a metadata-only journalling filesystem, such
as ext3, use `mount -o data=writeback'. And you might as well use
`mount -o nobh' too along with it. Making the journal larger than
the mke2fs default often helps performance with metadata-intensive
workloads.
2. Features
===========
2.1 Currently available
* ability to use filesystems > 16TB (e2fsprogs support not available yet)
* extent format reduces metadata overhead (RAM, IO for access, transactions)
* extent format more robust in face of on-disk corruption due to magics,
* internal redunancy in tree
* improved file allocation (multi-block alloc)
* fix 32000 subdirectory limit
* nsec timestamps for mtime, atime, ctime, create time
* inode version field on disk (NFSv4, Lustre)
* reduced e2fsck time via uninit_bg feature
* journal checksumming for robustness, performance
* persistent file preallocation (e.g for streaming media, databases)
* ability to pack bitmaps and inode tables into larger virtual groups via the
flex_bg feature
* large file support
* Inode allocation using large virtual block groups via flex_bg
* delayed allocation
* large block (up to pagesize) support
* efficent new ordered mode in JBD2 and ext4(avoid using buffer head to force
the ordering)
2.2 Candidate features for future inclusion
* Online defrag (patches available but not well tested)
* reduced mke2fs time via lazy itable initialization in conjuction with
the uninit_bg feature (capability to do this is available in e2fsprogs
but a kernel thread to do lazy zeroing of unused inode table blocks
after filesystem is first mounted is required for safety)
There are several others under discussion, whether they all make it in is
partly a function of how much time everyone has to work on them. Features like
metadata checksumming have been discussed and planned for a bit but no patches
exist yet so I'm not sure they're in the near-term roadmap.
The big performance win will come with mballoc, delalloc and flex_bg
grouping of bitmaps and inode tables. Some test results available here:
- http://www.bullopensource.org/ext4/20080530/ffsb-write-2.6.26-rc2.html
- http://www.bullopensource.org/ext4/20080530/ffsb-readwrite-2.6.26-rc2.html
3. Options
==========
When mounting an ext4 filesystem, the following option are accepted:
(*) == default
extents (*) ext4 will use extents to address file data. The
file system will no longer be mountable by ext3.
noextents ext4 will not use extents for newly created files
journal_checksum Enable checksumming of the journal transactions.
This will allow the recovery code in e2fsck and the
kernel to detect corruption in the kernel. It is a
compatible change and will be ignored by older kernels.
journal_async_commit Commit block can be written to disk without waiting
for descriptor blocks. If enabled older kernels cannot
mount the device. This will enable 'journal_checksum'
internally.
journal=update Update the ext4 file system's journal to the current
format.
journal=inum When a journal already exists, this option is ignored.
Otherwise, it specifies the number of the inode which
will represent the ext4 file system's journal file.
journal_dev=devnum When the external journal device's major/minor numbers
have changed, this option allows the user to specify
the new journal location. The journal device is
identified through its new major/minor numbers encoded
in devnum.
noload Don't load the journal on mounting.
data=journal All data are committed into the journal prior to being
written into the main file system.
data=ordered (*) All data are forced directly out to the main file
system prior to its metadata being committed to the
journal.
data=writeback Data ordering is not preserved, data may be written
into the main file system after its metadata has been
committed to the journal.
commit=nrsec (*) Ext4 can be told to sync all its data and metadata
every 'nrsec' seconds. The default value is 5 seconds.
This means that if you lose your power, you will lose
as much as the latest 5 seconds of work (your
filesystem will not be damaged though, thanks to the
journaling). This default value (or any low value)
will hurt performance, but it's good for data-safety.
Setting it to 0 will have the same effect as leaving
it at the default (5 seconds).
Setting it to very large values will improve
performance.
barrier=<0|1(*)> This enables/disables the use of write barriers in
the jbd code. barrier=0 disables, barrier=1 enables.
This also requires an IO stack which can support
barriers, and if jbd gets an error on a barrier
write, it will disable again with a warning.
