9ca1bd50fd
Add window rollover trace event to track cpu's WALT window rollover. Change-Id: I4a2e7291f31a1ac50144086eaf6ae920a07ca545 Signed-off-by: Lingutla Chandrasekhar <clingutla@codeaurora.org>
3850 lines
100 KiB
C
3850 lines
100 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (c) 2016-2020, The Linux Foundation. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/list_sort.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/sched/stat.h>
|
|
#include <trace/events/sched.h>
|
|
#include "sched.h"
|
|
#include "walt.h"
|
|
|
|
#include <trace/events/sched.h>
|
|
|
|
const char *task_event_names[] = {"PUT_PREV_TASK", "PICK_NEXT_TASK",
|
|
"TASK_WAKE", "TASK_MIGRATE", "TASK_UPDATE",
|
|
"IRQ_UPDATE"};
|
|
|
|
const char *migrate_type_names[] = {"GROUP_TO_RQ", "RQ_TO_GROUP",
|
|
"RQ_TO_RQ", "GROUP_TO_GROUP"};
|
|
|
|
#define SCHED_FREQ_ACCOUNT_WAIT_TIME 0
|
|
#define SCHED_ACCOUNT_WAIT_TIME 1
|
|
|
|
#define EARLY_DETECTION_DURATION 9500000
|
|
|
|
static ktime_t ktime_last;
|
|
static bool sched_ktime_suspended;
|
|
static struct cpu_cycle_counter_cb cpu_cycle_counter_cb;
|
|
static bool use_cycle_counter;
|
|
DEFINE_MUTEX(cluster_lock);
|
|
static atomic64_t walt_irq_work_lastq_ws;
|
|
static u64 walt_load_reported_window;
|
|
|
|
static struct irq_work walt_cpufreq_irq_work;
|
|
static struct irq_work walt_migration_irq_work;
|
|
|
|
u64 sched_ktime_clock(void)
|
|
{
|
|
if (unlikely(sched_ktime_suspended))
|
|
return ktime_to_ns(ktime_last);
|
|
return ktime_get_ns();
|
|
}
|
|
|
|
static void sched_resume(void)
|
|
{
|
|
sched_ktime_suspended = false;
|
|
}
|
|
|
|
static int sched_suspend(void)
|
|
{
|
|
ktime_last = ktime_get();
|
|
sched_ktime_suspended = true;
|
|
return 0;
|
|
}
|
|
|
|
static struct syscore_ops sched_syscore_ops = {
|
|
.resume = sched_resume,
|
|
.suspend = sched_suspend
|
|
};
|
|
|
|
static int __init sched_init_ops(void)
|
|
{
|
|
register_syscore_ops(&sched_syscore_ops);
|
|
return 0;
|
|
}
|
|
late_initcall(sched_init_ops);
|
|
|
|
static void acquire_rq_locks_irqsave(const cpumask_t *cpus,
|
|
unsigned long *flags)
|
|
{
|
|
int cpu;
|
|
int level = 0;
|
|
|
|
local_irq_save(*flags);
|
|
for_each_cpu(cpu, cpus) {
|
|
if (level == 0)
|
|
raw_spin_lock(&cpu_rq(cpu)->lock);
|
|
else
|
|
raw_spin_lock_nested(&cpu_rq(cpu)->lock, level);
|
|
level++;
|
|
}
|
|
}
|
|
|
|
static void release_rq_locks_irqrestore(const cpumask_t *cpus,
|
|
unsigned long *flags)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, cpus)
|
|
raw_spin_unlock(&cpu_rq(cpu)->lock);
|
|
local_irq_restore(*flags);
|
|
}
|
|
|
|
__read_mostly unsigned int sysctl_sched_cpu_high_irqload = TICK_NSEC;
|
|
|
|
unsigned int sysctl_sched_walt_rotate_big_tasks;
|
|
unsigned int walt_rotation_enabled;
|
|
|
|
__read_mostly unsigned int sysctl_sched_asym_cap_sibling_freq_match_pct = 100;
|
|
__read_mostly unsigned int sched_ravg_hist_size = 5;
|
|
|
|
static __read_mostly unsigned int sched_io_is_busy = 1;
|
|
|
|
__read_mostly unsigned int sysctl_sched_window_stats_policy =
|
|
WINDOW_STATS_MAX_RECENT_AVG;
|
|
|
|
unsigned int sysctl_sched_ravg_window_nr_ticks = (HZ / NR_WINDOWS_PER_SEC);
|
|
|
|
static unsigned int display_sched_ravg_window_nr_ticks =
|
|
(HZ / NR_WINDOWS_PER_SEC);
|
|
|
|
unsigned int sysctl_sched_dynamic_ravg_window_enable = (HZ == 250);
|
|
|
|
/* Window size (in ns) */
|
|
__read_mostly unsigned int sched_ravg_window = DEFAULT_SCHED_RAVG_WINDOW;
|
|
__read_mostly unsigned int new_sched_ravg_window = DEFAULT_SCHED_RAVG_WINDOW;
|
|
|
|
static DEFINE_SPINLOCK(sched_ravg_window_lock);
|
|
u64 sched_ravg_window_change_time;
|
|
/*
|
|
* A after-boot constant divisor for cpu_util_freq_walt() to apply the load
|
|
* boost.
|
|
*/
|
|
static __read_mostly unsigned int walt_cpu_util_freq_divisor;
|
|
|
|
/* Initial task load. Newly created tasks are assigned this load. */
|
|
unsigned int __read_mostly sched_init_task_load_windows;
|
|
unsigned int __read_mostly sched_init_task_load_windows_scaled;
|
|
unsigned int __read_mostly sysctl_sched_init_task_load_pct = 15;
|
|
|
|
/*
|
|
* Maximum possible frequency across all cpus. Task demand and cpu
|
|
* capacity (cpu_power) metrics are scaled in reference to it.
|
|
*/
|
|
unsigned int max_possible_freq = 1;
|
|
|
|
/*
|
|
* Minimum possible max_freq across all cpus. This will be same as
|
|
* max_possible_freq on homogeneous systems and could be different from
|
|
* max_possible_freq on heterogenous systems. min_max_freq is used to derive
|
|
* capacity (cpu_power) of cpus.
|
|
*/
|
|
unsigned int min_max_freq = 1;
|
|
unsigned int max_possible_capacity = 1024; /* max(rq->max_possible_capacity) */
|
|
unsigned int
|
|
min_max_possible_capacity = 1024; /* min(rq->max_possible_capacity) */
|
|
|
|
/* Temporarily disable window-stats activity on all cpus */
|
|
unsigned int __read_mostly sched_disable_window_stats;
|
|
|
|
/*
|
|
* Task load is categorized into buckets for the purpose of top task tracking.
|
|
* The entire range of load from 0 to sched_ravg_window needs to be covered
|
|
* in NUM_LOAD_INDICES number of buckets. Therefore the size of each bucket
|
|
* is given by sched_ravg_window / NUM_LOAD_INDICES. Since the default value
|
|
* of sched_ravg_window is DEFAULT_SCHED_RAVG_WINDOW, use that to compute
|
|
* sched_load_granule.
|
|
*/
|
|
__read_mostly unsigned int sched_load_granule =
|
|
DEFAULT_SCHED_RAVG_WINDOW / NUM_LOAD_INDICES;
|
|
/* Size of bitmaps maintained to track top tasks */
|
|
static const unsigned int top_tasks_bitmap_size =
|
|
BITS_TO_LONGS(NUM_LOAD_INDICES + 1) * sizeof(unsigned long);
|
|
|
|
/*
|
|
* This governs what load needs to be used when reporting CPU busy time
|
|
* to the cpufreq governor.
|
|
*/
|
|
__read_mostly unsigned int sysctl_sched_freq_reporting_policy;
|
|
|
|
static int __init set_sched_ravg_window(char *str)
|
|
{
|
|
unsigned int window_size;
|
|
|
|
get_option(&str, &window_size);
|
|
|
|
if (window_size < DEFAULT_SCHED_RAVG_WINDOW ||
|
|
window_size > MAX_SCHED_RAVG_WINDOW) {
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sched_ravg_window = window_size;
|
|
return 0;
|
|
}
|
|
|
|
early_param("sched_ravg_window", set_sched_ravg_window);
|
|
|
|
static int __init set_sched_predl(char *str)
|
|
{
|
|
unsigned int predl;
|
|
|
|
get_option(&str, &predl);
|
|
sched_predl = !!predl;
|
|
return 0;
|
|
}
|
|
early_param("sched_predl", set_sched_predl);
|
|
|
|
__read_mostly unsigned int walt_scale_demand_divisor;
|
|
#define scale_demand(d) ((d)/walt_scale_demand_divisor)
|
|
|
|
static inline void walt_irq_work_queue(struct irq_work *work)
|
|
{
|
|
if (likely(cpu_online(raw_smp_processor_id())))
|
|
irq_work_queue(work);
|
|
else
|
|
irq_work_queue_on(work, cpumask_any(cpu_online_mask));
|
|
}
|
|
|
|
void inc_rq_walt_stats(struct rq *rq, struct task_struct *p)
|
|
{
|
|
inc_nr_big_task(&rq->walt_stats, p);
|
|
walt_inc_cumulative_runnable_avg(rq, p);
|
|
|
|
p->rtg_high_prio = task_rtg_high_prio(p);
|
|
if (p->rtg_high_prio)
|
|
rq->walt_stats.nr_rtg_high_prio_tasks++;
|
|
|
|
}
|
|
|
|
void dec_rq_walt_stats(struct rq *rq, struct task_struct *p)
|
|
{
|
|
dec_nr_big_task(&rq->walt_stats, p);
|
|
walt_dec_cumulative_runnable_avg(rq, p);
|
|
if (p->rtg_high_prio)
|
|
rq->walt_stats.nr_rtg_high_prio_tasks--;
|
|
}
|
|
|
|
void fixup_walt_sched_stats_common(struct rq *rq, struct task_struct *p,
|
|
u16 updated_demand_scaled,
|
|
u16 updated_pred_demand_scaled)
|
|
{
|
|
s64 task_load_delta = (s64)updated_demand_scaled -
|
|
p->ravg.demand_scaled;
|
|
s64 pred_demand_delta = (s64)updated_pred_demand_scaled -
|
|
p->ravg.pred_demand_scaled;
|
|
|
|
fixup_cumulative_runnable_avg(&rq->walt_stats, task_load_delta,
|
|
pred_demand_delta);
|
|
|
|
walt_fixup_cum_window_demand(rq, task_load_delta);
|
|
}
|
|
|
|
/*
|
|
* Demand aggregation for frequency purpose:
|
|
*
|
|
* CPU demand of tasks from various related groups is aggregated per-cluster and
|
|
* added to the "max_busy_cpu" in that cluster, where max_busy_cpu is determined
|
|
* by just rq->prev_runnable_sum.
|
|
*
|
|
* Some examples follow, which assume:
|
|
* Cluster0 = CPU0-3, Cluster1 = CPU4-7
|
|
* One related thread group A that has tasks A0, A1, A2
|
|
*
|
|
* A->cpu_time[X].curr/prev_sum = counters in which cpu execution stats of
|
|
* tasks belonging to group A are accumulated when they run on cpu X.
|
|
*
|
|
* CX->curr/prev_sum = counters in which cpu execution stats of all tasks
|
|
* not belonging to group A are accumulated when they run on cpu X
|
|
*
|
|
* Lets say the stats for window M was as below:
|
|
*
|
|
* C0->prev_sum = 1ms, A->cpu_time[0].prev_sum = 5ms
|
|
* Task A0 ran 5ms on CPU0
|
|
* Task B0 ran 1ms on CPU0
|
|
*
|
|
* C1->prev_sum = 5ms, A->cpu_time[1].prev_sum = 6ms
|
|
* Task A1 ran 4ms on CPU1
|
|
* Task A2 ran 2ms on CPU1
|
|
* Task B1 ran 5ms on CPU1
|
|
*
|
|
* C2->prev_sum = 0ms, A->cpu_time[2].prev_sum = 0
|
|
* CPU2 idle
|
|
*
|
|
* C3->prev_sum = 0ms, A->cpu_time[3].prev_sum = 0
|
|
* CPU3 idle
|
|
*
|
|
* In this case, CPU1 was most busy going by just its prev_sum counter. Demand
|
|
* from all group A tasks are added to CPU1. IOW, at end of window M, cpu busy
|
|
* time reported to governor will be:
|
|
*
|
|
*
|
|
* C0 busy time = 1ms
|
|
* C1 busy time = 5 + 5 + 6 = 16ms
|
|
*
|
|
*/
|
|
__read_mostly bool sched_freq_aggr_en;
|
|
|
|
static u64
|
|
update_window_start(struct rq *rq, u64 wallclock, int event)
|
|
{
|
|
s64 delta;
|
|
int nr_windows;
|
|
u64 old_window_start = rq->window_start;
|
|
|
|
delta = wallclock - rq->window_start;
|
|
if (delta < 0) {
|
|
printk_deferred("WALT-BUG CPU%d; wallclock=%llu is lesser than window_start=%llu",
|
|
rq->cpu, wallclock, rq->window_start);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
if (delta < sched_ravg_window)
|
|
return old_window_start;
|
|
|
|
nr_windows = div64_u64(delta, sched_ravg_window);
|
|
rq->window_start += (u64)nr_windows * (u64)sched_ravg_window;
|
|
|
|
rq->cum_window_demand_scaled =
|
|
rq->walt_stats.cumulative_runnable_avg_scaled;
|
|
rq->prev_window_size = sched_ravg_window;
|
|
|
|
return old_window_start;
|
|
}
|
|
|
|
/*
|
|
* Assumes rq_lock is held and wallclock was recorded in the same critical
|
|
* section as this function's invocation.
|
|
*/
|
|
static inline u64 read_cycle_counter(int cpu, u64 wallclock)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
if (rq->last_cc_update != wallclock) {
|
|
rq->cycles = cpu_cycle_counter_cb.get_cpu_cycle_counter(cpu);
|
|
rq->last_cc_update = wallclock;
|
|
}
|
|
|
|
return rq->cycles;
|
|
}
|
|
|
|
static void update_task_cpu_cycles(struct task_struct *p, int cpu,
|
|
u64 wallclock)
|
|
{
|
|
if (use_cycle_counter)
|
|
p->cpu_cycles = read_cycle_counter(cpu, wallclock);
|
|
}
|
|
|
|
static inline bool is_ed_enabled(void)
|
|
{
|
|
return (walt_rotation_enabled || (sched_boost_policy() !=
|
|
SCHED_BOOST_NONE));
|
|
}
|
|
|
|
void clear_ed_task(struct task_struct *p, struct rq *rq)
|
|
{
|
|
if (p == rq->ed_task)
|
|
rq->ed_task = NULL;
|
|
}
|
|
|
|
static inline bool is_ed_task(struct task_struct *p, u64 wallclock)
|
|
{
|
|
return (wallclock - p->last_wake_ts >= EARLY_DETECTION_DURATION);
|
|
}
|
|
|
|
bool early_detection_notify(struct rq *rq, u64 wallclock)
|
|
{
|
|
struct task_struct *p;
|
|
int loop_max = 10;
|
|
|
|
rq->ed_task = NULL;
|
|
|
|
if (!is_ed_enabled() || !rq->cfs.h_nr_running)
|
|
return 0;
|
|
|
|
list_for_each_entry(p, &rq->cfs_tasks, se.group_node) {
|
|
if (!loop_max)
|
|
break;
|
|
|
|
if (is_ed_task(p, wallclock)) {
|
|
rq->ed_task = p;
|
|
return 1;
|
|
}
|
|
|
|
loop_max--;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void sched_account_irqstart(int cpu, struct task_struct *curr, u64 wallclock)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
if (!rq->window_start || sched_disable_window_stats)
|
|
return;
|
|
|
|
if (is_idle_task(curr)) {
|
|
/* We're here without rq->lock held, IRQ disabled */
|
|
raw_spin_lock(&rq->lock);
|
|
update_task_cpu_cycles(curr, cpu, sched_ktime_clock());
|
|
raw_spin_unlock(&rq->lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return total number of tasks "eligible" to run on higher capacity cpus
|
|
*/
|
|
unsigned int walt_big_tasks(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
return rq->walt_stats.nr_big_tasks;
|
|
}
|
|
|
|
void clear_walt_request(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long flags;
|
|
|
|
clear_reserved(cpu);
|
|
if (rq->push_task) {
|
|
struct task_struct *push_task = NULL;
|
|
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
if (rq->push_task) {
|
|
clear_reserved(rq->push_cpu);
|
|
push_task = rq->push_task;
|
|
rq->push_task = NULL;
|
|
}
|
|
rq->active_balance = 0;
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
if (push_task)
|
|
put_task_struct(push_task);
|
|
}
|
|
}
|
|
|
|
void sched_account_irqtime(int cpu, struct task_struct *curr,
|
|
u64 delta, u64 wallclock)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long nr_windows;
|
|
u64 cur_jiffies_ts;
|
|
|
|
/*
|
|
* We called with interrupts disabled. Take the rq lock only
|
|
* if we are in idle context in which case update_task_ravg()
|
|
* call is needed.
