kernel-fxtec-pro1x/drivers/net/rrunner.c
David S. Miller babcda74e9 drivers/net: Kill now superfluous ->last_rx stores.
The generic packet receive code takes care of setting
netdev->last_rx when necessary, for the sake of the
bonding ARP monitor.

Drivers need not do it any more.

Some cases had to be skipped over because the drivers
were making use of the ->last_rx value themselves.

Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-03 21:11:17 -08:00

1714 lines
42 KiB
C

/*
* rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
*
* Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
*
* Thanks to Essential Communication for providing us with hardware
* and very comprehensive documentation without which I would not have
* been able to write this driver. A special thank you to John Gibbon
* for sorting out the legal issues, with the NDA, allowing the code to
* be released under the GPL.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
* stupid bugs in my code.
*
* Softnet support and various other patches from Val Henson of
* ODS/Essential.
*
* PCI DMA mapping code partly based on work by Francois Romieu.
*/
#define DEBUG 1
#define RX_DMA_SKBUFF 1
#define PKT_COPY_THRESHOLD 512
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/hippidevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <net/sock.h>
#include <asm/system.h>
#include <asm/cache.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#define rr_if_busy(dev) netif_queue_stopped(dev)
#define rr_if_running(dev) netif_running(dev)
#include "rrunner.h"
#define RUN_AT(x) (jiffies + (x))
MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
MODULE_LICENSE("GPL");
static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
/*
* Implementation notes:
*
* The DMA engine only allows for DMA within physical 64KB chunks of
* memory. The current approach of the driver (and stack) is to use
* linear blocks of memory for the skbuffs. However, as the data block
* is always the first part of the skb and skbs are 2^n aligned so we
* are guarantted to get the whole block within one 64KB align 64KB
* chunk.
*
* On the long term, relying on being able to allocate 64KB linear
* chunks of memory is not feasible and the skb handling code and the
* stack will need to know about I/O vectors or something similar.
*/
static int __devinit rr_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev;
static int version_disp;
u8 pci_latency;
struct rr_private *rrpriv;
void *tmpptr;
dma_addr_t ring_dma;
int ret = -ENOMEM;
dev = alloc_hippi_dev(sizeof(struct rr_private));
if (!dev)
goto out3;
ret = pci_enable_device(pdev);
if (ret) {
ret = -ENODEV;
goto out2;
}
rrpriv = netdev_priv(dev);
SET_NETDEV_DEV(dev, &pdev->dev);
if (pci_request_regions(pdev, "rrunner")) {
ret = -EIO;
goto out;
}
pci_set_drvdata(pdev, dev);
rrpriv->pci_dev = pdev;
spin_lock_init(&rrpriv->lock);
dev->irq = pdev->irq;
dev->open = &rr_open;
dev->hard_start_xmit = &rr_start_xmit;
dev->stop = &rr_close;
dev->do_ioctl = &rr_ioctl;
dev->base_addr = pci_resource_start(pdev, 0);
/* display version info if adapter is found */
if (!version_disp) {
/* set display flag to TRUE so that */
/* we only display this string ONCE */
version_disp = 1;
printk(version);
}
pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
if (pci_latency <= 0x58){
pci_latency = 0x58;
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
}
pci_set_master(pdev);
printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
"at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
dev->base_addr, dev->irq, pci_latency);
/*
* Remap the regs into kernel space.
*/
rrpriv->regs = ioremap(dev->base_addr, 0x1000);
if (!rrpriv->regs){
printk(KERN_ERR "%s: Unable to map I/O register, "
"RoadRunner will be disabled.\n", dev->name);
ret = -EIO;
goto out;
}
tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
rrpriv->tx_ring = tmpptr;
rrpriv->tx_ring_dma = ring_dma;
if (!tmpptr) {
ret = -ENOMEM;
goto out;
}
tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
rrpriv->rx_ring = tmpptr;
rrpriv->rx_ring_dma = ring_dma;
if (!tmpptr) {
ret = -ENOMEM;
goto out;
}
tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
rrpriv->evt_ring = tmpptr;
rrpriv->evt_ring_dma = ring_dma;
if (!tmpptr) {
ret = -ENOMEM;
goto out;
}
/*
* Don't access any register before this point!
*/
#ifdef __BIG_ENDIAN
writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
&rrpriv->regs->HostCtrl);
#endif
/*
* Need to add a case for little-endian 64-bit hosts here.
*/
rr_init(dev);
dev->base_addr = 0;
ret = register_netdev(dev);
if (ret)
goto out;
return 0;
out:
if (rrpriv->rx_ring)
pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
rrpriv->rx_ring_dma);
if (rrpriv->tx_ring)
pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
rrpriv->tx_ring_dma);
if (rrpriv->regs)
iounmap(rrpriv->regs);
if (pdev) {
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
}
out2:
free_netdev(dev);
out3:
return ret;
}
static void __devexit rr_remove_one (struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
if (dev) {
struct rr_private *rr = netdev_priv(dev);
if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
printk(KERN_ERR "%s: trying to unload running NIC\n",
dev->name);
writel(HALT_NIC, &rr->regs->HostCtrl);
}
pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
rr->evt_ring_dma);
pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
rr->rx_ring_dma);
pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
rr->tx_ring_dma);
unregister_netdev(dev);
iounmap(rr->regs);
free_netdev(dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
}
/*
* Commands are considered to be slow, thus there is no reason to
* inline this.
