a32a8813d0
lguest never checked for pending interrupts when enabling interrupts, and things still worked. However, it makes a significant difference to TCP performance, so it's time we fixed it by introducing a pending_irq flag and checking it on irq_restore and irq_enable. These two routines are now too big to patch into the 8/10 bytes patch space, so we drop that code. Note: The high latency on interrupt delivery had a very curious effect: once everything else was optimized, networking without GSO was faster than networking with GSO, since more interrupts were sent and hence a greater chance of one getting through to the Guest! Note2: (Almost) Closing the same loophole for iret doesn't have any measurable effect, so I'm leaving that patch for the moment. Before: 1GB tcpblast Guest->Host: 30.7 seconds 1GB tcpblast Guest->Host (no GSO): 76.0 seconds After: 1GB tcpblast Guest->Host: 6.8 seconds 1GB tcpblast Guest->Host (no GSO): 27.8 seconds Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> |
||
---|---|---|
.. | ||
x86 | ||
core.c | ||
hypercalls.c | ||
interrupts_and_traps.c | ||
Kconfig | ||
lg.h | ||
lguest_device.c | ||
lguest_user.c | ||
Makefile | ||
page_tables.c | ||
README | ||
segments.c |
Welcome, friend reader, to lguest. Lguest is an adventure, with you, the reader, as Hero. I can't think of many 5000-line projects which offer both such capability and glimpses of future potential; it is an exciting time to be delving into the source! But be warned; this is an arduous journey of several hours or more! And as we know, all true Heroes are driven by a Noble Goal. Thus I offer a Beer (or equivalent) to anyone I meet who has completed this documentation. So get comfortable and keep your wits about you (both quick and humorous). Along your way to the Noble Goal, you will also gain masterly insight into lguest, and hypervisors and x86 virtualization in general. Our Quest is in seven parts: (best read with C highlighting turned on) I) Preparation - In which our potential hero is flown quickly over the landscape for a taste of its scope. Suitable for the armchair coders and other such persons of faint constitution. II) Guest - Where we encounter the first tantalising wisps of code, and come to understand the details of the life of a Guest kernel. III) Drivers - Whereby the Guest finds its voice and become useful, and our understanding of the Guest is completed. IV) Launcher - Where we trace back to the creation of the Guest, and thus begin our understanding of the Host. V) Host - Where we master the Host code, through a long and tortuous journey. Indeed, it is here that our hero is tested in the Bit of Despair. VI) Switcher - Where our understanding of the intertwined nature of Guests and Hosts is completed. VII) Mastery - Where our fully fledged hero grapples with the Great Question: "What next?" make Preparation! Rusty Russell.