|
|
*/
|
|
if (is_idle_task(curr)) {
|
|
raw_spin_lock(&rq->lock);
|
|
/*
|
|
* cputime (wallclock) uses sched_clock so use the same here
|
|
* for consistency.
|
|
*/
|
|
delta += sched_clock() - wallclock;
|
|
update_task_ravg(curr, rq, IRQ_UPDATE, sched_ktime_clock(),
|
|
delta);
|
|
raw_spin_unlock(&rq->lock);
|
|
}
|
|
|
|
cur_jiffies_ts = get_jiffies_64();
|
|
nr_windows = cur_jiffies_ts - rq->irqload_ts;
|
|
|
|
if (nr_windows) {
|
|
if (nr_windows < 10) {
|
|
/* Decay CPU's irqload by 3/4 for each window. */
|
|
rq->avg_irqload *= (3 * nr_windows);
|
|
rq->avg_irqload = div64_u64(rq->avg_irqload,
|
|
4 * nr_windows);
|
|
} else {
|
|
rq->avg_irqload = 0;
|
|
}
|
|
rq->avg_irqload += rq->cur_irqload;
|
|
rq->cur_irqload = 0;
|
|
}
|
|
|
|
rq->cur_irqload += delta;
|
|
rq->irqload_ts = cur_jiffies_ts;
|
|
}
|
|
|
|
/*
|
|
* Special case the last index and provide a fast path for index = 0.
|
|
* Note that sched_load_granule can change underneath us if we are not
|
|
* holding any runqueue locks while calling the two functions below.
|
|
*/
|
|
static u32 top_task_load(struct rq *rq)
|
|
{
|
|
int index = rq->prev_top;
|
|
u8 prev = 1 - rq->curr_table;
|
|
|
|
if (!index) {
|
|
int msb = NUM_LOAD_INDICES - 1;
|
|
|
|
if (!test_bit(msb, rq->top_tasks_bitmap[prev]))
|
|
return 0;
|
|
else
|
|
return sched_load_granule;
|
|
} else if (index == NUM_LOAD_INDICES - 1) {
|
|
return sched_ravg_window;
|
|
} else {
|
|
return (index + 1) * sched_load_granule;
|
|
}
|
|
}
|
|
|
|
unsigned int sysctl_sched_user_hint;
|
|
static unsigned long sched_user_hint_reset_time;
|
|
static bool is_cluster_hosting_top_app(struct sched_cluster *cluster);
|
|
|
|
static inline bool should_apply_suh_freq_boost(struct sched_cluster *cluster)
|
|
{
|
|
if (sched_freq_aggr_en || !sysctl_sched_user_hint ||
|
|
!cluster->aggr_grp_load)
|
|
return false;
|
|
|
|
return is_cluster_hosting_top_app(cluster);
|
|
}
|
|
|
|
static inline u64 freq_policy_load(struct rq *rq)
|
|
{
|
|
unsigned int reporting_policy = sysctl_sched_freq_reporting_policy;
|
|
struct sched_cluster *cluster = rq->cluster;
|
|
u64 aggr_grp_load = cluster->aggr_grp_load;
|
|
u64 load, tt_load = 0;
|
|
struct task_struct *cpu_ksoftirqd = per_cpu(ksoftirqd, cpu_of(rq));
|
|
|
|
if (rq->ed_task != NULL) {
|
|
load = sched_ravg_window;
|
|
goto done;
|
|
}
|
|
|
|
if (sched_freq_aggr_en)
|
|
load = rq->prev_runnable_sum + aggr_grp_load;
|
|
else
|
|
load = rq->prev_runnable_sum + rq->grp_time.prev_runnable_sum;
|
|
|
|
if (cpu_ksoftirqd && cpu_ksoftirqd->state == TASK_RUNNING)
|
|
load = max_t(u64, load, task_load(cpu_ksoftirqd));
|
|
|
|
tt_load = top_task_load(rq);
|
|
switch (reporting_policy) {
|
|
case FREQ_REPORT_MAX_CPU_LOAD_TOP_TASK:
|
|
load = max_t(u64, load, tt_load);
|
|
break;
|
|
case FREQ_REPORT_TOP_TASK:
|
|
load = tt_load;
|
|
break;
|
|
case FREQ_REPORT_CPU_LOAD:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (should_apply_suh_freq_boost(cluster)) {
|
|
if (is_suh_max())
|
|
load = sched_ravg_window;
|
|
else
|
|
load = div64_u64(load * sysctl_sched_user_hint,
|
|
(u64)100);
|
|
}
|
|
|
|
done:
|
|
trace_sched_load_to_gov(rq, aggr_grp_load, tt_load, sched_freq_aggr_en,
|
|
load, reporting_policy, walt_rotation_enabled,
|
|
sysctl_sched_user_hint);
|
|
return load;
|
|
}
|
|
|
|
static bool rtgb_active;
|
|
|
|
static inline unsigned long
|
|
__cpu_util_freq_walt(int cpu, struct sched_walt_cpu_load *walt_load)
|
|
{
|
|
u64 util, util_unboosted;
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long capacity = capacity_orig_of(cpu);
|
|
int boost;
|
|
|
|
boost = per_cpu(sched_load_boost, cpu);
|
|
util_unboosted = util = freq_policy_load(rq);
|
|
util = div64_u64(util * (100 + boost),
|
|
walt_cpu_util_freq_divisor);
|
|
|
|
if (walt_load) {
|
|
u64 nl = cpu_rq(cpu)->nt_prev_runnable_sum +
|
|
rq->grp_time.nt_prev_runnable_sum;
|
|
u64 pl = rq->walt_stats.pred_demands_sum_scaled;
|
|
|
|
/* do_pl_notif() needs unboosted signals */
|
|
rq->old_busy_time = div64_u64(util_unboosted,
|
|
sched_ravg_window >>
|
|
SCHED_CAPACITY_SHIFT);
|
|
rq->old_estimated_time = pl;
|
|
|
|
nl = div64_u64(nl * (100 + boost), walt_cpu_util_freq_divisor);
|
|
|
|
walt_load->nl = nl;
|
|
walt_load->pl = pl;
|
|
walt_load->ws = walt_load_reported_window;
|
|
walt_load->rtgb_active = rtgb_active;
|
|
}
|
|
|
|
return (util >= capacity) ? capacity : util;
|
|
}
|
|
|
|
#define ADJUSTED_ASYM_CAP_CPU_UTIL(orig, other, x) \
|
|
(max(orig, mult_frac(other, x, 100)))
|
|
|
|
unsigned long
|
|
cpu_util_freq_walt(int cpu, struct sched_walt_cpu_load *walt_load)
|
|
{
|
|
struct sched_walt_cpu_load wl_other = {0};
|
|
unsigned long util = 0, util_other = 0;
|
|
unsigned long capacity = capacity_orig_of(cpu);
|
|
int i, mpct = sysctl_sched_asym_cap_sibling_freq_match_pct;
|
|
|
|
if (!cpumask_test_cpu(cpu, &asym_cap_sibling_cpus))
|
|
return __cpu_util_freq_walt(cpu, walt_load);
|
|
|
|
for_each_cpu(i, &asym_cap_sibling_cpus) {
|
|
if (i == cpu)
|
|
util = __cpu_util_freq_walt(cpu, walt_load);
|
|
else
|
|
util_other = __cpu_util_freq_walt(i, &wl_other);
|
|
}
|
|
|
|
if (cpu == cpumask_last(&asym_cap_sibling_cpus))
|
|
mpct = 100;
|
|
|
|
util = ADJUSTED_ASYM_CAP_CPU_UTIL(util, util_other, mpct);
|
|
|
|
walt_load->nl = ADJUSTED_ASYM_CAP_CPU_UTIL(walt_load->nl, wl_other.nl,
|
|
mpct);
|
|
walt_load->pl = ADJUSTED_ASYM_CAP_CPU_UTIL(walt_load->pl, wl_other.pl,
|
|
mpct);
|
|
|
|
return (util >= capacity) ? capacity : util;
|
|
}
|
|
|
|
/*
|
|
* In this function we match the accumulated subtractions with the current
|
|
* and previous windows we are operating with. Ignore any entries where
|
|
* the window start in the load_subtraction struct does not match either
|
|
* the curent or the previous window. This could happen whenever CPUs
|
|
* become idle or busy with interrupts disabled for an extended period.
|
|
*/
|
|
static inline void account_load_subtractions(struct rq *rq)
|
|
{
|
|
u64 ws = rq->window_start;
|
|
u64 prev_ws = ws - rq->prev_window_size;
|
|
struct load_subtractions *ls = rq->load_subs;
|
|
int i;
|
|
|
|
for (i = 0; i < NUM_TRACKED_WINDOWS; i++) {
|
|
if (ls[i].window_start == ws) {
|
|
rq->curr_runnable_sum -= ls[i].subs;
|
|
rq->nt_curr_runnable_sum -= ls[i].new_subs;
|
|
} else if (ls[i].window_start == prev_ws) {
|
|
rq->prev_runnable_sum -= ls[i].subs;
|
|
rq->nt_prev_runnable_sum -= ls[i].new_subs;
|
|
}
|
|
|
|
ls[i].subs = 0;
|
|
ls[i].new_subs = 0;
|
|
}
|
|
|
|
SCHED_BUG_ON((s64)rq->prev_runnable_sum < 0);
|
|
SCHED_BUG_ON((s64)rq->curr_runnable_sum < 0);
|
|
SCHED_BUG_ON((s64)rq->nt_prev_runnable_sum < 0);
|
|
SCHED_BUG_ON((s64)rq->nt_curr_runnable_sum < 0);
|
|
}
|
|
|
|
static inline void create_subtraction_entry(struct rq *rq, u64 ws, int index)
|
|
{
|
|
rq->load_subs[index].window_start = ws;
|
|
rq->load_subs[index].subs = 0;
|
|
rq->load_subs[index].new_subs = 0;
|
|
}
|
|
|
|
static int get_top_index(unsigned long *bitmap, unsigned long old_top)
|
|
{
|
|
int index = find_next_bit(bitmap, NUM_LOAD_INDICES, old_top);
|
|
|
|
if (index == NUM_LOAD_INDICES)
|
|
return 0;
|
|
|
|
return NUM_LOAD_INDICES - 1 - index;
|
|
}
|
|
|
|
static bool get_subtraction_index(struct rq *rq, u64 ws)
|
|
{
|
|
int i;
|
|
u64 oldest = ULLONG_MAX;
|
|
int oldest_index = 0;
|
|
|
|
for (i = 0; i < NUM_TRACKED_WINDOWS; i++) {
|
|
u64 entry_ws = rq->load_subs[i].window_start;
|
|
|
|
if (ws == entry_ws)
|
|
return i;
|
|
|
|
if (entry_ws < oldest) {
|
|
oldest = entry_ws;
|
|
oldest_index = i;
|
|
}
|
|
}
|
|
|
|
create_subtraction_entry(rq, ws, oldest_index);
|
|
return oldest_index;
|
|
}
|
|
|
|
static void update_rq_load_subtractions(int index, struct rq *rq,
|
|
u32 sub_load, bool new_task)
|
|
{
|
|
rq->load_subs[index].subs += sub_load;
|
|
if (new_task)
|
|
rq->load_subs[index].new_subs += sub_load;
|
|
}
|
|
|
|
void update_cluster_load_subtractions(struct task_struct *p,
|
|
int cpu, u64 ws, bool new_task)
|
|
{
|
|
struct sched_cluster *cluster = cpu_cluster(cpu);
|
|
struct cpumask cluster_cpus = cluster->cpus;
|
|
u64 prev_ws = ws - cpu_rq(cpu)->prev_window_size;
|
|
int i;
|
|
|
|
cpumask_clear_cpu(cpu, &cluster_cpus);
|
|
raw_spin_lock(&cluster->load_lock);
|
|
|
|
for_each_cpu(i, &cluster_cpus) {
|
|
struct rq *rq = cpu_rq(i);
|
|
int index;
|
|
|
|
if (p->ravg.curr_window_cpu[i]) {
|
|
index = get_subtraction_index(rq, ws);
|
|
update_rq_load_subtractions(index, rq,
|
|
p->ravg.curr_window_cpu[i], new_task);
|
|
p->ravg.curr_window_cpu[i] = 0;
|
|
}
|
|
|
|
if (p->ravg.prev_window_cpu[i]) {
|
|
index = get_subtraction_index(rq, prev_ws);
|
|
update_rq_load_subtractions(index, rq,
|
|
p->ravg.prev_window_cpu[i], new_task);
|
|
p->ravg.prev_window_cpu[i] = 0;
|
|
}
|
|
}
|
|
|
|
raw_spin_unlock(&cluster->load_lock);
|
|
}
|
|
|
|
static inline void inter_cluster_migration_fixup
|
|
(struct task_struct *p, int new_cpu, int task_cpu, bool new_task)
|
|
{
|
|
struct rq *dest_rq = cpu_rq(new_cpu);
|
|
struct rq *src_rq = cpu_rq(task_cpu);
|
|
|
|
if (same_freq_domain(new_cpu, task_cpu))
|
|
return;
|
|
|
|
p->ravg.curr_window_cpu[new_cpu] = p->ravg.curr_window;
|
|
p->ravg.prev_window_cpu[new_cpu] = p->ravg.prev_window;
|
|
|
|
dest_rq->curr_runnable_sum += p->ravg.curr_window;
|
|
dest_rq->prev_runnable_sum += p->ravg.prev_window;
|
|
|
|
if (src_rq->curr_runnable_sum < p->ravg.curr_window_cpu[task_cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU%d -> CPU%d src_crs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, src_rq->cpu, dest_rq->cpu,
|
|
src_rq->curr_runnable_sum,
|
|
p->ravg.curr_window_cpu[task_cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
src_rq->curr_runnable_sum -= p->ravg.curr_window_cpu[task_cpu];
|
|
|
|
if (src_rq->prev_runnable_sum < p->ravg.prev_window_cpu[task_cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU%d -> CPU%d src_prs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, src_rq->cpu, dest_rq->cpu,
|
|
src_rq->prev_runnable_sum,
|
|
p->ravg.prev_window_cpu[task_cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
src_rq->prev_runnable_sum -= p->ravg.prev_window_cpu[task_cpu];
|
|
|
|
if (new_task) {
|
|
dest_rq->nt_curr_runnable_sum += p->ravg.curr_window;
|
|
dest_rq->nt_prev_runnable_sum += p->ravg.prev_window;
|
|
|
|
if (src_rq->nt_curr_runnable_sum <
|
|
p->ravg.curr_window_cpu[task_cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU%d -> CPU%d src_nt_crs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, src_rq->cpu, dest_rq->cpu,
|
|
src_rq->nt_curr_runnable_sum,
|
|
p->ravg.curr_window_cpu[task_cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
src_rq->nt_curr_runnable_sum -=
|
|
p->ravg.curr_window_cpu[task_cpu];
|
|
if (src_rq->nt_prev_runnable_sum <
|
|
p->ravg.prev_window_cpu[task_cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU%d -> CPU%d src_nt_prs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, src_rq->cpu, dest_rq->cpu,
|
|
src_rq->nt_prev_runnable_sum,
|
|
p->ravg.prev_window_cpu[task_cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
src_rq->nt_prev_runnable_sum -=
|
|
p->ravg.prev_window_cpu[task_cpu];
|
|
}
|
|
|
|
p->ravg.curr_window_cpu[task_cpu] = 0;
|
|
p->ravg.prev_window_cpu[task_cpu] = 0;
|
|
|
|
update_cluster_load_subtractions(p, task_cpu,
|
|
src_rq->window_start, new_task);
|
|
}
|
|
|
|
static u32 load_to_index(u32 load)
|
|
{
|
|
u32 index = load / sched_load_granule;
|
|
|
|
return min(index, (u32)(NUM_LOAD_INDICES - 1));
|
|
}
|
|
|
|
static void
|
|
migrate_top_tasks(struct task_struct *p, struct rq *src_rq, struct rq *dst_rq)
|
|
{
|
|
int index;
|
|
int top_index;
|
|
u32 curr_window = p->ravg.curr_window;
|
|
u32 prev_window = p->ravg.prev_window;
|
|
u8 src = src_rq->curr_table;
|
|
u8 dst = dst_rq->curr_table;
|
|
u8 *src_table;
|
|
u8 *dst_table;
|
|
|
|
if (curr_window) {
|
|
src_table = src_rq->top_tasks[src];
|
|
dst_table = dst_rq->top_tasks[dst];
|
|
index = load_to_index(curr_window);
|
|
src_table[index] -= 1;
|
|
dst_table[index] += 1;
|
|
|
|
if (!src_table[index])
|
|
__clear_bit(NUM_LOAD_INDICES - index - 1,
|
|
src_rq->top_tasks_bitmap[src]);
|
|
|
|
if (dst_table[index] == 1)
|
|
__set_bit(NUM_LOAD_INDICES - index - 1,
|
|
dst_rq->top_tasks_bitmap[dst]);
|
|
|
|
if (index > dst_rq->curr_top)
|
|
dst_rq->curr_top = index;
|
|
|
|
top_index = src_rq->curr_top;
|
|
if (index == top_index && !src_table[index])
|
|
src_rq->curr_top = get_top_index(
|
|
src_rq->top_tasks_bitmap[src], top_index);
|
|
}
|
|
|
|
if (prev_window) {
|
|
src = 1 - src;
|
|
dst = 1 - dst;
|
|
src_table = src_rq->top_tasks[src];
|
|
dst_table = dst_rq->top_tasks[dst];
|
|
index = load_to_index(prev_window);
|
|
src_table[index] -= 1;
|
|
dst_table[index] += 1;
|
|
|
|
if (!src_table[index])
|
|
__clear_bit(NUM_LOAD_INDICES - index - 1,
|
|
src_rq->top_tasks_bitmap[src]);
|
|
|
|
if (dst_table[index] == 1)
|
|
__set_bit(NUM_LOAD_INDICES - index - 1,
|
|
dst_rq->top_tasks_bitmap[dst]);
|
|
|
|
if (index > dst_rq->prev_top)
|
|
dst_rq->prev_top = index;
|
|
|
|
top_index = src_rq->prev_top;
|
|
if (index == top_index && !src_table[index])
|
|
src_rq->prev_top = get_top_index(
|
|
src_rq->top_tasks_bitmap[src], top_index);
|
|
}
|
|
}
|
|
|
|
void fixup_busy_time(struct task_struct *p, int new_cpu)
|
|
{
|
|
struct rq *src_rq = task_rq(p);
|
|
struct rq *dest_rq = cpu_rq(new_cpu);
|
|
u64 wallclock;
|
|
u64 *src_curr_runnable_sum, *dst_curr_runnable_sum;
|
|
u64 *src_prev_runnable_sum, *dst_prev_runnable_sum;
|
|
u64 *src_nt_curr_runnable_sum, *dst_nt_curr_runnable_sum;
|
|
u64 *src_nt_prev_runnable_sum, *dst_nt_prev_runnable_sum;
|
|
bool new_task;
|
|
struct related_thread_group *grp;
|
|
|
|
if (!p->on_rq && p->state != TASK_WAKING)
|
|
return;
|
|
|
|
if (exiting_task(p)) {
|
|
clear_ed_task(p, src_rq);
|
|
return;
|
|
}
|
|
|
|
if (p->state == TASK_WAKING)
|
|
double_rq_lock(src_rq, dest_rq);
|
|
|
|
if (sched_disable_window_stats)
|
|
goto done;
|
|
|
|
wallclock = sched_ktime_clock();
|
|
|
|
update_task_ravg(task_rq(p)->curr, task_rq(p),
|
|
TASK_UPDATE,
|
|
wallclock, 0);
|
|
update_task_ravg(dest_rq->curr, dest_rq,
|
|
TASK_UPDATE, wallclock, 0);
|
|
|
|
update_task_ravg(p, task_rq(p), TASK_MIGRATE,
|
|
wallclock, 0);
|
|
|
|
update_task_cpu_cycles(p, new_cpu, wallclock);
|
|
|
|
/*
|
|
* When a task is migrating during the wakeup, adjust
|
|
* the task's contribution towards cumulative window
|
|
* demand.