*/
static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
{
struct rr_regs __iomem *regs;
u32 idx;
regs = rrpriv->regs;
/*
* This is temporary - it will go away in the final version.
* We probably also want to make this function inline.
*/
if (readl(&regs->HostCtrl) & NIC_HALTED){
printk("issuing command for halted NIC, code 0x%x, "
"HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
if (readl(&regs->Mode) & FATAL_ERR)
printk("error codes Fail1 %02x, Fail2 %02x\n",
readl(&regs->Fail1), readl(&regs->Fail2));
}
idx = rrpriv->info->cmd_ctrl.pi;
writel(*(u32*)(cmd), &regs->CmdRing[idx]);
wmb();
idx = (idx - 1) % CMD_RING_ENTRIES;
rrpriv->info->cmd_ctrl.pi = idx;
wmb();
if (readl(&regs->Mode) & FATAL_ERR)
printk("error code %02x\n", readl(&regs->Fail1));
}
/*
* Reset the board in a sensible manner. The NIC is already halted
* when we get here and a spin-lock is held.
*/
static int rr_reset(struct net_device *dev)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
u32 start_pc;
int i;
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
rr_load_firmware(dev);
writel(0x01000000, &regs->TX_state);
writel(0xff800000, &regs->RX_state);
writel(0, &regs->AssistState);
writel(CLEAR_INTA, &regs->LocalCtrl);
writel(0x01, &regs->BrkPt);
writel(0, &regs->Timer);
writel(0, &regs->TimerRef);
writel(RESET_DMA, &regs->DmaReadState);
writel(RESET_DMA, &regs->DmaWriteState);
writel(0, &regs->DmaWriteHostHi);
writel(0, &regs->DmaWriteHostLo);
writel(0, &regs->DmaReadHostHi);
writel(0, &regs->DmaReadHostLo);
writel(0, &regs->DmaReadLen);
writel(0, &regs->DmaWriteLen);
writel(0, &regs->DmaWriteLcl);
writel(0, &regs->DmaWriteIPchecksum);
writel(0, &regs->DmaReadLcl);
writel(0, &regs->DmaReadIPchecksum);
writel(0, &regs->PciState);
#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
#elif (BITS_PER_LONG == 64)
writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
#else
writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
#endif
#if 0
/*
* Don't worry, this is just black magic.
*/
writel(0xdf000, &regs->RxBase);
writel(0xdf000, &regs->RxPrd);
writel(0xdf000, &regs->RxCon);
writel(0xce000, &regs->TxBase);
writel(0xce000, &regs->TxPrd);
writel(0xce000, &regs->TxCon);
writel(0, &regs->RxIndPro);
writel(0, &regs->RxIndCon);
writel(0, &regs->RxIndRef);
writel(0, &regs->TxIndPro);
writel(0, &regs->TxIndCon);
writel(0, &regs->TxIndRef);
writel(0xcc000, &regs->pad10[0]);
writel(0, &regs->DrCmndPro);
writel(0, &regs->DrCmndCon);
writel(0, &regs->DwCmndPro);
writel(0, &regs->DwCmndCon);
writel(0, &regs->DwCmndRef);
writel(0, &regs->DrDataPro);
writel(0, &regs->DrDataCon);
writel(0, &regs->DrDataRef);
writel(0, &regs->DwDataPro);
writel(0, &regs->DwDataCon);
writel(0, &regs->DwDataRef);
#endif
writel(0xffffffff, &regs->MbEvent);
writel(0, &regs->Event);
writel(0, &regs->TxPi);
writel(0, &regs->IpRxPi);
writel(0, &regs->EvtCon);
writel(0, &regs->EvtPrd);
rrpriv->info->evt_ctrl.pi = 0;
for (i = 0; i < CMD_RING_ENTRIES; i++)
writel(0, &regs->CmdRing[i]);
/*
* Why 32 ? is this not cache line size dependent?
*/
writel(RBURST_64|WBURST_64, &regs->PciState);
wmb();
start_pc = rr_read_eeprom_word(rrpriv,
offsetof(struct eeprom, rncd_info.FwStart));
#if (DEBUG > 1)
printk("%s: Executing firmware at address 0x%06x\n",
dev->name, start_pc);
#endif
writel(start_pc + 0x800, &regs->Pc);
wmb();
udelay(5);
writel(start_pc, &regs->Pc);
wmb();
return 0;
}
/*
* Read a string from the EEPROM.
*/
static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
unsigned long offset,
unsigned char *buf,
unsigned long length)
{
struct rr_regs __iomem *regs = rrpriv->regs;
u32 misc, io, host, i;
io = readl(&regs->ExtIo);
writel(0, &regs->ExtIo);
misc = readl(&regs->LocalCtrl);
writel(0, &regs->LocalCtrl);
host = readl(&regs->HostCtrl);
writel(host | HALT_NIC, &regs->HostCtrl);
mb();
for (i = 0; i < length; i++){
writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
mb();
buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
mb();
}
writel(host, &regs->HostCtrl);
writel(misc, &regs->LocalCtrl);
writel(io, &regs->ExtIo);
mb();
return i;
}
/*
* Shortcut to read one word (4 bytes) out of the EEPROM and convert
* it to our CPU byte-order.
