a2fb23af1c
Almost entirely taken from the 64-bit PowerPC PCI code. This allowed to eliminate a ton of cruft from the sparc64 PCI layer. Signed-off-by: David S. Miller <davem@davemloft.net>
247 lines
7 KiB
C
247 lines
7 KiB
C
/* $Id: pbm.h,v 1.27 2001/08/12 13:18:23 davem Exp $
|
|
* pbm.h: UltraSparc PCI controller software state.
|
|
*
|
|
* Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
|
|
*/
|
|
|
|
#ifndef __SPARC64_PBM_H
|
|
#define __SPARC64_PBM_H
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/msi.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/page.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/of_device.h>
|
|
#include <asm/iommu.h>
|
|
|
|
/* The abstraction used here is that there are PCI controllers,
|
|
* each with one (Sabre) or two (PSYCHO/SCHIZO) PCI bus modules
|
|
* underneath. Each PCI bus module uses an IOMMU (shared by both
|
|
* PBMs of a controller, or per-PBM), and if a streaming buffer
|
|
* is present, each PCI bus module has it's own. (ie. the IOMMU
|
|
* might be shared between PBMs, the STC is never shared)
|
|
* Furthermore, each PCI bus module controls it's own autonomous
|
|
* PCI bus.
|
|
*/
|
|
|
|
struct pci_controller_info;
|
|
|
|
/* This contains the software state necessary to drive a PCI
|
|
* controller's IOMMU.
|
|
*/
|
|
struct pci_iommu_arena {
|
|
unsigned long *map;
|
|
unsigned int hint;
|
|
unsigned int limit;
|
|
};
|
|
|
|
struct pci_iommu {
|
|
/* This protects the controller's IOMMU and all
|
|
* streaming buffers underneath.
|
|
*/
|
|
spinlock_t lock;
|
|
|
|
struct pci_iommu_arena arena;
|
|
|
|
/* IOMMU page table, a linear array of ioptes. */
|
|
iopte_t *page_table; /* The page table itself. */
|
|
|
|
/* Base PCI memory space address where IOMMU mappings
|
|
* begin.
|
|
*/
|
|
u32 page_table_map_base;
|
|
|
|
/* IOMMU Controller Registers */
|
|
unsigned long iommu_control; /* IOMMU control register */
|
|
unsigned long iommu_tsbbase; /* IOMMU page table base register */
|
|
unsigned long iommu_flush; /* IOMMU page flush register */
|
|
unsigned long iommu_ctxflush; /* IOMMU context flush register */
|
|
|
|
/* This is a register in the PCI controller, which if
|
|
* read will have no side-effects but will guarantee
|
|
* completion of all previous writes into IOMMU/STC.
|
|
*/
|
|
unsigned long write_complete_reg;
|
|
|
|
/* In order to deal with some buggy third-party PCI bridges that
|
|
* do wrong prefetching, we never mark valid mappings as invalid.
|
|
* Instead we point them at this dummy page.
|
|
*/
|
|
unsigned long dummy_page;
|
|
unsigned long dummy_page_pa;
|
|
|
|
/* CTX allocation. */
|
|
unsigned long ctx_lowest_free;
|
|
unsigned long ctx_bitmap[IOMMU_NUM_CTXS / (sizeof(unsigned long) * 8)];
|
|
|
|
/* Here a PCI controller driver describes the areas of
|
|
* PCI memory space where DMA to/from physical memory
|
|
* are addressed. Drivers interrogate the PCI layer
|
|
* if their device has addressing limitations. They
|
|
* do so via pci_dma_supported, and pass in a mask of
|
|
* DMA address bits their device can actually drive.
|
|
*
|
|
* The test for being usable is:
|
|
* (device_mask & dma_addr_mask) == dma_addr_mask
|
|
*/
|
|
u32 dma_addr_mask;
|
|
};
|
|
|
|
extern void pci_iommu_table_init(struct pci_iommu *iommu, int tsbsize, u32 dma_offset, u32 dma_addr_mask);
|
|
|
|
/* This describes a PCI bus module's streaming buffer. */
|
|
struct pci_strbuf {
|
|
int strbuf_enabled; /* Present and using it? */
|
|
|
|
/* Streaming Buffer Control Registers */
|
|
unsigned long strbuf_control; /* STC control register */
|
|
unsigned long strbuf_pflush; /* STC page flush register */
|
|
unsigned long strbuf_fsync; /* STC flush synchronization reg */
|
|
unsigned long strbuf_ctxflush; /* STC context flush register */
|
|
unsigned long strbuf_ctxmatch_base; /* STC context flush match reg */
|
|
unsigned long strbuf_flushflag_pa; /* Physical address of flush flag */
|
|
volatile unsigned long *strbuf_flushflag; /* The flush flag itself */
|
|
|
|
/* And this is the actual flush flag area.
|
|
* We allocate extra because the chips require
|
|
* a 64-byte aligned area.
|
|
*/
|
|
volatile unsigned long __flushflag_buf[(64 + (64 - 1)) / sizeof(long)];
|
|
};
|
|
|
|
#define PCI_STC_FLUSHFLAG_INIT(STC) \
|
|
(*((STC)->strbuf_flushflag) = 0UL)
|
|
#define PCI_STC_FLUSHFLAG_SET(STC) \
|
|
(*((STC)->strbuf_flushflag) != 0UL)
|
|
|
|
/* There can be quite a few ranges and interrupt maps on a PCI
|
|
* segment. Thus...