|
|
*/
|
|
if (p->state == TASK_WAKING && p->last_sleep_ts >=
|
|
src_rq->window_start) {
|
|
walt_fixup_cum_window_demand(src_rq,
|
|
-(s64)p->ravg.demand_scaled);
|
|
walt_fixup_cum_window_demand(dest_rq, p->ravg.demand_scaled);
|
|
}
|
|
|
|
new_task = is_new_task(p);
|
|
/* Protected by rq_lock */
|
|
grp = p->grp;
|
|
|
|
/*
|
|
* For frequency aggregation, we continue to do migration fixups
|
|
* even for intra cluster migrations. This is because, the aggregated
|
|
* load has to reported on a single CPU regardless.
|
|
*/
|
|
if (grp) {
|
|
struct group_cpu_time *cpu_time;
|
|
|
|
cpu_time = &src_rq->grp_time;
|
|
src_curr_runnable_sum = &cpu_time->curr_runnable_sum;
|
|
src_prev_runnable_sum = &cpu_time->prev_runnable_sum;
|
|
src_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
|
|
src_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
|
|
|
|
cpu_time = &dest_rq->grp_time;
|
|
dst_curr_runnable_sum = &cpu_time->curr_runnable_sum;
|
|
dst_prev_runnable_sum = &cpu_time->prev_runnable_sum;
|
|
dst_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
|
|
dst_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
|
|
|
|
if (p->ravg.curr_window) {
|
|
*src_curr_runnable_sum -= p->ravg.curr_window;
|
|
*dst_curr_runnable_sum += p->ravg.curr_window;
|
|
if (new_task) {
|
|
*src_nt_curr_runnable_sum -=
|
|
p->ravg.curr_window;
|
|
*dst_nt_curr_runnable_sum +=
|
|
p->ravg.curr_window;
|
|
}
|
|
}
|
|
|
|
if (p->ravg.prev_window) {
|
|
*src_prev_runnable_sum -= p->ravg.prev_window;
|
|
*dst_prev_runnable_sum += p->ravg.prev_window;
|
|
if (new_task) {
|
|
*src_nt_prev_runnable_sum -=
|
|
p->ravg.prev_window;
|
|
*dst_nt_prev_runnable_sum +=
|
|
p->ravg.prev_window;
|
|
}
|
|
}
|
|
} else {
|
|
inter_cluster_migration_fixup(p, new_cpu,
|
|
task_cpu(p), new_task);
|
|
}
|
|
|
|
migrate_top_tasks(p, src_rq, dest_rq);
|
|
|
|
if (!same_freq_domain(new_cpu, task_cpu(p))) {
|
|
src_rq->notif_pending = true;
|
|
dest_rq->notif_pending = true;
|
|
walt_irq_work_queue(&walt_migration_irq_work);
|
|
}
|
|
|
|
if (is_ed_enabled()) {
|
|
if (p == src_rq->ed_task) {
|
|
src_rq->ed_task = NULL;
|
|
dest_rq->ed_task = p;
|
|
} else if (is_ed_task(p, wallclock)) {
|
|
dest_rq->ed_task = p;
|
|
}
|
|
}
|
|
|
|
done:
|
|
if (p->state == TASK_WAKING)
|
|
double_rq_unlock(src_rq, dest_rq);
|
|
}
|
|
|
|
void set_window_start(struct rq *rq)
|
|
{
|
|
static int sync_cpu_available;
|
|
|
|
if (likely(rq->window_start))
|
|
return;
|
|
|
|
if (!sync_cpu_available) {
|
|
rq->window_start = 1;
|
|
sync_cpu_available = 1;
|
|
atomic64_set(&walt_irq_work_lastq_ws, rq->window_start);
|
|
walt_load_reported_window =
|
|
atomic64_read(&walt_irq_work_lastq_ws);
|
|
|
|
} else {
|
|
struct rq *sync_rq = cpu_rq(cpumask_any(cpu_online_mask));
|
|
|
|
raw_spin_unlock(&rq->lock);
|
|
double_rq_lock(rq, sync_rq);
|
|
rq->window_start = sync_rq->window_start;
|
|
rq->curr_runnable_sum = rq->prev_runnable_sum = 0;
|
|
rq->nt_curr_runnable_sum = rq->nt_prev_runnable_sum = 0;
|
|
raw_spin_unlock(&sync_rq->lock);
|
|
}
|
|
|
|
rq->curr->ravg.mark_start = rq->window_start;
|
|
}
|
|
|
|
unsigned int max_possible_efficiency = 1;
|
|
unsigned int min_possible_efficiency = UINT_MAX;
|
|
|
|
unsigned int sysctl_sched_conservative_pl;
|
|
unsigned int sysctl_sched_many_wakeup_threshold = WALT_MANY_WAKEUP_DEFAULT;
|
|
|
|
#define INC_STEP 8
|
|
#define DEC_STEP 2
|
|
#define CONSISTENT_THRES 16
|
|
#define INC_STEP_BIG 16
|
|
/*
|
|
* bucket_increase - update the count of all buckets
|
|
*
|
|
* @buckets: array of buckets tracking busy time of a task
|
|
* @idx: the index of bucket to be incremented
|
|
*
|
|
* Each time a complete window finishes, count of bucket that runtime
|
|
* falls in (@idx) is incremented. Counts of all other buckets are
|
|
* decayed. The rate of increase and decay could be different based
|
|
* on current count in the bucket.
|
|
*/
|
|
static inline void bucket_increase(u8 *buckets, int idx)
|
|
{
|
|
int i, step;
|
|
|
|
for (i = 0; i < NUM_BUSY_BUCKETS; i++) {
|
|
if (idx != i) {
|
|
if (buckets[i] > DEC_STEP)
|
|
buckets[i] -= DEC_STEP;
|
|
else
|
|
buckets[i] = 0;
|
|
} else {
|
|
step = buckets[i] >= CONSISTENT_THRES ?
|
|
INC_STEP_BIG : INC_STEP;
|
|
if (buckets[i] > U8_MAX - step)
|
|
buckets[i] = U8_MAX;
|
|
else
|
|
buckets[i] += step;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline int busy_to_bucket(u32 normalized_rt)
|
|
{
|
|
int bidx;
|
|
|
|
bidx = mult_frac(normalized_rt, NUM_BUSY_BUCKETS, max_task_load());
|
|
bidx = min(bidx, NUM_BUSY_BUCKETS - 1);
|
|
|
|
/*
|
|
* Combine lowest two buckets. The lowest frequency falls into
|
|
* 2nd bucket and thus keep predicting lowest bucket is not
|
|
* useful.
|
|
*/
|
|
if (!bidx)
|
|
bidx++;
|
|
|
|
return bidx;
|
|
}
|
|
|
|
/*
|
|
* get_pred_busy - calculate predicted demand for a task on runqueue
|
|
*
|
|
* @p: task whose prediction is being updated
|
|
* @start: starting bucket. returned prediction should not be lower than
|
|
* this bucket.
|
|
* @runtime: runtime of the task. returned prediction should not be lower
|
|
* than this runtime.
|
|
* Note: @start can be derived from @runtime. It's passed in only to
|
|
* avoid duplicated calculation in some cases.
|
|
*
|
|
* A new predicted busy time is returned for task @p based on @runtime
|
|
* passed in. The function searches through buckets that represent busy
|
|
* time equal to or bigger than @runtime and attempts to find the bucket to
|
|
* to use for prediction. Once found, it searches through historical busy
|
|
* time and returns the latest that falls into the bucket. If no such busy
|
|
* time exists, it returns the medium of that bucket.
|
|
*/
|
|
static u32 get_pred_busy(struct task_struct *p,
|
|
int start, u32 runtime)
|
|
{
|
|
int i;
|
|
u8 *buckets = p->ravg.busy_buckets;
|
|
u32 *hist = p->ravg.sum_history;
|
|
u32 dmin, dmax;
|
|
u64 cur_freq_runtime = 0;
|
|
int first = NUM_BUSY_BUCKETS, final;
|
|
u32 ret = runtime;
|
|
|
|
/* skip prediction for new tasks due to lack of history */
|
|
if (unlikely(is_new_task(p)))
|
|
goto out;
|
|
|
|
/* find minimal bucket index to pick */
|
|
for (i = start; i < NUM_BUSY_BUCKETS; i++) {
|
|
if (buckets[i]) {
|
|
first = i;
|
|
break;
|
|
}
|
|
}
|
|
/* if no higher buckets are filled, predict runtime */
|
|
if (first >= NUM_BUSY_BUCKETS)
|
|
goto out;
|
|
|
|
/* compute the bucket for prediction */
|
|
final = first;
|
|
|
|
/* determine demand range for the predicted bucket */
|
|
if (final < 2) {
|
|
/* lowest two buckets are combined */
|
|
dmin = 0;
|
|
final = 1;
|
|
} else {
|
|
dmin = mult_frac(final, max_task_load(), NUM_BUSY_BUCKETS);
|
|
}
|
|
dmax = mult_frac(final + 1, max_task_load(), NUM_BUSY_BUCKETS);
|
|
|
|
/*
|
|
* search through runtime history and return first runtime that falls
|
|
* into the range of predicted bucket.
|
|
*/
|
|
for (i = 0; i < sched_ravg_hist_size; i++) {
|
|
if (hist[i] >= dmin && hist[i] < dmax) {
|
|
ret = hist[i];
|
|
break;
|
|
}
|
|
}
|
|
/* no historical runtime within bucket found, use average of the bin */
|
|
if (ret < dmin)
|
|
ret = (dmin + dmax) / 2;
|
|
/*
|
|
* when updating in middle of a window, runtime could be higher
|
|
* than all recorded history. Always predict at least runtime.
|
|
*/
|
|
ret = max(runtime, ret);
|
|
out:
|
|
trace_sched_update_pred_demand(p, runtime,
|
|
mult_frac((unsigned int)cur_freq_runtime, 100,
|
|
sched_ravg_window), ret);
|
|
return ret;
|
|
}
|
|
|
|
static inline u32 calc_pred_demand(struct task_struct *p)
|
|
{
|
|
if (p->ravg.pred_demand >= p->ravg.curr_window)
|
|
return p->ravg.pred_demand;
|
|
|
|
return get_pred_busy(p, busy_to_bucket(p->ravg.curr_window),
|
|
p->ravg.curr_window);
|
|
}
|
|
|
|
/*
|
|
* predictive demand of a task is calculated at the window roll-over.
|
|
* if the task current window busy time exceeds the predicted
|
|
* demand, update it here to reflect the task needs.
|
|
*/
|
|
void update_task_pred_demand(struct rq *rq, struct task_struct *p, int event)
|
|
{
|
|
u32 new, old;
|
|
u16 new_scaled;
|
|
|
|
if (!sched_predl)
|
|
return;
|
|
|
|
if (is_idle_task(p) || exiting_task(p))
|
|
return;
|
|
|
|
if (event != PUT_PREV_TASK && event != TASK_UPDATE &&
|
|
(!SCHED_FREQ_ACCOUNT_WAIT_TIME ||
|
|
(event != TASK_MIGRATE &&
|
|
event != PICK_NEXT_TASK)))
|
|
return;
|
|
|
|
/*
|
|
* TASK_UPDATE can be called on sleeping task, when its moved between
|
|
* related groups
|
|
*/
|
|
if (event == TASK_UPDATE) {
|
|
if (!p->on_rq && !SCHED_FREQ_ACCOUNT_WAIT_TIME)
|
|
return;
|
|
}
|
|
|
|
new = calc_pred_demand(p);
|
|
old = p->ravg.pred_demand;
|
|
|
|
if (old >= new)
|
|
return;
|
|
|
|
new_scaled = scale_demand(new);
|
|
if (task_on_rq_queued(p) && (!task_has_dl_policy(p) ||
|
|
!p->dl.dl_throttled) &&
|
|
p->sched_class->fixup_walt_sched_stats)
|
|
p->sched_class->fixup_walt_sched_stats(rq, p,
|
|
p->ravg.demand_scaled,
|
|
new_scaled);
|
|
|
|
p->ravg.pred_demand = new;
|
|
p->ravg.pred_demand_scaled = new_scaled;
|
|
}
|
|
|
|
void clear_top_tasks_bitmap(unsigned long *bitmap)
|
|
{
|
|
memset(bitmap, 0, top_tasks_bitmap_size);
|
|
__set_bit(NUM_LOAD_INDICES, bitmap);
|
|
}
|
|
|
|
static void update_top_tasks(struct task_struct *p, struct rq *rq,
|
|
u32 old_curr_window, int new_window, bool full_window)
|
|
{
|
|
u8 curr = rq->curr_table;
|
|
u8 prev = 1 - curr;
|
|
u8 *curr_table = rq->top_tasks[curr];
|
|
u8 *prev_table = rq->top_tasks[prev];
|
|
int old_index, new_index, update_index;
|
|
u32 curr_window = p->ravg.curr_window;
|
|
u32 prev_window = p->ravg.prev_window;
|
|
bool zero_index_update;
|
|
|
|
if (old_curr_window == curr_window && !new_window)
|
|
return;
|
|
|
|
old_index = load_to_index(old_curr_window);
|
|
new_index = load_to_index(curr_window);
|
|
|
|
if (!new_window) {
|
|
zero_index_update = !old_curr_window && curr_window;
|
|
if (old_index != new_index || zero_index_update) {
|
|
if (old_curr_window)
|
|
curr_table[old_index] -= 1;
|
|
if (curr_window)
|
|
curr_table[new_index] += 1;
|
|
if (new_index > rq->curr_top)
|
|
rq->curr_top = new_index;
|
|
}
|
|
|
|
if (!curr_table[old_index])
|
|
__clear_bit(NUM_LOAD_INDICES - old_index - 1,
|
|
rq->top_tasks_bitmap[curr]);
|
|
|
|
if (curr_table[new_index] == 1)
|
|
__set_bit(NUM_LOAD_INDICES - new_index - 1,
|
|
rq->top_tasks_bitmap[curr]);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The window has rolled over for this task. By the time we get
|
|
* here, curr/prev swaps would has already occurred. So we need
|
|
* to use prev_window for the new index.