*/
static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
size_t offset)
{
__be32 word;
if ((rr_read_eeprom(rrpriv, offset,
(unsigned char *)&word, 4) == 4))
return be32_to_cpu(word);
return 0;
}
/*
* Write a string to the EEPROM.
*
* This is only called when the firmware is not running.
*/
static unsigned int write_eeprom(struct rr_private *rrpriv,
unsigned long offset,
unsigned char *buf,
unsigned long length)
{
struct rr_regs __iomem *regs = rrpriv->regs;
u32 misc, io, data, i, j, ready, error = 0;
io = readl(&regs->ExtIo);
writel(0, &regs->ExtIo);
misc = readl(&regs->LocalCtrl);
writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
mb();
for (i = 0; i < length; i++){
writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
mb();
data = buf[i] << 24;
/*
* Only try to write the data if it is not the same
* value already.
*/
if ((readl(&regs->WinData) & 0xff000000) != data){
writel(data, &regs->WinData);
ready = 0;
j = 0;
mb();
while(!ready){
udelay(20);
if ((readl(&regs->WinData) & 0xff000000) ==
data)
ready = 1;
mb();
if (j++ > 5000){
printk("data mismatch: %08x, "
"WinData %08x\n", data,
readl(&regs->WinData));
ready = 1;
error = 1;
}
}
}
}
writel(misc, &regs->LocalCtrl);
writel(io, &regs->ExtIo);
mb();
return error;
}
static int __devinit rr_init(struct net_device *dev)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
u32 sram_size, rev;
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
rev = readl(&regs->FwRev);
rrpriv->fw_rev = rev;
if (rev > 0x00020024)
printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
((rev >> 8) & 0xff), (rev & 0xff));
else if (rev >= 0x00020000) {
printk(" Firmware revision: %i.%i.%i (2.0.37 or "
"later is recommended)\n", (rev >> 16),
((rev >> 8) & 0xff), (rev & 0xff));
}else{
printk(" Firmware revision too old: %i.%i.%i, please "
"upgrade to 2.0.37 or later.\n",
(rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
}
#if (DEBUG > 2)
printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
#endif
/*
* Read the hardware address from the eeprom. The HW address
* is not really necessary for HIPPI but awfully convenient.
* The pointer arithmetic to put it in dev_addr is ugly, but
* Donald Becker does it this way for the GigE version of this
* card and it's shorter and more portable than any
* other method I've seen. -VAL
*/
*(__be16 *)(dev->dev_addr) =
htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
*(__be32 *)(dev->dev_addr+2) =
htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
printk(" MAC: %pM\n", dev->dev_addr);
sram_size = rr_read_eeprom_word(rrpriv, 8);
printk(" SRAM size 0x%06x\n", sram_size);
return 0;
}
static int rr_init1(struct net_device *dev)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
unsigned long myjif, flags;
struct cmd cmd;
u32 hostctrl;
int ecode = 0;
short i;
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
spin_lock_irqsave(&rrpriv->lock, flags);
hostctrl = readl(&regs->HostCtrl);
writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
wmb();
if (hostctrl & PARITY_ERR){
printk("%s: Parity error halting NIC - this is serious!\n",
dev->name);
spin_unlock_irqrestore(&rrpriv->lock, flags);
ecode = -EFAULT;
goto error;
}
set_rxaddr(regs, rrpriv->rx_ctrl_dma);
set_infoaddr(regs, rrpriv->info_dma);
rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
rrpriv->info->evt_ctrl.mode = 0;
rrpriv->info->evt_ctrl.pi = 0;
set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
rrpriv->info->cmd_ctrl.mode = 0;
rrpriv->info->cmd_ctrl.pi = 15;
for (i = 0; i < CMD_RING_ENTRIES; i++) {
writel(0, &regs->CmdRing[i]);
}
for (i = 0; i < TX_RING_ENTRIES; i++) {
rrpriv->tx_ring[i].size = 0;
set_rraddr(&rrpriv->tx_ring[i].addr, 0);
rrpriv->tx_skbuff[i] = NULL;
}
rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
rrpriv->info->tx_ctrl.mode = 0;
rrpriv->info->tx_ctrl.pi = 0;
set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
/*
* Set dirty_tx before we start receiving interrupts, otherwise
* the interrupt handler might think it is supposed to process
* tx ints before we are up and running, which may cause a null
* pointer access in the int handler.
*/
rrpriv->tx_full = 0;
rrpriv->cur_rx = 0;
rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
rr_reset(dev);
/* Tuning values */
writel(0x5000, &regs->ConRetry);
writel(0x100, &regs->ConRetryTmr);
writel(0x500000, &regs->ConTmout);
writel(0x60, &regs->IntrTmr);
writel(0x500000, &regs->TxDataMvTimeout);
writel(0x200000, &regs->RxDataMvTimeout);
writel(0x80, &regs->WriteDmaThresh);
writel(0x80, &regs->ReadDmaThresh);
rrpriv->fw_running = 0;
wmb();
hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
writel(hostctrl, &regs->HostCtrl);
wmb();
spin_unlock_irqrestore(&rrpriv->lock, flags);
for (i = 0; i < RX_RING_ENTRIES; i++) {
struct sk_buff *skb;
dma_addr_t addr;
rrpriv->rx_ring[i].mode = 0;
skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
if (!skb) {
printk(KERN_WARNING "%s: Unable to allocate memory "
"for receive ring - halting NIC\n", dev->name);
ecode = -ENOMEM;
goto error;
}
rrpriv->rx_skbuff[i] = skb;
addr = pci_map_single(rrpriv->pci_dev, skb->data,
dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
/*
* Sanity test to see if we conflict with the DMA
* limitations of the Roadrunner.