Write barriers enforce proper on-disk ordering
of journal commits, making volatile disk write caches
safe to use, at some performance penalty. If
your disks are battery-backed in one way or another,
disabling barriers may safely improve performance.
inode_readahead=n This tuning parameter controls the maximum
number of inode table blocks that ext4's inode
table readahead algorithm will pre-read into
the buffer cache. The default value is 32 blocks.
orlov (*) This enables the new Orlov block allocator. It is
enabled by default.
oldalloc This disables the Orlov block allocator and enables
the old block allocator. Orlov should have better
performance - we'd like to get some feedback if it's
the contrary for you.
user_xattr Enables Extended User Attributes. Additionally, you
need to have extended attribute support enabled in the
kernel configuration (CONFIG_EXT4_FS_XATTR). See the
attr(5) manual page and http://acl.bestbits.at/ to
learn more about extended attributes.
nouser_xattr Disables Extended User Attributes.
acl Enables POSIX Access Control Lists support.
Additionally, you need to have ACL support enabled in
the kernel configuration (CONFIG_EXT4_FS_POSIX_ACL).
See the acl(5) manual page and http://acl.bestbits.at/
for more information.
noacl This option disables POSIX Access Control List
support.
reservation
noreservation
bsddf (*) Make 'df' act like BSD.
minixdf Make 'df' act like Minix.
check=none Don't do extra checking of bitmaps on mount.
nocheck
debug Extra debugging information is sent to syslog.
errors=remount-ro(*) Remount the filesystem read-only on an error.
errors=continue Keep going on a filesystem error.
errors=panic Panic and halt the machine if an error occurs.
grpid Give objects the same group ID as their creator.
bsdgroups
nogrpid (*) New objects have the group ID of their creator.
sysvgroups
resgid=n The group ID which may use the reserved blocks.
resuid=n The user ID which may use the reserved blocks.
sb=n Use alternate superblock at this location.
quota
noquota
grpquota
usrquota
bh (*) ext4 associates buffer heads to data pages to
nobh (a) cache disk block mapping information
(b) link pages into transaction to provide
ordering guarantees.
"bh" option forces use of buffer heads.
"nobh" option tries to avoid associating buffer
heads (supported only for "writeback" mode).
mballoc (*) Use the multiple block allocator for block allocation
nomballoc disabled multiple block allocator for block allocation.
stripe=n Number of filesystem blocks that mballoc will try
to use for allocation size and alignment. For RAID5/6
systems this should be the number of data
disks * RAID chunk size in file system blocks.
delalloc (*) Deferring block allocation until write-out time.
nodelalloc Disable delayed allocation. Blocks are allocation
when data is copied from user to page cache.
Data Mode
=========
There are 3 different data modes:
* writeback mode
In data=writeback mode, ext4 does not journal data at all. This mode provides
a similar level of journaling as that of XFS, JFS, and ReiserFS in its default
mode - metadata journaling. A crash+recovery can cause incorrect data to
appear in files which were written shortly before the crash. This mode will
typically provide the best ext4 performance.
* ordered mode
In data=ordered mode, ext4 only officially journals metadata, but it logically
groups metadata information related to data changes with the data blocks into a
single unit called a transaction. When it's time to write the new metadata
out to disk, the associated data blocks are written first. In general,
this mode performs slightly slower than writeback but significantly faster than journal mode.
* journal mode
data=journal mode provides full data and metadata journaling. All new data is
written to the journal first, and then to its final location.
In the event of a crash, the journal can be replayed, bringing both data and
metadata into a consistent state. This mode is the slowest except when data
needs to be read from and written to disk at the same time where it
outperforms all others modes. Curently ext4 does not have delayed
allocation support if this data journalling mode is selected.
References
==========
kernel source: <file:fs/ext4/>
<file:fs/jbd2/>
programs: http://e2fsprogs.sourceforge.net/
useful links: http://fedoraproject.org/wiki/ext3-devel
http://www.bullopensource.org/ext4/
http://ext4.wiki.kernel.org/index.php/Main_Page
http://fedoraproject.org/wiki/Features/Ext4