|
|
*/
|
|
update_index = load_to_index(prev_window);
|
|
|
|
if (full_window) {
|
|
/*
|
|
* Two cases here. Either 'p' ran for the entire window or
|
|
* it didn't run at all. In either case there is no entry
|
|
* in the prev table. If 'p' ran the entire window, we just
|
|
* need to create a new entry in the prev table. In this case
|
|
* update_index will be correspond to sched_ravg_window
|
|
* so we can unconditionally update the top index.
|
|
*/
|
|
if (prev_window) {
|
|
prev_table[update_index] += 1;
|
|
rq->prev_top = update_index;
|
|
}
|
|
|
|
if (prev_table[update_index] == 1)
|
|
__set_bit(NUM_LOAD_INDICES - update_index - 1,
|
|
rq->top_tasks_bitmap[prev]);
|
|
} else {
|
|
zero_index_update = !old_curr_window && prev_window;
|
|
if (old_index != update_index || zero_index_update) {
|
|
if (old_curr_window)
|
|
prev_table[old_index] -= 1;
|
|
|
|
prev_table[update_index] += 1;
|
|
|
|
if (update_index > rq->prev_top)
|
|
rq->prev_top = update_index;
|
|
|
|
if (!prev_table[old_index])
|
|
__clear_bit(NUM_LOAD_INDICES - old_index - 1,
|
|
rq->top_tasks_bitmap[prev]);
|
|
|
|
if (prev_table[update_index] == 1)
|
|
__set_bit(NUM_LOAD_INDICES - update_index - 1,
|
|
rq->top_tasks_bitmap[prev]);
|
|
}
|
|
}
|
|
|
|
if (curr_window) {
|
|
curr_table[new_index] += 1;
|
|
|
|
if (new_index > rq->curr_top)
|
|
rq->curr_top = new_index;
|
|
|
|
if (curr_table[new_index] == 1)
|
|
__set_bit(NUM_LOAD_INDICES - new_index - 1,
|
|
rq->top_tasks_bitmap[curr]);
|
|
}
|
|
}
|
|
|
|
static void rollover_top_tasks(struct rq *rq, bool full_window)
|
|
{
|
|
u8 curr_table = rq->curr_table;
|
|
u8 prev_table = 1 - curr_table;
|
|
int curr_top = rq->curr_top;
|
|
|
|
clear_top_tasks_table(rq->top_tasks[prev_table]);
|
|
clear_top_tasks_bitmap(rq->top_tasks_bitmap[prev_table]);
|
|
|
|
if (full_window) {
|
|
curr_top = 0;
|
|
clear_top_tasks_table(rq->top_tasks[curr_table]);
|
|
clear_top_tasks_bitmap(
|
|
rq->top_tasks_bitmap[curr_table]);
|
|
}
|
|
|
|
rq->curr_table = prev_table;
|
|
rq->prev_top = curr_top;
|
|
rq->curr_top = 0;
|
|
}
|
|
|
|
static u32 empty_windows[NR_CPUS];
|
|
|
|
static void rollover_task_window(struct task_struct *p, bool full_window)
|
|
{
|
|
u32 *curr_cpu_windows = empty_windows;
|
|
u32 curr_window;
|
|
int i;
|
|
|
|
/* Rollover the sum */
|
|
curr_window = 0;
|
|
|
|
if (!full_window) {
|
|
curr_window = p->ravg.curr_window;
|
|
curr_cpu_windows = p->ravg.curr_window_cpu;
|
|
}
|
|
|
|
p->ravg.prev_window = curr_window;
|
|
p->ravg.curr_window = 0;
|
|
|
|
/* Roll over individual CPU contributions */
|
|
for (i = 0; i < nr_cpu_ids; i++) {
|
|
p->ravg.prev_window_cpu[i] = curr_cpu_windows[i];
|
|
p->ravg.curr_window_cpu[i] = 0;
|
|
}
|
|
|
|
if (is_new_task(p))
|
|
p->ravg.active_time += p->ravg.last_win_size;
|
|
}
|
|
|
|
void sched_set_io_is_busy(int val)
|
|
{
|
|
sched_io_is_busy = val;
|
|
}
|
|
|
|
static inline int cpu_is_waiting_on_io(struct rq *rq)
|
|
{
|
|
if (!sched_io_is_busy)
|
|
return 0;
|
|
|
|
return atomic_read(&rq->nr_iowait);
|
|
}
|
|
|
|
static int account_busy_for_cpu_time(struct rq *rq, struct task_struct *p,
|
|
u64 irqtime, int event)
|
|
{
|
|
if (is_idle_task(p)) {
|
|
/* TASK_WAKE && TASK_MIGRATE is not possible on idle task! */
|
|
if (event == PICK_NEXT_TASK)
|
|
return 0;
|
|
|
|
/* PUT_PREV_TASK, TASK_UPDATE && IRQ_UPDATE are left */
|
|
return irqtime || cpu_is_waiting_on_io(rq);
|
|
}
|
|
|
|
if (event == TASK_WAKE)
|
|
return 0;
|
|
|
|
if (event == PUT_PREV_TASK || event == IRQ_UPDATE)
|
|
return 1;
|
|
|
|
/*
|
|
* TASK_UPDATE can be called on sleeping task, when its moved between
|
|
* related groups
|
|
*/
|
|
if (event == TASK_UPDATE) {
|
|
if (rq->curr == p)
|
|
return 1;
|
|
|
|
return p->on_rq ? SCHED_FREQ_ACCOUNT_WAIT_TIME : 0;
|
|
}
|
|
|
|
/* TASK_MIGRATE, PICK_NEXT_TASK left */
|
|
return SCHED_FREQ_ACCOUNT_WAIT_TIME;
|
|
}
|
|
|
|
#define DIV64_U64_ROUNDUP(X, Y) div64_u64((X) + (Y - 1), Y)
|
|
|
|
static inline u64 scale_exec_time(u64 delta, struct rq *rq)
|
|
{
|
|
return (delta * rq->task_exec_scale) >> 10;
|
|
}
|
|
|
|
/* Convert busy time to frequency equivalent
|
|
* Assumes load is scaled to 1024
|
|
*/
|
|
static inline unsigned int load_to_freq(struct rq *rq, unsigned int load)
|
|
{
|
|
return mult_frac(cpu_max_possible_freq(cpu_of(rq)), load,
|
|
(unsigned int) capacity_orig_of(cpu_of(rq)));
|
|
}
|
|
|
|
bool do_pl_notif(struct rq *rq)
|
|
{
|
|
u64 prev = rq->old_busy_time;
|
|
u64 pl = rq->walt_stats.pred_demands_sum_scaled;
|
|
int cpu = cpu_of(rq);
|
|
|
|
/* If already at max freq, bail out */
|
|
if (capacity_orig_of(cpu) == capacity_curr_of(cpu))
|
|
return false;
|
|
|
|
prev = max(prev, rq->old_estimated_time);
|
|
|
|
/* 400 MHz filter. */
|
|
return (pl > prev) && (load_to_freq(rq, pl - prev) > 400000);
|
|
}
|
|
|
|
static void rollover_cpu_window(struct rq *rq, bool full_window)
|
|
{
|
|
u64 curr_sum = rq->curr_runnable_sum;
|
|
u64 nt_curr_sum = rq->nt_curr_runnable_sum;
|
|
u64 grp_curr_sum = rq->grp_time.curr_runnable_sum;
|
|
u64 grp_nt_curr_sum = rq->grp_time.nt_curr_runnable_sum;
|
|
|
|
if (unlikely(full_window)) {
|
|
curr_sum = 0;
|
|
nt_curr_sum = 0;
|
|
grp_curr_sum = 0;
|
|
grp_nt_curr_sum = 0;
|
|
}
|
|
|
|
rq->prev_runnable_sum = curr_sum;
|
|
rq->nt_prev_runnable_sum = nt_curr_sum;
|
|
rq->grp_time.prev_runnable_sum = grp_curr_sum;
|
|
rq->grp_time.nt_prev_runnable_sum = grp_nt_curr_sum;
|
|
|
|
rq->curr_runnable_sum = 0;
|
|
rq->nt_curr_runnable_sum = 0;
|
|
rq->grp_time.curr_runnable_sum = 0;
|
|
rq->grp_time.nt_curr_runnable_sum = 0;
|
|
}
|
|
|
|
/*
|
|
* Account cpu activity in its busy time counters (rq->curr/prev_runnable_sum)
|
|
*/
|
|
static void update_cpu_busy_time(struct task_struct *p, struct rq *rq,
|
|
int event, u64 wallclock, u64 irqtime)
|
|
{
|
|
int new_window, full_window = 0;
|
|
int p_is_curr_task = (p == rq->curr);
|
|
u64 mark_start = p->ravg.mark_start;
|
|
u64 window_start = rq->window_start;
|
|
u32 window_size = rq->prev_window_size;
|
|
u64 delta;
|
|
u64 *curr_runnable_sum = &rq->curr_runnable_sum;
|
|
u64 *prev_runnable_sum = &rq->prev_runnable_sum;
|
|
u64 *nt_curr_runnable_sum = &rq->nt_curr_runnable_sum;
|
|
u64 *nt_prev_runnable_sum = &rq->nt_prev_runnable_sum;
|
|
bool new_task;
|
|
struct related_thread_group *grp;
|
|
int cpu = rq->cpu;
|
|
u32 old_curr_window = p->ravg.curr_window;
|
|
|
|
new_window = mark_start < window_start;
|
|
if (new_window)
|
|
full_window = (window_start - mark_start) >= window_size;
|
|
|
|
/*
|
|
* Handle per-task window rollover. We don't care about the idle
|
|
* task or exiting tasks.
|
|
*/
|
|
if (!is_idle_task(p) && !exiting_task(p)) {
|
|
if (new_window)
|
|
rollover_task_window(p, full_window);
|
|
}
|
|
|
|
new_task = is_new_task(p);
|
|
|
|
if (p_is_curr_task && new_window) {
|
|
rollover_cpu_window(rq, full_window);
|
|
rollover_top_tasks(rq, full_window);
|
|
}
|
|
|
|
if (!account_busy_for_cpu_time(rq, p, irqtime, event))
|
|
goto done;
|
|
|
|
grp = p->grp;
|
|
if (grp) {
|
|
struct group_cpu_time *cpu_time = &rq->grp_time;
|
|
|
|
curr_runnable_sum = &cpu_time->curr_runnable_sum;
|
|
prev_runnable_sum = &cpu_time->prev_runnable_sum;
|
|
|
|
nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
|
|
nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
|
|
}
|
|
|
|
if (!new_window) {
|
|
/*
|
|
* account_busy_for_cpu_time() = 1 so busy time needs
|
|
* to be accounted to the current window. No rollover
|
|
* since we didn't start a new window. An example of this is
|
|
* when a task starts execution and then sleeps within the
|
|
* same window.
|
|
*/
|
|
|
|
if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq))
|
|
delta = wallclock - mark_start;
|
|
else
|
|
delta = irqtime;
|
|
delta = scale_exec_time(delta, rq);
|
|
*curr_runnable_sum += delta;
|
|
if (new_task)
|
|
*nt_curr_runnable_sum += delta;
|
|
|
|
if (!is_idle_task(p) && !exiting_task(p)) {
|
|
p->ravg.curr_window += delta;
|
|
p->ravg.curr_window_cpu[cpu] += delta;
|
|
}
|
|
|
|
goto done;
|
|
}
|
|
|
|
if (!p_is_curr_task) {
|
|
/*
|
|
* account_busy_for_cpu_time() = 1 so busy time needs
|
|
* to be accounted to the current window. A new window
|
|
* has also started, but p is not the current task, so the
|
|
* window is not rolled over - just split up and account
|
|
* as necessary into curr and prev. The window is only
|
|
* rolled over when a new window is processed for the current
|
|
* task.
|
|
*
|
|
* Irqtime can't be accounted by a task that isn't the
|
|
* currently running task.
|
|
*/
|
|
|
|
if (!full_window) {
|
|
/*
|
|
* A full window hasn't elapsed, account partial
|
|
* contribution to previous completed window.
|
|
*/
|
|
delta = scale_exec_time(window_start - mark_start, rq);
|
|
if (!exiting_task(p)) {
|
|
p->ravg.prev_window += delta;
|
|
p->ravg.prev_window_cpu[cpu] += delta;
|
|
}
|
|
} else {
|
|
/*
|
|
* Since at least one full window has elapsed,
|
|
* the contribution to the previous window is the
|
|
* full window (window_size).
|
|
*/
|
|
delta = scale_exec_time(window_size, rq);
|
|
if (!exiting_task(p)) {
|
|
p->ravg.prev_window = delta;
|
|
p->ravg.prev_window_cpu[cpu] = delta;
|
|
}
|
|
}
|
|
|
|
*prev_runnable_sum += delta;
|
|
if (new_task)
|
|
*nt_prev_runnable_sum += delta;
|
|
|
|
/* Account piece of busy time in the current window. */
|
|
delta = scale_exec_time(wallclock - window_start, rq);
|
|
*curr_runnable_sum += delta;
|
|
if (new_task)
|
|
*nt_curr_runnable_sum += delta;
|
|
|
|
if (!exiting_task(p)) {
|
|
p->ravg.curr_window = delta;
|
|
p->ravg.curr_window_cpu[cpu] = delta;
|
|
}
|
|
|
|
goto done;
|
|
}
|
|
|
|
if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq)) {
|
|
/*
|
|
* account_busy_for_cpu_time() = 1 so busy time needs
|
|
* to be accounted to the current window. A new window
|
|
* has started and p is the current task so rollover is
|
|
* needed. If any of these three above conditions are true
|
|
* then this busy time can't be accounted as irqtime.
|
|
*
|
|
* Busy time for the idle task or exiting tasks need not
|
|
* be accounted.
|
|
*
|
|
* An example of this would be a task that starts execution
|
|
* and then sleeps once a new window has begun.
|
|
*/
|
|
|
|
if (!full_window) {
|
|
/*
|
|
* A full window hasn't elapsed, account partial
|
|
* contribution to previous completed window.
|
|
*/
|
|
delta = scale_exec_time(window_start - mark_start, rq);
|
|
if (!is_idle_task(p) && !exiting_task(p)) {
|
|
p->ravg.prev_window += delta;
|
|
p->ravg.prev_window_cpu[cpu] += delta;
|
|
}
|
|
} else {
|
|
/*
|
|
* Since at least one full window has elapsed,
|
|
* the contribution to the previous window is the
|
|
* full window (window_size).
|
|
*/
|
|
delta = scale_exec_time(window_size, rq);
|
|
if (!is_idle_task(p) && !exiting_task(p)) {
|
|
p->ravg.prev_window = delta;
|
|
p->ravg.prev_window_cpu[cpu] = delta;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Rollover is done here by overwriting the values in
|
|
* prev_runnable_sum and curr_runnable_sum.
|
|
*/
|
|
*prev_runnable_sum += delta;
|
|
if (new_task)
|
|
*nt_prev_runnable_sum += delta;
|
|
|
|
/* Account piece of busy time in the current window. */
|
|
delta = scale_exec_time(wallclock - window_start, rq);
|
|
*curr_runnable_sum += delta;
|
|
if (new_task)
|
|
*nt_curr_runnable_sum += delta;
|
|
|
|
if (!is_idle_task(p) && !exiting_task(p)) {
|
|
p->ravg.curr_window = delta;
|
|
p->ravg.curr_window_cpu[cpu] = delta;
|
|
}
|
|
|
|
goto done;
|
|
}
|
|
|
|
if (irqtime) {
|
|
/*
|
|
* account_busy_for_cpu_time() = 1 so busy time needs
|
|
* to be accounted to the current window. A new window
|
|
* has started and p is the current task so rollover is
|
|
* needed. The current task must be the idle task because
|
|
* irqtime is not accounted for any other task.