*/
if ((((unsigned long)skb->data) & 0xfff) > ~65320)
printk("skb alloc error\n");
set_rraddr(&rrpriv->rx_ring[i].addr, addr);
rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
}
rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
rrpriv->rx_ctrl[4].mode = 8;
rrpriv->rx_ctrl[4].pi = 0;
wmb();
set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
udelay(1000);
/*
* Now start the FirmWare.
*/
cmd.code = C_START_FW;
cmd.ring = 0;
cmd.index = 0;
rr_issue_cmd(rrpriv, &cmd);
/*
* Give the FirmWare time to chew on the `get running' command.
*/
myjif = jiffies + 5 * HZ;
while (time_before(jiffies, myjif) && !rrpriv->fw_running)
cpu_relax();
netif_start_queue(dev);
return ecode;
error:
/*
* We might have gotten here because we are out of memory,
* make sure we release everything we allocated before failing
*/
for (i = 0; i < RX_RING_ENTRIES; i++) {
struct sk_buff *skb = rrpriv->rx_skbuff[i];
if (skb) {
pci_unmap_single(rrpriv->pci_dev,
rrpriv->rx_ring[i].addr.addrlo,
dev->mtu + HIPPI_HLEN,
PCI_DMA_FROMDEVICE);
rrpriv->rx_ring[i].size = 0;
set_rraddr(&rrpriv->rx_ring[i].addr, 0);
dev_kfree_skb(skb);
rrpriv->rx_skbuff[i] = NULL;
}
}
return ecode;
}
/*
* All events are considered to be slow (RX/TX ints do not generate
* events) and are handled here, outside the main interrupt handler,
* to reduce the size of the handler.
*/
static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
u32 tmp;
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
while (prodidx != eidx){
switch (rrpriv->evt_ring[eidx].code){
case E_NIC_UP:
tmp = readl(&regs->FwRev);
printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
"up and running\n", dev->name,
(tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
rrpriv->fw_running = 1;
writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
wmb();
break;
case E_LINK_ON:
printk(KERN_INFO "%s: Optical link ON\n", dev->name);
break;
case E_LINK_OFF:
printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
break;
case E_RX_IDLE:
printk(KERN_WARNING "%s: RX data not moving\n",
dev->name);
goto drop;
case E_WATCHDOG:
printk(KERN_INFO "%s: The watchdog is here to see "
"us\n", dev->name);
break;
case E_INTERN_ERR:
printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
case E_HOST_ERR:
printk(KERN_ERR "%s: Host software error\n",
dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
/*
* TX events.
*/
case E_CON_REJ:
printk(KERN_WARNING "%s: Connection rejected\n",
dev->name);
dev->stats.tx_aborted_errors++;
break;
case E_CON_TMOUT:
printk(KERN_WARNING "%s: Connection timeout\n",
dev->name);
break;
case E_DISC_ERR:
printk(KERN_WARNING "%s: HIPPI disconnect error\n",
dev->name);
dev->stats.tx_aborted_errors++;
break;
case E_INT_PRTY:
printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
case E_TX_IDLE:
printk(KERN_WARNING "%s: Transmitter idle\n",
dev->name);
break;
case E_TX_LINK_DROP:
printk(KERN_WARNING "%s: Link lost during transmit\n",
dev->name);
dev->stats.tx_aborted_errors++;
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
case E_TX_INV_RNG:
printk(KERN_ERR "%s: Invalid send ring block\n",
dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
case E_TX_INV_BUF:
printk(KERN_ERR "%s: Invalid send buffer address\n",
dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
case E_TX_INV_DSC:
printk(KERN_ERR "%s: Invalid descriptor address\n",
dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
/*
* RX events.
*/
case E_RX_RNG_OUT:
printk(KERN_INFO "%s: Receive ring full\n", dev->name);
break;
case E_RX_PAR_ERR:
printk(KERN_WARNING "%s: Receive parity error\n",
dev->name);
goto drop;
case E_RX_LLRC_ERR:
printk(KERN_WARNING "%s: Receive LLRC error\n",
dev->name);
goto drop;
case E_PKT_LN_ERR:
printk(KERN_WARNING "%s: Receive packet length "
"error\n", dev->name);
goto drop;
case E_DTA_CKSM_ERR:
printk(KERN_WARNING "%s: Data checksum error\n",
dev->name);
goto drop;
case E_SHT_BST:
printk(KERN_WARNING "%s: Unexpected short burst "
"error\n", dev->name);
goto drop;
case E_STATE_ERR:
printk(KERN_WARNING "%s: Recv. state transition"
" error\n", dev->name);
goto drop;
case E_UNEXP_DATA:
printk(KERN_WARNING "%s: Unexpected data error\n",
dev->name);
goto drop;
case E_LST_LNK_ERR:
printk(KERN_WARNING "%s: Link lost error\n",
dev->name);
goto drop;
case E_FRM_ERR:
printk(KERN_WARNING "%s: Framming Error\n",
dev->name);
goto drop;
case E_FLG_SYN_ERR:
printk(KERN_WARNING "%s: Flag sync. lost during "
"packet\n", dev->name);
goto drop;
case E_RX_INV_BUF:
printk(KERN_ERR "%s: Invalid receive buffer "
"address\n", dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
case E_RX_INV_DSC:
printk(KERN_ERR "%s: Invalid receive descriptor "
"address\n", dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
case E_RNG_BLK:
printk(KERN_ERR "%s: Invalid ring block\n",
dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
drop:
/* Label packet to be dropped.