|
|
*/
|
|
#define PROM_PCIRNG_MAX 64
|
|
#define PROM_PCIIMAP_MAX 64
|
|
|
|
struct pci_pbm_info {
|
|
/* PCI controller we sit under. */
|
|
struct pci_controller_info *parent;
|
|
|
|
/* Physical address base of controller registers. */
|
|
unsigned long controller_regs;
|
|
|
|
/* Physical address base of PBM registers. */
|
|
unsigned long pbm_regs;
|
|
|
|
/* Physical address of DMA sync register, if any. */
|
|
unsigned long sync_reg;
|
|
|
|
/* Opaque 32-bit system bus Port ID. */
|
|
u32 portid;
|
|
|
|
/* Opaque 32-bit handle used for hypervisor calls. */
|
|
u32 devhandle;
|
|
|
|
/* Chipset version information. */
|
|
int chip_type;
|
|
#define PBM_CHIP_TYPE_SABRE 1
|
|
#define PBM_CHIP_TYPE_PSYCHO 2
|
|
#define PBM_CHIP_TYPE_SCHIZO 3
|
|
#define PBM_CHIP_TYPE_SCHIZO_PLUS 4
|
|
#define PBM_CHIP_TYPE_TOMATILLO 5
|
|
int chip_version;
|
|
int chip_revision;
|
|
|
|
/* Name used for top-level resources. */
|
|
char *name;
|
|
|
|
/* OBP specific information. */
|
|
struct device_node *prom_node;
|
|
struct linux_prom_pci_ranges *pbm_ranges;
|
|
int num_pbm_ranges;
|
|
struct linux_prom_pci_intmap *pbm_intmap;
|
|
int num_pbm_intmap;
|
|
struct linux_prom_pci_intmask *pbm_intmask;
|
|
u64 ino_bitmap;
|
|
|
|
/* PBM I/O and Memory space resources. */
|
|
struct resource io_space;
|
|
struct resource mem_space;
|
|
|
|
/* Base of PCI Config space, can be per-PBM or shared. */
|
|
unsigned long config_space;
|
|
|
|
/* State of 66MHz capabilities on this PBM. */
|
|
int is_66mhz_capable;
|
|
int all_devs_66mhz;
|
|
|
|
#ifdef CONFIG_PCI_MSI
|
|
/* MSI info. */
|
|
u32 msiq_num;
|
|
u32 msiq_ent_count;
|
|
u32 msiq_first;
|
|
u32 msiq_first_devino;
|
|
u32 msi_num;
|
|
u32 msi_first;
|
|
u32 msi_data_mask;
|
|
u32 msix_data_width;
|
|
u64 msi32_start;
|
|
u64 msi64_start;
|
|
u32 msi32_len;
|
|
u32 msi64_len;
|
|
void *msi_queues;
|
|
unsigned long *msi_bitmap;
|
|
#endif /* !(CONFIG_PCI_MSI) */
|
|
|
|
/* This PBM's streaming buffer. */
|
|
struct pci_strbuf stc;
|
|
|
|
/* IOMMU state, potentially shared by both PBM segments. */
|
|
struct pci_iommu *iommu;
|
|
|
|
/* PCI slot mapping. */
|
|
unsigned int pci_first_slot;
|
|
|
|
/* Now things for the actual PCI bus probes. */
|
|
unsigned int pci_first_busno;
|
|
unsigned int pci_last_busno;
|
|
struct pci_bus *pci_bus;
|
|
};
|
|
|
|
struct pci_controller_info {
|
|
/* List of all PCI controllers. */
|
|
struct pci_controller_info *next;
|
|
|
|
/* Each controller gets a unique index, used mostly for
|
|
* error logging purposes.
|
|
*/
|
|
int index;
|
|
|
|
/* Do the PBMs both exist in the same PCI domain? */
|
|
int pbms_same_domain;
|
|
|
|
/* The PCI bus modules controlled by us. */
|
|
struct pci_pbm_info pbm_A;
|
|
struct pci_pbm_info pbm_B;
|
|
|
|
/* Operations which are controller specific. */
|
|
void (*scan_bus)(struct pci_controller_info *);
|
|
void (*base_address_update)(struct pci_dev *, int);
|
|
void (*resource_adjust)(struct pci_dev *, struct resource *, struct resource *);
|
|
|
|
#ifdef CONFIG_PCI_MSI
|
|
int (*setup_msi_irq)(unsigned int *virt_irq_p, struct pci_dev *pdev,
|
|
struct msi_desc *entry);
|
|
void (*teardown_msi_irq)(unsigned int virt_irq, struct pci_dev *pdev);
|
|
#endif
|
|
|
|
/* Now things for the actual PCI bus probes. */
|
|
struct pci_ops *pci_ops;
|
|
unsigned int pci_first_busno;
|
|
unsigned int pci_last_busno;
|
|
};
|
|
|
|
#endif /* !(__SPARC64_PBM_H) */
|