|
|
*
|
|
* Irqtime will be accounted each time we process IRQ activity
|
|
* after a period of idleness, so we know the IRQ busy time
|
|
* started at wallclock - irqtime.
|
|
*/
|
|
|
|
SCHED_BUG_ON(!is_idle_task(p));
|
|
mark_start = wallclock - irqtime;
|
|
|
|
/*
|
|
* Roll window over. If IRQ busy time was just in the current
|
|
* window then that is all that need be accounted.
|
|
*/
|
|
if (mark_start > window_start) {
|
|
*curr_runnable_sum = scale_exec_time(irqtime, rq);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The IRQ busy time spanned multiple windows. Process the
|
|
* busy time preceding the current window start first.
|
|
*/
|
|
delta = window_start - mark_start;
|
|
if (delta > window_size)
|
|
delta = window_size;
|
|
delta = scale_exec_time(delta, rq);
|
|
*prev_runnable_sum += delta;
|
|
|
|
/* Process the remaining IRQ busy time in the current window. */
|
|
delta = wallclock - window_start;
|
|
rq->curr_runnable_sum = scale_exec_time(delta, rq);
|
|
|
|
return;
|
|
}
|
|
|
|
done:
|
|
if (!is_idle_task(p) && !exiting_task(p))
|
|
update_top_tasks(p, rq, old_curr_window,
|
|
new_window, full_window);
|
|
}
|
|
|
|
|
|
static inline u32 predict_and_update_buckets(
|
|
struct task_struct *p, u32 runtime) {
|
|
|
|
int bidx;
|
|
u32 pred_demand;
|
|
|
|
if (!sched_predl)
|
|
return 0;
|
|
|
|
bidx = busy_to_bucket(runtime);
|
|
pred_demand = get_pred_busy(p, bidx, runtime);
|
|
bucket_increase(p->ravg.busy_buckets, bidx);
|
|
|
|
return pred_demand;
|
|
}
|
|
|
|
static int
|
|
account_busy_for_task_demand(struct rq *rq, struct task_struct *p, int event)
|
|
{
|
|
/*
|
|
* No need to bother updating task demand for exiting tasks
|
|
* or the idle task.
|
|
*/
|
|
if (exiting_task(p) || is_idle_task(p))
|
|
return 0;
|
|
|
|
/*
|
|
* When a task is waking up it is completing a segment of non-busy
|
|
* time. Likewise, if wait time is not treated as busy time, then
|
|
* when a task begins to run or is migrated, it is not running and
|
|
* is completing a segment of non-busy time.
|
|
*/
|
|
if (event == TASK_WAKE || (!SCHED_ACCOUNT_WAIT_TIME &&
|
|
(event == PICK_NEXT_TASK || event == TASK_MIGRATE)))
|
|
return 0;
|
|
|
|
/*
|
|
* The idle exit time is not accounted for the first task _picked_ up to
|
|
* run on the idle CPU.
|
|
*/
|
|
if (event == PICK_NEXT_TASK && rq->curr == rq->idle)
|
|
return 0;
|
|
|
|
/*
|
|
* TASK_UPDATE can be called on sleeping task, when its moved between
|
|
* related groups
|
|
*/
|
|
if (event == TASK_UPDATE) {
|
|
if (rq->curr == p)
|
|
return 1;
|
|
|
|
return p->on_rq ? SCHED_ACCOUNT_WAIT_TIME : 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
unsigned int sysctl_sched_task_unfilter_period = 200000000;
|
|
|
|
/*
|
|
* Called when new window is starting for a task, to record cpu usage over
|
|
* recently concluded window(s). Normally 'samples' should be 1. It can be > 1
|
|
* when, say, a real-time task runs without preemption for several windows at a
|
|
* stretch.
|
|
*/
|
|
static void update_history(struct rq *rq, struct task_struct *p,
|
|
u32 runtime, int samples, int event)
|
|
{
|
|
u32 *hist = &p->ravg.sum_history[0];
|
|
int ridx, widx;
|
|
u32 max = 0, avg, demand, pred_demand;
|
|
u64 sum = 0;
|
|
u16 demand_scaled, pred_demand_scaled;
|
|
|
|
/* Ignore windows where task had no activity */
|
|
if (!runtime || is_idle_task(p) || exiting_task(p) || !samples)
|
|
goto done;
|
|
|
|
/* Push new 'runtime' value onto stack */
|
|
widx = sched_ravg_hist_size - 1;
|
|
ridx = widx - samples;
|
|
for (; ridx >= 0; --widx, --ridx) {
|
|
hist[widx] = hist[ridx];
|
|
sum += hist[widx];
|
|
if (hist[widx] > max)
|
|
max = hist[widx];
|
|
}
|
|
|
|
for (widx = 0; widx < samples && widx < sched_ravg_hist_size; widx++) {
|
|
hist[widx] = runtime;
|
|
sum += hist[widx];
|
|
if (hist[widx] > max)
|
|
max = hist[widx];
|
|
}
|
|
|
|
p->ravg.sum = 0;
|
|
|
|
if (sysctl_sched_window_stats_policy == WINDOW_STATS_RECENT) {
|
|
demand = runtime;
|
|
} else if (sysctl_sched_window_stats_policy == WINDOW_STATS_MAX) {
|
|
demand = max;
|
|
} else {
|
|
avg = div64_u64(sum, sched_ravg_hist_size);
|
|
if (sysctl_sched_window_stats_policy == WINDOW_STATS_AVG)
|
|
demand = avg;
|
|
else
|
|
demand = max(avg, runtime);
|
|
}
|
|
pred_demand = predict_and_update_buckets(p, runtime);
|
|
demand_scaled = scale_demand(demand);
|
|
pred_demand_scaled = scale_demand(pred_demand);
|
|
|
|
/*
|
|
* A throttled deadline sched class task gets dequeued without
|
|
* changing p->on_rq. Since the dequeue decrements walt stats
|
|
* avoid decrementing it here again.
|
|
*
|
|
* When window is rolled over, the cumulative window demand
|
|
* is reset to the cumulative runnable average (contribution from
|
|
* the tasks on the runqueue). If the current task is dequeued
|
|
* already, it's demand is not included in the cumulative runnable
|
|
* average. So add the task demand separately to cumulative window
|
|
* demand.
|
|
*/
|
|
if (!task_has_dl_policy(p) || !p->dl.dl_throttled) {
|
|
if (task_on_rq_queued(p) &&
|
|
p->sched_class->fixup_walt_sched_stats)
|
|
p->sched_class->fixup_walt_sched_stats(rq, p,
|
|
demand_scaled, pred_demand_scaled);
|
|
else if (rq->curr == p)
|
|
walt_fixup_cum_window_demand(rq, demand_scaled);
|
|
}
|
|
|
|
p->ravg.demand = demand;
|
|
p->ravg.demand_scaled = demand_scaled;
|
|
p->ravg.coloc_demand = div64_u64(sum, sched_ravg_hist_size);
|
|
p->ravg.pred_demand = pred_demand;
|
|
p->ravg.pred_demand_scaled = pred_demand_scaled;
|
|
|
|
if (demand_scaled > sysctl_sched_min_task_util_for_colocation)
|
|
p->unfilter = sysctl_sched_task_unfilter_period;
|
|
else
|
|
if (p->unfilter)
|
|
p->unfilter = max_t(int, 0,
|
|
p->unfilter - p->ravg.last_win_size);
|
|
done:
|
|
trace_sched_update_history(rq, p, runtime, samples, event);
|
|
}
|
|
|
|
static u64 add_to_task_demand(struct rq *rq, struct task_struct *p, u64 delta)
|
|
{
|
|
delta = scale_exec_time(delta, rq);
|
|
p->ravg.sum += delta;
|
|
if (unlikely(p->ravg.sum > sched_ravg_window))
|
|
p->ravg.sum = sched_ravg_window;
|
|
|
|
return delta;
|
|
}
|
|
|
|
/*
|
|
* Account cpu demand of task and/or update task's cpu demand history
|
|
*
|
|
* ms = p->ravg.mark_start;
|
|
* wc = wallclock
|
|
* ws = rq->window_start
|
|
*
|
|
* Three possibilities:
|
|
*
|
|
* a) Task event is contained within one window.
|
|
* window_start < mark_start < wallclock
|
|
*
|
|
* ws ms wc
|
|
* | | |
|
|
* V V V
|
|
* |---------------|
|
|
*
|
|
* In this case, p->ravg.sum is updated *iff* event is appropriate
|
|
* (ex: event == PUT_PREV_TASK)
|
|
*
|
|
* b) Task event spans two windows.
|
|
* mark_start < window_start < wallclock
|
|
*
|
|
* ms ws wc
|
|
* | | |
|
|
* V V V
|
|
* -----|-------------------
|
|
*
|
|
* In this case, p->ravg.sum is updated with (ws - ms) *iff* event
|
|
* is appropriate, then a new window sample is recorded followed
|
|
* by p->ravg.sum being set to (wc - ws) *iff* event is appropriate.
|
|
*
|
|
* c) Task event spans more than two windows.
|
|
*
|
|
* ms ws_tmp ws wc
|
|
* | | | |
|
|
* V V V V
|
|
* ---|-------|-------|-------|-------|------
|
|
* | |
|
|
* |<------ nr_full_windows ------>|
|
|
*
|
|
* In this case, p->ravg.sum is updated with (ws_tmp - ms) first *iff*
|
|
* event is appropriate, window sample of p->ravg.sum is recorded,
|
|
* 'nr_full_window' samples of window_size is also recorded *iff*
|
|
* event is appropriate and finally p->ravg.sum is set to (wc - ws)
|
|
* *iff* event is appropriate.
|
|
*
|
|
* IMPORTANT : Leave p->ravg.mark_start unchanged, as update_cpu_busy_time()
|
|
* depends on it!
|
|
*/
|
|
static u64 update_task_demand(struct task_struct *p, struct rq *rq,
|
|
int event, u64 wallclock)
|
|
{
|
|
u64 mark_start = p->ravg.mark_start;
|
|
u64 delta, window_start = rq->window_start;
|
|
int new_window, nr_full_windows;
|
|
u32 window_size = sched_ravg_window;
|
|
u64 runtime;
|
|
|
|
new_window = mark_start < window_start;
|
|
if (!account_busy_for_task_demand(rq, p, event)) {
|
|
if (new_window)
|
|
/*
|
|
* If the time accounted isn't being accounted as
|
|
* busy time, and a new window started, only the
|
|
* previous window need be closed out with the
|
|
* pre-existing demand. Multiple windows may have
|
|
* elapsed, but since empty windows are dropped,
|
|
* it is not necessary to account those.
|
|
*/
|
|
update_history(rq, p, p->ravg.sum, 1, event);
|
|
return 0;
|
|
}
|
|
|
|
if (!new_window) {
|
|
/*
|
|
* The simple case - busy time contained within the existing
|
|
* window.
|
|
*/
|
|
return add_to_task_demand(rq, p, wallclock - mark_start);
|
|
}
|
|
|
|
/*
|
|
* Busy time spans at least two windows. Temporarily rewind
|
|
* window_start to first window boundary after mark_start.
|
|
*/
|
|
delta = window_start - mark_start;
|
|
nr_full_windows = div64_u64(delta, window_size);
|
|
window_start -= (u64)nr_full_windows * (u64)window_size;
|
|
|
|
/* Process (window_start - mark_start) first */
|
|
runtime = add_to_task_demand(rq, p, window_start - mark_start);
|
|
|
|
/* Push new sample(s) into task's demand history */
|
|
update_history(rq, p, p->ravg.sum, 1, event);
|
|
if (nr_full_windows) {
|
|
u64 scaled_window = scale_exec_time(window_size, rq);
|
|
|
|
update_history(rq, p, scaled_window, nr_full_windows, event);
|
|
runtime += nr_full_windows * scaled_window;
|
|
}
|
|
|
|
/*
|
|
* Roll window_start back to current to process any remainder
|
|
* in current window.
|
|
*/
|
|
window_start += (u64)nr_full_windows * (u64)window_size;
|
|
|
|
/* Process (wallclock - window_start) next */
|
|
mark_start = window_start;
|
|
runtime += add_to_task_demand(rq, p, wallclock - mark_start);
|
|
|
|
return runtime;
|
|
}
|
|
|
|
static void
|
|
update_task_rq_cpu_cycles(struct task_struct *p, struct rq *rq, int event,
|
|
u64 wallclock, u64 irqtime)
|
|
{
|
|
u64 cur_cycles;
|
|
u64 cycles_delta;
|
|
u64 time_delta;
|
|
int cpu = cpu_of(rq);
|
|
|
|
lockdep_assert_held(&rq->lock);
|
|
|
|
if (!use_cycle_counter) {
|
|
rq->task_exec_scale = DIV64_U64_ROUNDUP(cpu_cur_freq(cpu) *
|
|
topology_get_cpu_scale(NULL, cpu),
|
|
rq->cluster->max_possible_freq);
|
|
return;
|
|
}
|
|
|
|
cur_cycles = read_cycle_counter(cpu, wallclock);
|
|
|
|
/*
|
|
* If current task is idle task and irqtime == 0 CPU was
|
|
* indeed idle and probably its cycle counter was not
|
|
* increasing. We still need estimatied CPU frequency
|
|
* for IO wait time accounting. Use the previously
|
|
* calculated frequency in such a case.
|
|
*/
|
|
if (!is_idle_task(rq->curr) || irqtime) {
|
|
if (unlikely(cur_cycles < p->cpu_cycles))
|
|
cycles_delta = cur_cycles + (U64_MAX - p->cpu_cycles);
|
|
else
|
|
cycles_delta = cur_cycles - p->cpu_cycles;
|
|
cycles_delta = cycles_delta * NSEC_PER_MSEC;
|
|
|
|
if (event == IRQ_UPDATE && is_idle_task(p))
|
|
/*
|
|
* Time between mark_start of idle task and IRQ handler
|
|
* entry time is CPU cycle counter stall period.
|
|
* Upon IRQ handler entry sched_account_irqstart()
|
|
* replenishes idle task's cpu cycle counter so
|
|
* cycles_delta now represents increased cycles during
|
|
* IRQ handler rather than time between idle entry and
|
|
* IRQ exit. Thus use irqtime as time delta.