* Actual dropping occurs in rx
* handling.
*
* The index of packet we get to drop is
* the index of the packet following
* the bad packet. -kbf
*/
{
u16 index = rrpriv->evt_ring[eidx].index;
index = (index + (RX_RING_ENTRIES - 1)) %
RX_RING_ENTRIES;
rrpriv->rx_ring[index].mode |=
(PACKET_BAD | PACKET_END);
}
break;
default:
printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
dev->name, rrpriv->evt_ring[eidx].code);
}
eidx = (eidx + 1) % EVT_RING_ENTRIES;
}
rrpriv->info->evt_ctrl.pi = eidx;
wmb();
return eidx;
}
static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
{
struct rr_private *rrpriv = netdev_priv(dev);
struct rr_regs __iomem *regs = rrpriv->regs;
do {
struct rx_desc *desc;
u32 pkt_len;
desc = &(rrpriv->rx_ring[index]);
pkt_len = desc->size;
#if (DEBUG > 2)
printk("index %i, rxlimit %i\n", index, rxlimit);
printk("len %x, mode %x\n", pkt_len, desc->mode);
#endif
if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
dev->stats.rx_dropped++;
goto defer;
}
if (pkt_len > 0){
struct sk_buff *skb, *rx_skb;
rx_skb = rrpriv->rx_skbuff[index];
if (pkt_len < PKT_COPY_THRESHOLD) {
skb = alloc_skb(pkt_len, GFP_ATOMIC);
if (skb == NULL){
printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
dev->stats.rx_dropped++;
goto defer;
} else {
pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
desc->addr.addrlo,
pkt_len,
PCI_DMA_FROMDEVICE);
memcpy(skb_put(skb, pkt_len),
rx_skb->data, pkt_len);
pci_dma_sync_single_for_device(rrpriv->pci_dev,
desc->addr.addrlo,
pkt_len,
PCI_DMA_FROMDEVICE);
}
}else{
struct sk_buff *newskb;
newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
GFP_ATOMIC);
if (newskb){
dma_addr_t addr;
pci_unmap_single(rrpriv->pci_dev,
desc->addr.addrlo, dev->mtu +
HIPPI_HLEN, PCI_DMA_FROMDEVICE);
skb = rx_skb;
skb_put(skb, pkt_len);
rrpriv->rx_skbuff[index] = newskb;
addr = pci_map_single(rrpriv->pci_dev,
newskb->data,
dev->mtu + HIPPI_HLEN,
PCI_DMA_FROMDEVICE);
set_rraddr(&desc->addr, addr);
} else {
printk("%s: Out of memory, deferring "
"packet\n", dev->name);
dev->stats.rx_dropped++;
goto defer;
}
}
skb->protocol = hippi_type_trans(skb, dev);
netif_rx(skb); /* send it up */
dev->stats.rx_packets++;
dev->stats.rx_bytes += pkt_len;
}
defer:
desc->mode = 0;
desc->size = dev->mtu + HIPPI_HLEN;
if ((index & 7) == 7)
writel(index, &regs->IpRxPi);
index = (index + 1) % RX_RING_ENTRIES;
} while(index != rxlimit);
rrpriv->cur_rx = index;
wmb();
}
static irqreturn_t rr_interrupt(int irq, void *dev_id)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
struct net_device *dev = (struct net_device *)dev_id;
u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
if (!(readl(&regs->HostCtrl) & RR_INT))
return IRQ_NONE;
spin_lock(&rrpriv->lock);
prodidx = readl(&regs->EvtPrd);
txcsmr = (prodidx >> 8) & 0xff;
rxlimit = (prodidx >> 16) & 0xff;
prodidx &= 0xff;
#if (DEBUG > 2)
printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
prodidx, rrpriv->info->evt_ctrl.pi);
#endif
/*
* Order here is important. We must handle events
* before doing anything else in order to catch
* such things as LLRC errors, etc -kbf
*/
eidx = rrpriv->info->evt_ctrl.pi;
if (prodidx != eidx)
eidx = rr_handle_event(dev, prodidx, eidx);
rxindex = rrpriv->cur_rx;
if (rxindex != rxlimit)
rx_int(dev, rxlimit, rxindex);
txcon = rrpriv->dirty_tx;
if (txcsmr != txcon) {
do {
/* Due to occational firmware TX producer/consumer out
* of sync. error need to check entry in ring -kbf
*/
if(rrpriv->tx_skbuff[txcon]){
struct tx_desc *desc;
struct sk_buff *skb;
desc = &(rrpriv->tx_ring[txcon]);
skb = rrpriv->tx_skbuff[txcon];
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
pci_unmap_single(rrpriv->pci_dev,
desc->addr.addrlo, skb->len,
PCI_DMA_TODEVICE);
dev_kfree_skb_irq(skb);
rrpriv->tx_skbuff[txcon] = NULL;
desc->size = 0;
set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
desc->mode = 0;
}
txcon = (txcon + 1) % TX_RING_ENTRIES;
} while (txcsmr != txcon);
wmb();
rrpriv->dirty_tx = txcon;
if (rrpriv->tx_full && rr_if_busy(dev) &&
(((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
!= rrpriv->dirty_tx)){
rrpriv->tx_full = 0;
netif_wake_queue(dev);
}
}
eidx |= ((txcsmr << 8) | (rxlimit << 16));
writel(eidx, &regs->EvtCon);
wmb();
spin_unlock(&rrpriv->lock);
return IRQ_HANDLED;
}
static inline void rr_raz_tx(struct rr_private *rrpriv,
struct net_device *dev)
{
int i;
for (i = 0; i < TX_RING_ENTRIES; i++) {
struct sk_buff *skb = rrpriv->tx_skbuff[i];
if (skb) {
struct tx_desc *desc = &(rrpriv->tx_ring[i]);
pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
skb->len, PCI_DMA_TODEVICE);
desc->size = 0;
set_rraddr(&desc->addr, 0);
dev_kfree_skb(skb);
rrpriv->tx_skbuff[i] = NULL;
}
}
}
static inline void rr_raz_rx(struct rr_private *rrpriv,