|
|
*/
|
|
time_delta = irqtime;
|
|
else
|
|
time_delta = wallclock - p->ravg.mark_start;
|
|
SCHED_BUG_ON((s64)time_delta < 0);
|
|
|
|
rq->task_exec_scale = DIV64_U64_ROUNDUP(cycles_delta *
|
|
topology_get_cpu_scale(NULL, cpu),
|
|
time_delta * rq->cluster->max_possible_freq);
|
|
trace_sched_get_task_cpu_cycles(cpu, event,
|
|
cycles_delta, time_delta, p);
|
|
}
|
|
|
|
p->cpu_cycles = cur_cycles;
|
|
|
|
}
|
|
|
|
static inline void run_walt_irq_work(u64 old_window_start, struct rq *rq)
|
|
{
|
|
u64 result;
|
|
|
|
if (old_window_start == rq->window_start)
|
|
return;
|
|
|
|
result = atomic64_cmpxchg(&walt_irq_work_lastq_ws, old_window_start,
|
|
rq->window_start);
|
|
if (result == old_window_start) {
|
|
walt_irq_work_queue(&walt_cpufreq_irq_work);
|
|
trace_walt_window_rollover(rq->window_start);
|
|
}
|
|
}
|
|
|
|
/* Reflect task activity on its demand and cpu's busy time statistics */
|
|
void update_task_ravg(struct task_struct *p, struct rq *rq, int event,
|
|
u64 wallclock, u64 irqtime)
|
|
{
|
|
u64 old_window_start;
|
|
|
|
if (!rq->window_start || sched_disable_window_stats ||
|
|
p->ravg.mark_start == wallclock)
|
|
return;
|
|
|
|
lockdep_assert_held(&rq->lock);
|
|
|
|
old_window_start = update_window_start(rq, wallclock, event);
|
|
|
|
if (!p->ravg.mark_start) {
|
|
update_task_cpu_cycles(p, cpu_of(rq), wallclock);
|
|
goto done;
|
|
}
|
|
|
|
update_task_rq_cpu_cycles(p, rq, event, wallclock, irqtime);
|
|
update_task_demand(p, rq, event, wallclock);
|
|
update_cpu_busy_time(p, rq, event, wallclock, irqtime);
|
|
update_task_pred_demand(rq, p, event);
|
|
|
|
if (exiting_task(p))
|
|
goto done;
|
|
|
|
trace_sched_update_task_ravg(p, rq, event, wallclock, irqtime,
|
|
&rq->grp_time);
|
|
trace_sched_update_task_ravg_mini(p, rq, event, wallclock, irqtime,
|
|
&rq->grp_time);
|
|
|
|
done:
|
|
p->ravg.mark_start = wallclock;
|
|
p->ravg.last_win_size = sched_ravg_window;
|
|
|
|
run_walt_irq_work(old_window_start, rq);
|
|
}
|
|
|
|
u32 sched_get_init_task_load(struct task_struct *p)
|
|
{
|
|
return p->init_load_pct;
|
|
}
|
|
|
|
int sched_set_init_task_load(struct task_struct *p, int init_load_pct)
|
|
{
|
|
if (init_load_pct < 0 || init_load_pct > 100)
|
|
return -EINVAL;
|
|
|
|
p->init_load_pct = init_load_pct;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void init_new_task_load(struct task_struct *p)
|
|
{
|
|
int i;
|
|
u32 init_load_windows = sched_init_task_load_windows;
|
|
u32 init_load_windows_scaled = sched_init_task_load_windows_scaled;
|
|
u32 init_load_pct = current->init_load_pct;
|
|
|
|
p->init_load_pct = 0;
|
|
rcu_assign_pointer(p->grp, NULL);
|
|
INIT_LIST_HEAD(&p->grp_list);
|
|
memset(&p->ravg, 0, sizeof(struct ravg));
|
|
p->cpu_cycles = 0;
|
|
|
|
p->ravg.curr_window_cpu = kcalloc(nr_cpu_ids, sizeof(u32),
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
p->ravg.prev_window_cpu = kcalloc(nr_cpu_ids, sizeof(u32),
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
|
|
if (init_load_pct) {
|
|
init_load_windows = div64_u64((u64)init_load_pct *
|
|
(u64)sched_ravg_window, 100);
|
|
init_load_windows_scaled = scale_demand(init_load_windows);
|
|
}
|
|
|
|
p->ravg.demand = init_load_windows;
|
|
p->ravg.demand_scaled = init_load_windows_scaled;
|
|
p->ravg.coloc_demand = init_load_windows;
|
|
p->ravg.pred_demand = 0;
|
|
p->ravg.pred_demand_scaled = 0;
|
|
for (i = 0; i < RAVG_HIST_SIZE_MAX; ++i)
|
|
p->ravg.sum_history[i] = init_load_windows;
|
|
p->misfit = false;
|
|
p->unfilter = sysctl_sched_task_unfilter_period;
|
|
}
|
|
|
|
/*
|
|
* kfree() may wakeup kswapd. So this function should NOT be called
|
|
* with any CPU's rq->lock acquired.
|
|
*/
|
|
void free_task_load_ptrs(struct task_struct *p)
|
|
{
|
|
kfree(p->ravg.curr_window_cpu);
|
|
kfree(p->ravg.prev_window_cpu);
|
|
|
|
/*
|
|
* update_task_ravg() can be called for exiting tasks. While the
|
|
* function itself ensures correct behavior, the corresponding
|
|
* trace event requires that these pointers be NULL.
|
|
*/
|
|
p->ravg.curr_window_cpu = NULL;
|
|
p->ravg.prev_window_cpu = NULL;
|
|
}
|
|
|
|
void reset_task_stats(struct task_struct *p)
|
|
{
|
|
u32 sum = 0;
|
|
u32 *curr_window_ptr = NULL;
|
|
u32 *prev_window_ptr = NULL;
|
|
|
|
if (exiting_task(p)) {
|
|
sum = EXITING_TASK_MARKER;
|
|
} else {
|
|
curr_window_ptr = p->ravg.curr_window_cpu;
|
|
prev_window_ptr = p->ravg.prev_window_cpu;
|
|
memset(curr_window_ptr, 0, sizeof(u32) * nr_cpu_ids);
|
|
memset(prev_window_ptr, 0, sizeof(u32) * nr_cpu_ids);
|
|
}
|
|
|
|
memset(&p->ravg, 0, sizeof(struct ravg));
|
|
|
|
p->ravg.curr_window_cpu = curr_window_ptr;
|
|
p->ravg.prev_window_cpu = prev_window_ptr;
|
|
|
|
/* Retain EXITING_TASK marker */
|
|
p->ravg.sum_history[0] = sum;
|
|
}
|
|
|
|
void mark_task_starting(struct task_struct *p)
|
|
{
|
|
u64 wallclock;
|
|
struct rq *rq = task_rq(p);
|
|
|
|
if (!rq->window_start || sched_disable_window_stats) {
|
|
reset_task_stats(p);
|
|
return;
|
|
}
|
|
|
|
wallclock = sched_ktime_clock();
|
|
p->ravg.mark_start = p->last_wake_ts = wallclock;
|
|
p->last_enqueued_ts = wallclock;
|
|
update_task_cpu_cycles(p, cpu_of(rq), wallclock);
|
|
}
|
|
|
|
#define pct_to_min_scaled(tunable) \
|
|
div64_u64(((u64)sched_ravg_window * tunable * \
|
|
topology_get_cpu_scale(NULL, \
|
|
cluster_first_cpu(sched_cluster[0]))), \
|
|
((u64)SCHED_CAPACITY_SCALE * 100))
|
|
|
|
static inline void walt_update_group_thresholds(void)
|
|
{
|
|
sched_group_upmigrate =
|
|
pct_to_min_scaled(sysctl_sched_group_upmigrate_pct);
|
|
sched_group_downmigrate =
|
|
pct_to_min_scaled(sysctl_sched_group_downmigrate_pct);
|
|
}
|
|
|
|
static void walt_cpus_capacity_changed(const cpumask_t *cpus)
|
|
{
|
|
unsigned long flags;
|
|
|
|
acquire_rq_locks_irqsave(cpu_possible_mask, &flags);
|
|
|
|
if (cpumask_intersects(cpus, &sched_cluster[0]->cpus))
|
|
walt_update_group_thresholds();
|
|
|
|
release_rq_locks_irqrestore(cpu_possible_mask, &flags);
|
|
}
|
|
|
|
|
|
struct sched_cluster *sched_cluster[NR_CPUS];
|
|
static int num_sched_clusters;
|
|
|
|
struct list_head cluster_head;
|
|
cpumask_t asym_cap_sibling_cpus = CPU_MASK_NONE;
|
|
|
|
static struct sched_cluster init_cluster = {
|
|
.list = LIST_HEAD_INIT(init_cluster.list),
|
|
.id = 0,
|
|
.max_power_cost = 1,
|
|
.min_power_cost = 1,
|
|
.max_possible_capacity = 1024,
|
|
.efficiency = 1,
|
|
.cur_freq = 1,
|
|
.max_freq = 1,
|
|
.max_mitigated_freq = UINT_MAX,
|
|
.min_freq = 1,
|
|
.max_possible_freq = 1,
|
|
.exec_scale_factor = 1024,
|
|
.aggr_grp_load = 0,
|
|
};
|
|
|
|
void init_clusters(void)
|
|
{
|
|
init_cluster.cpus = *cpu_possible_mask;
|
|
raw_spin_lock_init(&init_cluster.load_lock);
|
|
INIT_LIST_HEAD(&cluster_head);
|
|
list_add(&init_cluster.list, &cluster_head);
|
|
}
|
|
|
|
static void
|
|
insert_cluster(struct sched_cluster *cluster, struct list_head *head)
|
|
{
|
|
struct sched_cluster *tmp;
|
|
struct list_head *iter = head;
|
|
|
|
list_for_each_entry(tmp, head, list) {
|
|
if (cluster->max_power_cost < tmp->max_power_cost)
|
|
break;
|
|
iter = &tmp->list;
|
|
}
|
|
|
|
list_add(&cluster->list, iter);
|
|
}
|
|
|
|
static struct sched_cluster *alloc_new_cluster(const struct cpumask *cpus)
|
|
{
|
|
struct sched_cluster *cluster = NULL;
|
|
|
|
cluster = kzalloc(sizeof(struct sched_cluster), GFP_ATOMIC);
|
|
if (!cluster) {
|
|
__WARN_printf("Cluster allocation failed. Possible bad scheduling\n");
|
|
return NULL;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&cluster->list);
|
|
cluster->max_power_cost = 1;
|
|
cluster->min_power_cost = 1;
|
|
cluster->max_possible_capacity = 1024;
|
|
cluster->efficiency = 1;
|
|
cluster->cur_freq = 1;
|
|
cluster->max_freq = 1;
|
|
cluster->max_mitigated_freq = UINT_MAX;
|
|
cluster->min_freq = 1;
|
|
cluster->max_possible_freq = 1;
|
|
cluster->freq_init_done = false;
|
|
|
|
raw_spin_lock_init(&cluster->load_lock);
|
|
cluster->cpus = *cpus;
|
|
cluster->efficiency = topology_get_cpu_scale(NULL, cpumask_first(cpus));
|
|
|
|
if (cluster->efficiency > max_possible_efficiency)
|
|
max_possible_efficiency = cluster->efficiency;
|
|
if (cluster->efficiency < min_possible_efficiency)
|
|
min_possible_efficiency = cluster->efficiency;
|
|
|
|
return cluster;
|
|
}
|
|
|
|
static void add_cluster(const struct cpumask *cpus, struct list_head *head)
|
|
{
|
|
struct sched_cluster *cluster = alloc_new_cluster(cpus);
|
|
int i;
|
|
|
|
if (!cluster)
|
|
return;
|
|
|
|
for_each_cpu(i, cpus)
|
|
cpu_rq(i)->cluster = cluster;
|
|
|
|
insert_cluster(cluster, head);
|
|
num_sched_clusters++;
|
|
}
|
|
|
|
static void cleanup_clusters(struct list_head *head)
|
|
{
|
|
struct sched_cluster *cluster, *tmp;
|
|
int i;
|
|
|
|
list_for_each_entry_safe(cluster, tmp, head, list) {
|
|
for_each_cpu(i, &cluster->cpus)
|
|
cpu_rq(i)->cluster = &init_cluster;
|
|
|
|
list_del(&cluster->list);
|
|
num_sched_clusters--;
|
|
kfree(cluster);
|
|
}
|
|
}
|
|
|
|
static int compute_max_possible_capacity(struct sched_cluster *cluster)
|
|
{
|
|
int capacity = 1024;
|
|
|
|
capacity *= (1024 * cluster->efficiency) / min_possible_efficiency;
|
|
capacity >>= 10;
|
|
|
|
capacity *= (1024 * cluster->max_possible_freq) / min_max_freq;
|
|
capacity >>= 10;
|
|
|
|
return capacity;
|
|
}
|
|
|
|
unsigned int max_power_cost = 1;
|
|
|
|
static int
|
|
compare_clusters(void *priv, struct list_head *a, struct list_head *b)
|
|
{
|
|
struct sched_cluster *cluster1, *cluster2;
|
|
int ret;
|
|
|
|
cluster1 = container_of(a, struct sched_cluster, list);
|
|
cluster2 = container_of(b, struct sched_cluster, list);
|
|
|
|
/*
|
|
* Don't assume higher capacity means higher power. If the
|
|
* power cost is same, sort the higher capacity cluster before
|
|
* the lower capacity cluster to start placing the tasks
|
|
* on the higher capacity cluster.
|
|
*/
|
|
ret = cluster1->max_power_cost > cluster2->max_power_cost ||
|
|
(cluster1->max_power_cost == cluster2->max_power_cost &&
|
|
cluster1->max_possible_capacity <
|
|
cluster2->max_possible_capacity);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void sort_clusters(void)
|
|
{
|
|
struct sched_cluster *cluster;
|
|
struct list_head new_head;
|
|
unsigned int tmp_max = 1;
|
|
|
|
INIT_LIST_HEAD(&new_head);
|
|
|
|
for_each_sched_cluster(cluster) {
|
|
cluster->max_power_cost = power_cost(cluster_first_cpu(cluster),
|
|
max_task_load());
|
|
cluster->min_power_cost = power_cost(cluster_first_cpu(cluster),
|
|
0);
|
|
|
|
if (cluster->max_power_cost > tmp_max)
|
|
tmp_max = cluster->max_power_cost;
|
|
}
|
|
max_power_cost = tmp_max;
|
|
|
|
move_list(&new_head, &cluster_head, true);
|
|
|
|
list_sort(NULL, &new_head, compare_clusters);
|
|
assign_cluster_ids(&new_head);
|
|
|
|
/*
|
|
* Ensure cluster ids are visible to all CPUs before making
|
|
* cluster_head visible.
|
|
*/
|
|
move_list(&cluster_head, &new_head, false);
|
|
}
|
|
|
|
static void update_all_clusters_stats(void)
|
|
{
|
|
struct sched_cluster *cluster;
|
|
u64 highest_mpc = 0, lowest_mpc = U64_MAX;
|
|
unsigned long flags;
|
|
|
|
acquire_rq_locks_irqsave(cpu_possible_mask, &flags);
|
|
|
|
for_each_sched_cluster(cluster) {
|
|
u64 mpc;
|
|
|
|
mpc = cluster->max_possible_capacity =
|
|
compute_max_possible_capacity(cluster);
|
|
|
|
cluster->exec_scale_factor =
|
|
DIV_ROUND_UP(cluster->efficiency * 1024,
|
|
max_possible_efficiency);
|
|
|
|
if (mpc > highest_mpc)
|
|
highest_mpc = mpc;
|
|
|
|
if (mpc < lowest_mpc)
|
|
lowest_mpc = mpc;
|
|
}
|
|
|
|
max_possible_capacity = highest_mpc;
|
|
min_max_possible_capacity = lowest_mpc;
|
|
walt_update_group_thresholds();
|
|
|
|
release_rq_locks_irqrestore(cpu_possible_mask, &flags);
|
|
}
|
|
|
|
void update_cluster_topology(void)
|
|
{
|
|
struct cpumask cpus = *cpu_possible_mask;
|
|
const struct cpumask *cluster_cpus;
|
|
struct sched_cluster *cluster;
|
|
struct list_head new_head;
|
|
int i;
|
|
|
|
INIT_LIST_HEAD(&new_head);
|
|
|
|
for_each_cpu(i, &cpus) {
|
|
cluster_cpus = topology_possible_sibling_cpumask(i);
|
|
if (cpumask_empty(cluster_cpus)) {
|
|
WARN(1, "WALT: Invalid cpu topology!!");
|
|
cleanup_clusters(&new_head);
|
|
return;
|
|
}
|
|
cpumask_andnot(&cpus, &cpus, cluster_cpus);
|
|
add_cluster(cluster_cpus, &new_head);
|
|
}
|
|
|
|
assign_cluster_ids(&new_head);
|
|
|
|
/*
|
|
* Ensure cluster ids are visible to all CPUs before making
|
|
* cluster_head visible.
|
|
*/
|
|
move_list(&cluster_head, &new_head, false);
|
|
update_all_clusters_stats();
|
|
|
|
for_each_sched_cluster(cluster) {
|
|
if (cpumask_weight(&cluster->cpus) == 1)
|
|
cpumask_or(&asym_cap_sibling_cpus,
|
|
&asym_cap_sibling_cpus, &cluster->cpus);
|
|
}
|
|
|
|
if (cpumask_weight(&asym_cap_sibling_cpus) == 1)
|
|
cpumask_clear(&asym_cap_sibling_cpus);
|
|
}
|
|
|
|
static unsigned long cpu_max_table_freq[NR_CPUS];
|
|
|
|
static int cpufreq_notifier_policy(struct notifier_block *nb,
|
|
unsigned long val, void *data)
|
|
{
|
|
struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
|
|
struct sched_cluster *cluster = NULL;
|
|
struct cpumask policy_cluster = *policy->related_cpus;
|
|
unsigned int orig_max_freq = 0;
|
|
int i, j, update_capacity = 0;
|
|
|
|
if (val != CPUFREQ_NOTIFY)
|
|
return 0;
|
|
|
|
max_possible_freq = max(max_possible_freq, policy->cpuinfo.max_freq);
|
|
if (min_max_freq == 1)
|
|
min_max_freq = UINT_MAX;
|
|
min_max_freq = min(min_max_freq, policy->cpuinfo.max_freq);
|
|
SCHED_BUG_ON(!min_max_freq);
|
|
SCHED_BUG_ON(!policy->max);
|
|
|
|
for_each_cpu(i, &policy_cluster)
|
|
cpu_max_table_freq[i] = policy->cpuinfo.max_freq;
|
|
|
|
for_each_cpu(i, &policy_cluster) {
|
|
cluster = cpu_rq(i)->cluster;
|
|
cpumask_andnot(&policy_cluster, &policy_cluster,
|
|
&cluster->cpus);
|
|
|
|
orig_max_freq = cluster->max_freq;
|
|
cluster->min_freq = policy->min;
|
|
cluster->max_freq = policy->max;
|
|
cluster->cur_freq = policy->cur;
|
|
|
|
if (!cluster->freq_init_done) {
|
|
mutex_lock(&cluster_lock);
|
|
for_each_cpu(j, &cluster->cpus)
|
|
cpumask_copy(&cpu_rq(j)->freq_domain_cpumask,
|
|
policy->related_cpus);
|
|
cluster->max_possible_freq = policy->cpuinfo.max_freq;
|
|
cluster->max_possible_capacity =
|
|
compute_max_possible_capacity(cluster);
|
|
cluster->freq_init_done = true;
|
|
|
|
sort_clusters();
|
|
update_all_clusters_stats();
|
|
mutex_unlock(&cluster_lock);
|
|
continue;
|
|
}
|
|
|
|
update_capacity += (orig_max_freq != cluster->max_freq);
|
|
}
|
|
|
|
if (update_capacity)
|
|
walt_cpus_capacity_changed(policy->related_cpus);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block notifier_policy_block = {
|
|
.notifier_call = cpufreq_notifier_policy
|
|
};
|
|
|
|
static int cpufreq_notifier_trans(struct notifier_block *nb,
|
|
unsigned long val, void *data)
|
|
{
|
|
struct cpufreq_freqs *freq = (struct cpufreq_freqs *)data;
|
|
unsigned int cpu = freq->cpu, new_freq = freq->new;
|
|
unsigned long flags;
|
|
struct sched_cluster *cluster;
|
|
struct cpumask policy_cpus = cpu_rq(cpu)->freq_domain_cpumask;
|
|
int i, j;
|
|
|
|
if (use_cycle_counter)
|
|
return NOTIFY_DONE;
|
|
|
|
if (val != CPUFREQ_POSTCHANGE)
|
|
return NOTIFY_DONE;
|
|
|
|
if (cpu_cur_freq(cpu) == new_freq)
|
|
return NOTIFY_OK;
|
|
|
|
for_each_cpu(i, &policy_cpus) {
|
|
cluster = cpu_rq(i)->cluster;
|
|
|
|
for_each_cpu(j, &cluster->cpus) {
|
|
struct rq *rq = cpu_rq(j);
|
|
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
update_task_ravg(rq->curr, rq, TASK_UPDATE,
|
|
sched_ktime_clock(), 0);
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
}
|
|
|
|
cluster->cur_freq = new_freq;
|
|
cpumask_andnot(&policy_cpus, &policy_cpus, &cluster->cpus);
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block notifier_trans_block = {
|
|
.notifier_call = cpufreq_notifier_trans
|
|
};
|
|
|
|
static int register_walt_callback(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = cpufreq_register_notifier(¬ifier_policy_block,
|
|
CPUFREQ_POLICY_NOTIFIER);
|
|
if (!ret)
|
|
ret = cpufreq_register_notifier(¬ifier_trans_block,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
|
|
return ret;
|
|
}
|
|
/*
|
|
* cpufreq callbacks can be registered at core_initcall or later time.
|
|
* Any registration done prior to that is "forgotten" by cpufreq. See
|
|
* initialization of variable init_cpufreq_transition_notifier_list_called
|
|
* for further information.
|
|
*/
|
|
core_initcall(register_walt_callback);
|
|
|
|
int register_cpu_cycle_counter_cb(struct cpu_cycle_counter_cb *cb)
|
|
{
|
|
unsigned long flags;
|
|
|
|
mutex_lock(&cluster_lock);
|
|
if (!cb->get_cpu_cycle_counter) {
|
|
mutex_unlock(&cluster_lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
acquire_rq_locks_irqsave(cpu_possible_mask, &flags);
|
|
cpu_cycle_counter_cb = *cb;
|
|
use_cycle_counter = true;
|
|
release_rq_locks_irqrestore(cpu_possible_mask, &flags);
|
|
|
|
mutex_unlock(&cluster_lock);
|
|
|
|
cpufreq_unregister_notifier(¬ifier_trans_block,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
return 0;
|
|
}
|
|
|
|
static void transfer_busy_time(struct rq *rq, struct related_thread_group *grp,
|
|
struct task_struct *p, int event);
|
|
|
|
/*
|
|
* Enable colocation and frequency aggregation for all threads in a process.
|
|
* The children inherits the group id from the parent.
|
|
*/
|
|
unsigned int __read_mostly sysctl_sched_coloc_downmigrate_ns;
|
|
|
|
struct related_thread_group *related_thread_groups[MAX_NUM_CGROUP_COLOC_ID];
|
|
static LIST_HEAD(active_related_thread_groups);
|
|
DEFINE_RWLOCK(related_thread_group_lock);
|
|
|
|
/*
|
|
* Task groups whose aggregate demand on a cpu is more than
|
|
* sched_group_upmigrate need to be up-migrated if possible.
|
|
*/
|
|
unsigned int __read_mostly sched_group_upmigrate = 20000000;
|
|
unsigned int __read_mostly sysctl_sched_group_upmigrate_pct = 100;
|
|
|
|
/*
|
|
* Task groups, once up-migrated, will need to drop their aggregate
|
|
* demand to less than sched_group_downmigrate before they are "down"
|
|
* migrated.
|
|
*/
|
|
unsigned int __read_mostly sched_group_downmigrate = 19000000;
|
|
unsigned int __read_mostly sysctl_sched_group_downmigrate_pct = 95;
|
|
|
|
static inline
|
|
void update_best_cluster(struct related_thread_group *grp,
|
|
u64 demand, bool boost)
|
|
{
|
|
if (boost) {
|
|
/*
|
|
* since we are in boost, we can keep grp on min, the boosts
|
|
* will ensure tasks get to bigs
|
|
*/
|
|
grp->skip_min = false;
|
|
return;
|
|
}
|
|
|
|
if (is_suh_max())
|
|
demand = sched_group_upmigrate;
|
|
|
|
if (!grp->skip_min) {
|
|
if (demand >= sched_group_upmigrate) {
|
|
grp->skip_min = true;
|
|
}
|
|
return;
|
|
}
|
|
if (demand < sched_group_downmigrate) {
|
|
if (!sysctl_sched_coloc_downmigrate_ns) {
|
|
grp->skip_min = false;
|
|
return;
|
|
}
|
|
if (!grp->downmigrate_ts) {
|
|
grp->downmigrate_ts = grp->last_update;
|
|
return;
|
|
}
|
|
if (grp->last_update - grp->downmigrate_ts >
|
|
sysctl_sched_coloc_downmigrate_ns) {
|
|
grp->downmigrate_ts = 0;
|
|
grp->skip_min = false;
|
|
}
|
|
} else if (grp->downmigrate_ts)
|
|
grp->downmigrate_ts = 0;
|
|
}
|
|
|
|
int preferred_cluster(struct sched_cluster *cluster, struct task_struct *p)
|
|
{
|
|
struct related_thread_group *grp;
|
|
int rc = -1;
|
|
|
|
rcu_read_lock();
|
|
|
|
grp = task_related_thread_group(p);
|
|
if (grp)
|
|
rc = (sched_cluster[(int)grp->skip_min] == cluster ||
|
|
cpumask_subset(&cluster->cpus, &asym_cap_sibling_cpus));
|
|
|
|
rcu_read_unlock();
|
|
return rc;
|
|
}
|
|
|
|
static void _set_preferred_cluster(struct related_thread_group *grp)
|
|
{
|
|
struct task_struct *p;
|
|
u64 combined_demand = 0;
|
|
bool group_boost = false;
|
|
u64 wallclock;
|
|
bool prev_skip_min = grp->skip_min;
|
|
|
|
if (list_empty(&grp->tasks)) {
|
|
grp->skip_min = false;
|
|
goto out;
|
|
}
|
|
|
|
if (!hmp_capable()) {
|
|
grp->skip_min = false;
|
|
goto out;
|
|
}
|
|
|
|
wallclock = sched_ktime_clock();
|
|
|
|
/*
|
|
* wakeup of two or more related tasks could race with each other and
|
|
* could result in multiple calls to _set_preferred_cluster being issued
|
|
* at same time. Avoid overhead in such cases of rechecking preferred
|
|
* cluster
|
|
*/
|
|
if (wallclock - grp->last_update < sched_ravg_window / 10)
|
|
return;
|
|
|
|
list_for_each_entry(p, &grp->tasks, grp_list) {
|
|
if (task_boost_policy(p) == SCHED_BOOST_ON_BIG) {
|
|
group_boost = true;
|
|
break;
|
|
}
|
|
|
|
if (p->ravg.mark_start < wallclock -
|
|
(sched_ravg_window * sched_ravg_hist_size))
|
|
continue;
|
|
|
|
combined_demand += p->ravg.coloc_demand;
|
|
if (!trace_sched_set_preferred_cluster_enabled()) {
|
|
if (combined_demand > sched_group_upmigrate)
|
|
break;
|
|
}
|
|
}
|
|
|
|
grp->last_update = wallclock;
|
|
update_best_cluster(grp, combined_demand, group_boost);
|
|
trace_sched_set_preferred_cluster(grp, combined_demand);
|
|
out:
|
|
if (grp->id == DEFAULT_CGROUP_COLOC_ID
|
|
&& grp->skip_min != prev_skip_min) {
|
|
if (grp->skip_min)
|
|
grp->start_ts = sched_clock();
|
|
sched_update_hyst_times();
|
|
}
|
|
}
|
|
|
|
void set_preferred_cluster(struct related_thread_group *grp)
|
|
{
|
|
raw_spin_lock(&grp->lock);
|
|
_set_preferred_cluster(grp);
|
|
raw_spin_unlock(&grp->lock);
|
|
}
|
|
|
|
int update_preferred_cluster(struct related_thread_group *grp,
|
|
struct task_struct *p, u32 old_load, bool from_tick)
|
|
{
|
|
u32 new_load = task_load(p);
|
|
|
|
if (!grp)
|
|
return 0;
|
|
|
|
if (unlikely(from_tick && is_suh_max()))
|
|
return 1;
|
|
|
|
/*
|
|
* Update if task's load has changed significantly or a complete window
|
|
* has passed since we last updated preference
|
|
*/
|
|
if (abs(new_load - old_load) > sched_ravg_window / 4 ||
|
|
sched_ktime_clock() - grp->last_update > sched_ravg_window)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define ADD_TASK 0
|
|
#define REM_TASK 1
|
|
|
|
static inline struct related_thread_group*
|
|
lookup_related_thread_group(unsigned int group_id)
|
|
{
|
|
return related_thread_groups[group_id];
|
|
}
|
|
|
|
int alloc_related_thread_groups(void)
|
|
{
|
|
int i, ret;
|
|
struct related_thread_group *grp;
|
|
|
|
/* groupd_id = 0 is invalid as it's special id to remove group. */
|
|
for (i = 1; i < MAX_NUM_CGROUP_COLOC_ID; i++) {
|
|
grp = kzalloc(sizeof(*grp), GFP_NOWAIT);
|
|
if (!grp) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
grp->id = i;
|
|
INIT_LIST_HEAD(&grp->tasks);
|
|
INIT_LIST_HEAD(&grp->list);
|
|
raw_spin_lock_init(&grp->lock);
|
|
|
|
related_thread_groups[i] = grp;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
for (i = 1; i < MAX_NUM_CGROUP_COLOC_ID; i++) {
|
|
grp = lookup_related_thread_group(i);
|
|
if (grp) {
|
|
kfree(grp);
|
|
related_thread_groups[i] = NULL;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void remove_task_from_group(struct task_struct *p)
|
|
{
|
|
struct related_thread_group *grp = p->grp;
|
|
struct rq *rq;
|
|
int empty_group = 1;
|
|
struct rq_flags rf;
|
|
|
|
raw_spin_lock(&grp->lock);
|
|
|
|
rq = __task_rq_lock(p, &rf);
|
|
transfer_busy_time(rq, p->grp, p, REM_TASK);
|
|
list_del_init(&p->grp_list);
|
|
rcu_assign_pointer(p->grp, NULL);
|
|
__task_rq_unlock(rq, &rf);
|
|
|
|
|
|
if (!list_empty(&grp->tasks)) {
|
|
empty_group = 0;
|
|
_set_preferred_cluster(grp);
|
|
}
|
|
|
|
raw_spin_unlock(&grp->lock);
|
|
|
|
/* Reserved groups cannot be destroyed */
|
|
if (empty_group && grp->id != DEFAULT_CGROUP_COLOC_ID)
|
|
/*
|
|
* We test whether grp->list is attached with list_empty()
|
|
* hence re-init the list after deletion.
|
|
*/
|
|
list_del_init(&grp->list);
|
|
}
|
|
|
|
static int
|
|
add_task_to_group(struct task_struct *p, struct related_thread_group *grp)
|
|
{
|
|
struct rq *rq;
|
|
struct rq_flags rf;
|
|
|
|
raw_spin_lock(&grp->lock);
|
|
|
|
/*
|
|
* Change p->grp under rq->lock. Will prevent races with read-side
|
|
* reference of p->grp in various hot-paths
|
|
*/
|
|
rq = __task_rq_lock(p, &rf);
|
|
transfer_busy_time(rq, grp, p, ADD_TASK);
|
|
list_add(&p->grp_list, &grp->tasks);
|
|
rcu_assign_pointer(p->grp, grp);
|
|
__task_rq_unlock(rq, &rf);
|
|
|
|
_set_preferred_cluster(grp);
|
|
|
|
raw_spin_unlock(&grp->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void add_new_task_to_grp(struct task_struct *new)
|
|
{
|
|
unsigned long flags;
|
|
struct related_thread_group *grp;
|
|
|
|
/*
|
|
* If the task does not belong to colocated schedtune
|
|
* cgroup, nothing to do. We are checking this without
|
|
* lock. Even if there is a race, it will be added
|
|
* to the co-located cgroup via cgroup attach.
|
|
*/
|
|
if (!schedtune_task_colocated(new))
|
|
return;
|
|
|
|
grp = lookup_related_thread_group(DEFAULT_CGROUP_COLOC_ID);
|
|
write_lock_irqsave(&related_thread_group_lock, flags);
|
|
|
|
/*
|
|
* It's possible that someone already added the new task to the
|
|
* group. or it might have taken out from the colocated schedtune
|
|
* cgroup. check these conditions under lock.
|
|
*/
|
|
if (!schedtune_task_colocated(new) || new->grp) {
|
|
write_unlock_irqrestore(&related_thread_group_lock, flags);
|
|
return;
|
|
}
|
|
|
|
raw_spin_lock(&grp->lock);
|
|
|
|
rcu_assign_pointer(new->grp, grp);
|
|
list_add(&new->grp_list, &grp->tasks);
|
|
|
|
raw_spin_unlock(&grp->lock);
|
|
write_unlock_irqrestore(&related_thread_group_lock, flags);
|
|
}
|
|
|
|
static int __sched_set_group_id(struct task_struct *p, unsigned int group_id)
|
|
{
|
|
int rc = 0;
|
|
unsigned long flags;
|
|
struct related_thread_group *grp = NULL;
|
|
|
|
if (group_id >= MAX_NUM_CGROUP_COLOC_ID)
|
|
return -EINVAL;
|
|
|
|
raw_spin_lock_irqsave(&p->pi_lock, flags);
|
|
write_lock(&related_thread_group_lock);
|
|
|
|
/* Switching from one group to another directly is not permitted */
|
|
if ((current != p && p->flags & PF_EXITING) ||
|
|
(!p->grp && !group_id) ||
|
|
(p->grp && group_id))
|
|
goto done;
|
|
|
|
if (!group_id) {
|
|
remove_task_from_group(p);
|
|
goto done;
|
|
}
|
|
|
|
grp = lookup_related_thread_group(group_id);
|
|
if (list_empty(&grp->list))
|
|
list_add(&grp->list, &active_related_thread_groups);
|
|
|
|
rc = add_task_to_group(p, grp);
|
|
done:
|
|
write_unlock(&related_thread_group_lock);
|
|
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int sched_set_group_id(struct task_struct *p, unsigned int group_id)
|
|
{
|
|
/* DEFAULT_CGROUP_COLOC_ID is a reserved id */
|
|
if (group_id == DEFAULT_CGROUP_COLOC_ID)
|
|
return -EINVAL;
|
|
|
|
return __sched_set_group_id(p, group_id);
|
|
}
|
|
|
|
unsigned int sched_get_group_id(struct task_struct *p)
|
|
{
|
|
unsigned int group_id;
|
|
struct related_thread_group *grp;
|
|
|
|
rcu_read_lock();
|
|
grp = task_related_thread_group(p);
|
|
group_id = grp ? grp->id : 0;
|
|
rcu_read_unlock();
|
|
|
|
return group_id;
|
|
}
|
|
|
|
#if defined(CONFIG_SCHED_TUNE)
|
|
/*
|
|
* We create a default colocation group at boot. There is no need to
|
|
* synchronize tasks between cgroups at creation time because the
|
|
* correct cgroup hierarchy is not available at boot. Therefore cgroup
|
|
* colocation is turned off by default even though the colocation group
|
|
* itself has been allocated. Furthermore this colocation group cannot
|
|
* be destroyted once it has been created. All of this has been as part
|
|
* of runtime optimizations.