struct net_device *dev)
{
int i;
for (i = 0; i < RX_RING_ENTRIES; i++) {
struct sk_buff *skb = rrpriv->rx_skbuff[i];
if (skb) {
struct rx_desc *desc = &(rrpriv->rx_ring[i]);
pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
desc->size = 0;
set_rraddr(&desc->addr, 0);
dev_kfree_skb(skb);
rrpriv->rx_skbuff[i] = NULL;
}
}
}
static void rr_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct rr_private *rrpriv = netdev_priv(dev);
struct rr_regs __iomem *regs = rrpriv->regs;
unsigned long flags;
if (readl(&regs->HostCtrl) & NIC_HALTED){
printk("%s: Restarting nic\n", dev->name);
memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
memset(rrpriv->info, 0, sizeof(struct rr_info));
wmb();
rr_raz_tx(rrpriv, dev);
rr_raz_rx(rrpriv, dev);
if (rr_init1(dev)) {
spin_lock_irqsave(&rrpriv->lock, flags);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
spin_unlock_irqrestore(&rrpriv->lock, flags);
}
}
rrpriv->timer.expires = RUN_AT(5*HZ);
add_timer(&rrpriv->timer);
}
static int rr_open(struct net_device *dev)
{
struct rr_private *rrpriv = netdev_priv(dev);
struct pci_dev *pdev = rrpriv->pci_dev;
struct rr_regs __iomem *regs;
int ecode = 0;
unsigned long flags;
dma_addr_t dma_addr;
regs = rrpriv->regs;
if (rrpriv->fw_rev < 0x00020000) {
printk(KERN_WARNING "%s: trying to configure device with "
"obsolete firmware\n", dev->name);
ecode = -EBUSY;
goto error;
}
rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
256 * sizeof(struct ring_ctrl),
&dma_addr);
if (!rrpriv->rx_ctrl) {
ecode = -ENOMEM;
goto error;
}
rrpriv->rx_ctrl_dma = dma_addr;
memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
&dma_addr);
if (!rrpriv->info) {
ecode = -ENOMEM;
goto error;
}
rrpriv->info_dma = dma_addr;
memset(rrpriv->info, 0, sizeof(struct rr_info));
wmb();
spin_lock_irqsave(&rrpriv->lock, flags);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
readl(&regs->HostCtrl);
spin_unlock_irqrestore(&rrpriv->lock, flags);
if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
dev->name, dev->irq);
ecode = -EAGAIN;
goto error;
}
if ((ecode = rr_init1(dev)))
goto error;
/* Set the timer to switch to check for link beat and perhaps switch
to an alternate media type. */
init_timer(&rrpriv->timer);
rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
rrpriv->timer.data = (unsigned long)dev;
rrpriv->timer.function = &rr_timer; /* timer handler */
add_timer(&rrpriv->timer);
netif_start_queue(dev);
return ecode;
error:
spin_lock_irqsave(&rrpriv->lock, flags);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
spin_unlock_irqrestore(&rrpriv->lock, flags);
if (rrpriv->info) {
pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
rrpriv->info_dma);
rrpriv->info = NULL;
}
if (rrpriv->rx_ctrl) {
pci_free_consistent(pdev, sizeof(struct ring_ctrl),
rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
rrpriv->rx_ctrl = NULL;
}
netif_stop_queue(dev);
return ecode;
}
static void rr_dump(struct net_device *dev)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
u32 index, cons;
short i;
int len;
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
printk("%s: dumping NIC TX rings\n", dev->name);
printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
readl(&regs->RxPrd), readl(&regs->TxPrd),
readl(&regs->EvtPrd), readl(&regs->TxPi),
rrpriv->info->tx_ctrl.pi);
printk("Error code 0x%x\n", readl(&regs->Fail1));
index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
cons = rrpriv->dirty_tx;
printk("TX ring index %i, TX consumer %i\n",
index, cons);
if (rrpriv->tx_skbuff[index]){
len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
for (i = 0; i < len; i++){
if (!(i & 7))
printk("\n");
printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
}
printk("\n");
}
if (rrpriv->tx_skbuff[cons]){
len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
rrpriv->tx_ring[cons].mode,
rrpriv->tx_ring[cons].size,
(unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
(unsigned long)rrpriv->tx_skbuff[cons]->data,
(unsigned int)rrpriv->tx_skbuff[cons]->truesize);
for (i = 0; i < len; i++){
if (!(i & 7))
printk("\n");
printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
}
printk("\n");
}
printk("dumping TX ring info:\n");
for (i = 0; i < TX_RING_ENTRIES; i++)
printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
rrpriv->tx_ring[i].mode,
rrpriv->tx_ring[i].size,
(unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
}
static int rr_close(struct net_device *dev)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
unsigned long flags;
u32 tmp;
short i;
netif_stop_queue(dev);
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
/*
* Lock to make sure we are not cleaning up while another CPU
* is handling interrupts.
*/
spin_lock_irqsave(&rrpriv->lock, flags);
tmp = readl(&regs->HostCtrl);
if (tmp & NIC_HALTED){
printk("%s: NIC already halted\n", dev->name);
rr_dump(dev);
}else{
tmp |= HALT_NIC | RR_CLEAR_INT;
writel(tmp, &regs->HostCtrl);
readl(&regs->HostCtrl);
}
rrpriv->fw_running = 0;
del_timer_sync(&rrpriv->timer);
writel(0, &regs->TxPi);
writel(0, &regs->IpRxPi);
writel(0, &regs->EvtCon);
writel(0, &regs->EvtPrd);
for (i = 0; i < CMD_RING_ENTRIES; i++)
writel(0, &regs->CmdRing[i]);
rrpriv->info->tx_ctrl.entries = 0;
rrpriv->info->cmd_ctrl.pi = 0;
rrpriv->info->evt_ctrl.pi = 0;
rrpriv->rx_ctrl[4].entries = 0;
rr_raz_tx(rrpriv, dev);
rr_raz_rx(rrpriv, dev);
pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
rrpriv->rx_ctrl = NULL;
pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
rrpriv->info, rrpriv->info_dma);
rrpriv->info = NULL;
free_irq(dev->irq, dev);
spin_unlock_irqrestore(&rrpriv->lock, flags);
return 0;
}
static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct rr_private *rrpriv = netdev_priv(dev);
struct rr_regs __iomem *regs = rrpriv->regs;
struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
struct ring_ctrl *txctrl;
unsigned long flags;
u32 index, len = skb->len;
u32 *ifield;
struct sk_buff *new_skb;
if (readl(&regs->Mode) & FATAL_ERR)
printk("error codes Fail1 %02x, Fail2 %02x\n",
readl(&regs->Fail1), readl(&regs->Fail2));
/*
* We probably need to deal with tbusy here to prevent overruns.
*/
if (skb_headroom(skb) < 8){
printk("incoming skb too small - reallocating\n");
if (!(new_skb = dev_alloc_skb(len + 8))) {
dev_kfree_skb(skb);
netif_wake_queue(dev);
return -EBUSY;
}
skb_reserve(new_skb, 8);
skb_put(new_skb, len);
skb_copy_from_linear_data(skb, new_skb->data, len);
dev_kfree_skb(skb);
skb = new_skb;
}
ifield = (u32 *)skb_push(skb, 8);
ifield[0] = 0;
ifield[1] = hcb->ifield;
/*
* We don't need the lock before we are actually going to start
* fiddling with the control blocks.
*/
spin_lock_irqsave(&rrpriv->lock, flags);
txctrl = &rrpriv->info->tx_ctrl;
index = txctrl->pi;
rrpriv->tx_skbuff[index] = skb;
set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
txctrl->pi = (index + 1) % TX_RING_ENTRIES;
wmb();
writel(txctrl->pi, &regs->TxPi);
if (txctrl->pi == rrpriv->dirty_tx){
rrpriv->tx_full = 1;
netif_stop_queue(dev);
}
spin_unlock_irqrestore(&rrpriv->lock, flags);
dev->trans_start = jiffies;
return 0;
}
/*
* Read the firmware out of the EEPROM and put it into the SRAM
* (or from user space - later)
*
* This operation requires the NIC to be halted and is performed with
* interrupts disabled and with the spinlock hold.
*/
static int rr_load_firmware(struct net_device *dev)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
size_t eptr, segptr;
int i, j;
u32 localctrl, sptr, len, tmp;
u32 p2len, p2size, nr_seg, revision, io, sram_size;
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
if (dev->flags & IFF_UP)
return -EBUSY;
if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
printk("%s: Trying to load firmware to a running NIC.\n",
dev->name);
return -EBUSY;
}
localctrl = readl(&regs->LocalCtrl);
writel(0, &regs->LocalCtrl);
writel(0, &regs->EvtPrd);
writel(0, &regs->RxPrd);
writel(0, &regs->TxPrd);
/*
* First wipe the entire SRAM, otherwise we might run into all
* kinds of trouble ... sigh, this took almost all afternoon
* to track down ;-(
*/
io = readl(&regs->ExtIo);
writel(0, &regs->ExtIo);
sram_size = rr_read_eeprom_word(rrpriv, 8);
for (i = 200; i < sram_size / 4; i++){
writel(i * 4, &regs->WinBase);
mb();
writel(0, &regs->WinData);
mb();
}
writel(io, &regs->ExtIo);
mb();
eptr = rr_read_eeprom_word(rrpriv,
offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
eptr = ((eptr & 0x1fffff) >> 3);
p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
p2len = (p2len << 2);
p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
p2size = ((p2size & 0x1fffff) >> 3);
if ((eptr < p2size) || (eptr > (p2size + p2len))){
printk("%s: eptr is invalid\n", dev->name);
goto out;
}
revision = rr_read_eeprom_word(rrpriv,
offsetof(struct eeprom, manf.HeaderFmt));
if (revision != 1){
printk("%s: invalid firmware format (%i)\n",
dev->name, revision);
goto out;
}
nr_seg = rr_read_eeprom_word(rrpriv, eptr);
eptr +=4;
#if (DEBUG > 1)
printk("%s: nr_seg %i\n", dev->name, nr_seg);
#endif
for (i = 0; i < nr_seg; i++){
sptr = rr_read_eeprom_word(rrpriv, eptr);
eptr += 4;
len = rr_read_eeprom_word(rrpriv, eptr);
eptr += 4;
segptr = rr_read_eeprom_word(rrpriv, eptr);
segptr = ((segptr & 0x1fffff) >> 3);
eptr += 4;
#if (DEBUG > 1)
printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
dev->name, i, sptr, len, segptr);
#endif
for (j = 0; j < len; j++){
tmp = rr_read_eeprom_word(rrpriv, segptr);
writel(sptr, &regs->WinBase);
mb();
writel(tmp, &regs->WinData);
mb();
segptr += 4;
sptr += 4;
}
}
out:
writel(localctrl, &regs->LocalCtrl);
mb();
return 0;
}
static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct rr_private *rrpriv;
unsigned char *image, *oldimage;
unsigned long flags;
unsigned int i;
int error = -EOPNOTSUPP;
rrpriv = netdev_priv(dev);
switch(cmd){
case SIOCRRGFW:
if (!capable(CAP_SYS_RAWIO)){
return -EPERM;
}
image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
if (!image){
printk(KERN_ERR "%s: Unable to allocate memory "
"for EEPROM image\n", dev->name);
return -ENOMEM;
}
if (rrpriv->fw_running){
printk("%s: Firmware already running\n", dev->name);
error = -EPERM;
goto gf_out;
}
spin_lock_irqsave(&rrpriv->lock, flags);
i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
spin_unlock_irqrestore(&rrpriv->lock, flags);
if (i != EEPROM_BYTES){
printk(KERN_ERR "%s: Error reading EEPROM\n",
dev->name);
error = -EFAULT;
goto gf_out;
}
error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
if (error)
error = -EFAULT;
gf_out:
kfree(image);
return error;
case SIOCRRPFW:
if (!capable(CAP_SYS_RAWIO)){
return -EPERM;
}
image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
if (!image || !oldimage) {
printk(KERN_ERR "%s: Unable to allocate memory "
"for EEPROM image\n", dev->name);
error = -ENOMEM;
goto wf_out;
}
error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
if (error) {
error = -EFAULT;
goto wf_out;
}
if (rrpriv->fw_running){
printk("%s: Firmware already running\n", dev->name);
error = -EPERM;
goto wf_out;
}
printk("%s: Updating EEPROM firmware\n", dev->name);
spin_lock_irqsave(&rrpriv->lock, flags);
error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
if (error)
printk(KERN_ERR "%s: Error writing EEPROM\n",
dev->name);
i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
spin_unlock_irqrestore(&rrpriv->lock, flags);
if (i != EEPROM_BYTES)
printk(KERN_ERR "%s: Error reading back EEPROM "
"image\n", dev->name);
error = memcmp(image, oldimage, EEPROM_BYTES);
if (error){
printk(KERN_ERR "%s: Error verifying EEPROM image\n",
dev->name);
error = -EFAULT;
}
wf_out:
kfree(oldimage);
kfree(image);
return error;
case SIOCRRID:
return put_user(0x52523032, (int __user *)rq->ifr_data);
default:
return error;
}
}
static struct pci_device_id rr_pci_tbl[] = {
{ PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
PCI_ANY_ID, PCI_ANY_ID, },
{ 0,}
};
MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
static struct pci_driver rr_driver = {
.name = "rrunner",
.id_table = rr_pci_tbl,
.probe = rr_init_one,
.remove = __devexit_p(rr_remove_one),
};
static int __init rr_init_module(void)
{
return pci_register_driver(&rr_driver);
}
static void __exit rr_cleanup_module(void)
{
pci_unregister_driver(&rr_driver);
}
module_init(rr_init_module);
module_exit(rr_cleanup_module);
/*
* Local variables:
* compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"
* End:
*/