|
|
*
|
|
* The job of synchronizing tasks to the colocation group is done when
|
|
* the colocation flag in the cgroup is turned on.
|
|
*/
|
|
static int __init create_default_coloc_group(void)
|
|
{
|
|
struct related_thread_group *grp = NULL;
|
|
unsigned long flags;
|
|
|
|
grp = lookup_related_thread_group(DEFAULT_CGROUP_COLOC_ID);
|
|
write_lock_irqsave(&related_thread_group_lock, flags);
|
|
list_add(&grp->list, &active_related_thread_groups);
|
|
write_unlock_irqrestore(&related_thread_group_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
late_initcall(create_default_coloc_group);
|
|
|
|
int sync_cgroup_colocation(struct task_struct *p, bool insert)
|
|
{
|
|
unsigned int grp_id = insert ? DEFAULT_CGROUP_COLOC_ID : 0;
|
|
|
|
return __sched_set_group_id(p, grp_id);
|
|
}
|
|
#endif
|
|
|
|
static bool is_cluster_hosting_top_app(struct sched_cluster *cluster)
|
|
{
|
|
struct related_thread_group *grp;
|
|
bool grp_on_min;
|
|
|
|
grp = lookup_related_thread_group(DEFAULT_CGROUP_COLOC_ID);
|
|
|
|
if (!grp)
|
|
return false;
|
|
|
|
grp_on_min = !grp->skip_min &&
|
|
(sched_boost_policy() != SCHED_BOOST_ON_BIG);
|
|
|
|
return (is_min_capacity_cluster(cluster) == grp_on_min);
|
|
}
|
|
|
|
static unsigned long max_cap[NR_CPUS];
|
|
static unsigned long thermal_cap_cpu[NR_CPUS];
|
|
|
|
unsigned long thermal_cap(int cpu)
|
|
{
|
|
return thermal_cap_cpu[cpu] ?: SCHED_CAPACITY_SCALE;
|
|
}
|
|
|
|
unsigned long do_thermal_cap(int cpu, unsigned long thermal_max_freq)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
#ifdef CONFIG_ENERGY_MODEL
|
|
int nr_cap_states;
|
|
struct root_domain *rd = rq->rd;
|
|
struct perf_domain *pd;
|
|
unsigned long freq, scale_cpu;
|
|
|
|
if (!max_cap[cpu]) {
|
|
rcu_read_lock();
|
|
pd = rcu_dereference(rd->pd);
|
|
|
|
if (!pd || !pd->em_pd || !pd->em_pd->table) {
|
|
rcu_read_unlock();
|
|
return rq->cpu_capacity_orig;
|
|
}
|
|
|
|
nr_cap_states = em_pd_nr_cap_states(pd->em_pd);
|
|
scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
|
|
freq = pd->em_pd->table[nr_cap_states - 1].frequency;
|
|
max_cap[cpu] = DIV_ROUND_UP(scale_cpu * freq,
|
|
cpu_max_table_freq[cpu]);
|
|
rcu_read_unlock();
|
|
}
|
|
#endif
|
|
|
|
if (cpu_max_table_freq[cpu])
|
|
return div64_ul(thermal_max_freq * max_cap[cpu],
|
|
cpu_max_table_freq[cpu]);
|
|
else
|
|
return rq->cpu_capacity_orig;
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(cpu_freq_min_max_lock);
|
|
void sched_update_cpu_freq_min_max(const cpumask_t *cpus, u32 fmin, u32 fmax)
|
|
{
|
|
struct cpumask cpumask;
|
|
struct sched_cluster *cluster;
|
|
int i, update_capacity = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cpu_freq_min_max_lock, flags);
|
|
cpumask_copy(&cpumask, cpus);
|
|
|
|
for_each_cpu(i, &cpumask)
|
|
thermal_cap_cpu[i] = do_thermal_cap(i, fmax);
|
|
|
|
for_each_cpu(i, &cpumask) {
|
|
cluster = cpu_rq(i)->cluster;
|
|
cpumask_andnot(&cpumask, &cpumask, &cluster->cpus);
|
|
update_capacity += (cluster->max_mitigated_freq != fmax);
|
|
cluster->max_mitigated_freq = fmax;
|
|
}
|
|
spin_unlock_irqrestore(&cpu_freq_min_max_lock, flags);
|
|
|
|
if (update_capacity)
|
|
walt_cpus_capacity_changed(cpus);
|
|
}
|
|
|
|
void note_task_waking(struct task_struct *p, u64 wallclock)
|
|
{
|
|
p->last_wake_ts = wallclock;
|
|
}
|
|
|
|
/*
|
|
* Task's cpu usage is accounted in:
|
|
* rq->curr/prev_runnable_sum, when its ->grp is NULL
|
|
* grp->cpu_time[cpu]->curr/prev_runnable_sum, when its ->grp is !NULL
|
|
*
|
|
* Transfer task's cpu usage between those counters when transitioning between
|
|
* groups
|
|
*/
|
|
static void transfer_busy_time(struct rq *rq, struct related_thread_group *grp,
|
|
struct task_struct *p, int event)
|
|
{
|
|
u64 wallclock;
|
|
struct group_cpu_time *cpu_time;
|
|
u64 *src_curr_runnable_sum, *dst_curr_runnable_sum;
|
|
u64 *src_prev_runnable_sum, *dst_prev_runnable_sum;
|
|
u64 *src_nt_curr_runnable_sum, *dst_nt_curr_runnable_sum;
|
|
u64 *src_nt_prev_runnable_sum, *dst_nt_prev_runnable_sum;
|
|
int migrate_type;
|
|
int cpu = cpu_of(rq);
|
|
bool new_task;
|
|
int i;
|
|
|
|
wallclock = sched_ktime_clock();
|
|
|
|
update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
|
|
update_task_ravg(p, rq, TASK_UPDATE, wallclock, 0);
|
|
new_task = is_new_task(p);
|
|
|
|
cpu_time = &rq->grp_time;
|
|
if (event == ADD_TASK) {
|
|
migrate_type = RQ_TO_GROUP;
|
|
|
|
src_curr_runnable_sum = &rq->curr_runnable_sum;
|
|
dst_curr_runnable_sum = &cpu_time->curr_runnable_sum;
|
|
src_prev_runnable_sum = &rq->prev_runnable_sum;
|
|
dst_prev_runnable_sum = &cpu_time->prev_runnable_sum;
|
|
|
|
src_nt_curr_runnable_sum = &rq->nt_curr_runnable_sum;
|
|
dst_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
|
|
src_nt_prev_runnable_sum = &rq->nt_prev_runnable_sum;
|
|
dst_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
|
|
|
|
if (*src_curr_runnable_sum < p->ravg.curr_window_cpu[cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU=%d event=%d src_crs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event, *src_curr_runnable_sum,
|
|
p->ravg.curr_window_cpu[cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_curr_runnable_sum -= p->ravg.curr_window_cpu[cpu];
|
|
|
|
if (*src_prev_runnable_sum < p->ravg.prev_window_cpu[cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU=%d event=%d src_prs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event, *src_prev_runnable_sum,
|
|
p->ravg.prev_window_cpu[cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_prev_runnable_sum -= p->ravg.prev_window_cpu[cpu];
|
|
|
|
if (new_task) {
|
|
if (*src_nt_curr_runnable_sum <
|
|
p->ravg.curr_window_cpu[cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU=%d event=%d src_nt_crs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event,
|
|
*src_nt_curr_runnable_sum,
|
|
p->ravg.curr_window_cpu[cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_nt_curr_runnable_sum -=
|
|
p->ravg.curr_window_cpu[cpu];
|
|
|
|
if (*src_nt_prev_runnable_sum <
|
|
p->ravg.prev_window_cpu[cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU=%d event=%d src_nt_prs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event,
|
|
*src_nt_prev_runnable_sum,
|
|
p->ravg.prev_window_cpu[cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_nt_prev_runnable_sum -=
|
|
p->ravg.prev_window_cpu[cpu];
|
|
}
|
|
|
|
update_cluster_load_subtractions(p, cpu,
|
|
rq->window_start, new_task);
|
|
|
|
} else {
|
|
migrate_type = GROUP_TO_RQ;
|
|
|
|
src_curr_runnable_sum = &cpu_time->curr_runnable_sum;
|
|
dst_curr_runnable_sum = &rq->curr_runnable_sum;
|
|
src_prev_runnable_sum = &cpu_time->prev_runnable_sum;
|
|
dst_prev_runnable_sum = &rq->prev_runnable_sum;
|
|
|
|
src_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
|
|
dst_nt_curr_runnable_sum = &rq->nt_curr_runnable_sum;
|
|
src_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
|
|
dst_nt_prev_runnable_sum = &rq->nt_prev_runnable_sum;
|
|
|
|
if (*src_curr_runnable_sum < p->ravg.curr_window) {
|
|
printk_deferred("WALT-UG pid=%u CPU=%d event=%d src_crs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event, *src_curr_runnable_sum,
|
|
p->ravg.curr_window);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_curr_runnable_sum -= p->ravg.curr_window;
|
|
|
|
if (*src_prev_runnable_sum < p->ravg.prev_window) {
|
|
printk_deferred("WALT-BUG pid=%u CPU=%d event=%d src_prs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event, *src_prev_runnable_sum,
|
|
p->ravg.prev_window);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_prev_runnable_sum -= p->ravg.prev_window;
|
|
|
|
if (new_task) {
|
|
if (*src_nt_curr_runnable_sum < p->ravg.curr_window) {
|
|
printk_deferred("WALT-BUG pid=%u CPU=%d event=%d src_nt_crs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event,
|
|
*src_nt_curr_runnable_sum,
|
|
p->ravg.curr_window);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_nt_curr_runnable_sum -= p->ravg.curr_window;
|
|
|
|
if (*src_nt_prev_runnable_sum < p->ravg.prev_window) {
|
|
printk_deferred("WALT-BUG pid=%u CPU=%d event=%d src_nt_prs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event,
|
|
*src_nt_prev_runnable_sum,
|
|
p->ravg.prev_window);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_nt_prev_runnable_sum -= p->ravg.prev_window;
|
|
}
|
|
|
|
/*
|
|
* Need to reset curr/prev windows for all CPUs, not just the
|
|
* ones in the same cluster. Since inter cluster migrations
|
|
* did not result in the appropriate book keeping, the values
|
|
* per CPU would be inaccurate.
|
|
*/
|
|
for_each_possible_cpu(i) {
|
|
p->ravg.curr_window_cpu[i] = 0;
|
|
p->ravg.prev_window_cpu[i] = 0;
|
|
}
|
|
}
|
|
|
|
*dst_curr_runnable_sum += p->ravg.curr_window;
|
|
*dst_prev_runnable_sum += p->ravg.prev_window;
|
|
if (new_task) {
|
|
*dst_nt_curr_runnable_sum += p->ravg.curr_window;
|
|
*dst_nt_prev_runnable_sum += p->ravg.prev_window;
|
|
}
|
|
|
|
/*
|
|
* When a task enter or exits a group, it's curr and prev windows are
|
|
* moved to a single CPU. This behavior might be sub-optimal in the
|
|
* exit case, however, it saves us the overhead of handling inter
|
|
* cluster migration fixups while the task is part of a related group.
|
|
*/
|
|
p->ravg.curr_window_cpu[cpu] = p->ravg.curr_window;
|
|
p->ravg.prev_window_cpu[cpu] = p->ravg.prev_window;
|
|
|
|
trace_sched_migration_update_sum(p, migrate_type, rq);
|
|
}
|
|
|
|
bool is_rtgb_active(void)
|
|
{
|
|
struct related_thread_group *grp;
|
|
|
|
grp = lookup_related_thread_group(DEFAULT_CGROUP_COLOC_ID);
|
|
return grp && grp->skip_min;
|
|
}
|
|
|
|
u64 get_rtgb_active_time(void)
|
|
{
|
|
struct related_thread_group *grp;
|
|
u64 now = sched_clock();
|
|
|
|
grp = lookup_related_thread_group(DEFAULT_CGROUP_COLOC_ID);
|
|
|
|
if (grp && grp->skip_min && grp->start_ts)
|
|
return now - grp->start_ts;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void walt_init_window_dep(void);
|
|
static void walt_tunables_fixup(void)
|
|
{
|
|
walt_update_group_thresholds();
|
|
walt_init_window_dep();
|
|
}
|
|
|
|
/*
|
|
* Runs in hard-irq context. This should ideally run just after the latest
|
|
* window roll-over.
|
|
*/
|
|
void walt_irq_work(struct irq_work *irq_work)
|
|
{
|
|
struct sched_cluster *cluster;
|
|
struct rq *rq;
|
|
int cpu;
|
|
u64 wc;
|
|
bool is_migration = false, is_asym_migration = false;
|
|
u64 total_grp_load = 0, min_cluster_grp_load = 0;
|
|
int level = 0;
|
|
unsigned long flags;
|
|
|
|
/* Am I the window rollover work or the migration work? */
|
|
if (irq_work == &walt_migration_irq_work)
|
|
is_migration = true;
|
|
|
|
for_each_cpu(cpu, cpu_possible_mask) {
|
|
if (level == 0)
|
|
raw_spin_lock(&cpu_rq(cpu)->lock);
|
|
else
|
|
raw_spin_lock_nested(&cpu_rq(cpu)->lock, level);
|
|
level++;
|
|
}
|
|
|
|
wc = sched_ktime_clock();
|
|
walt_load_reported_window = atomic64_read(&walt_irq_work_lastq_ws);
|
|
for_each_sched_cluster(cluster) {
|
|
u64 aggr_grp_load = 0;
|
|
|
|
raw_spin_lock(&cluster->load_lock);
|
|
|
|
for_each_cpu(cpu, &cluster->cpus) {
|
|
rq = cpu_rq(cpu);
|
|
if (rq->curr) {
|
|
update_task_ravg(rq->curr, rq,
|
|
TASK_UPDATE, wc, 0);
|
|
account_load_subtractions(rq);
|
|
aggr_grp_load += rq->grp_time.prev_runnable_sum;
|
|
}
|
|
if (is_migration && rq->notif_pending &&
|
|
cpumask_test_cpu(cpu, &asym_cap_sibling_cpus)) {
|
|
is_asym_migration = true;
|
|
rq->notif_pending = false;
|
|
}
|
|
}
|
|
|
|
cluster->aggr_grp_load = aggr_grp_load;
|
|
total_grp_load += aggr_grp_load;
|
|
|
|
if (is_min_capacity_cluster(cluster))
|
|
min_cluster_grp_load = aggr_grp_load;
|
|
raw_spin_unlock(&cluster->load_lock);
|
|
}
|
|
|
|
if (total_grp_load) {
|
|
if (cpumask_weight(&asym_cap_sibling_cpus)) {
|
|
u64 big_grp_load =
|
|
total_grp_load - min_cluster_grp_load;
|
|
|
|
for_each_cpu(cpu, &asym_cap_sibling_cpus)
|
|
cpu_cluster(cpu)->aggr_grp_load = big_grp_load;
|
|
}
|
|
rtgb_active = is_rtgb_active();
|
|
} else {
|
|
rtgb_active = false;
|
|
}
|
|
|
|
if (!is_migration && sysctl_sched_user_hint && time_after(jiffies,
|
|
sched_user_hint_reset_time))
|
|
sysctl_sched_user_hint = 0;
|
|
|
|
for_each_sched_cluster(cluster) {
|
|
cpumask_t cluster_online_cpus;
|
|
unsigned int num_cpus, i = 1;
|
|
|
|
cpumask_and(&cluster_online_cpus, &cluster->cpus,
|
|
cpu_online_mask);
|
|
num_cpus = cpumask_weight(&cluster_online_cpus);
|
|
for_each_cpu(cpu, &cluster_online_cpus) {
|
|
int flag = SCHED_CPUFREQ_WALT;
|
|
|
|
rq = cpu_rq(cpu);
|
|
|
|
if (is_migration) {
|
|
if (rq->notif_pending) {
|
|
flag |= SCHED_CPUFREQ_INTERCLUSTER_MIG;
|
|
rq->notif_pending = false;
|
|
}
|
|
}
|
|
|
|
if (is_asym_migration && cpumask_test_cpu(cpu,
|
|
&asym_cap_sibling_cpus))
|
|
flag |= SCHED_CPUFREQ_INTERCLUSTER_MIG;
|
|
|
|
if (i == num_cpus)
|
|
cpufreq_update_util(cpu_rq(cpu), flag);
|
|
else
|
|
cpufreq_update_util(cpu_rq(cpu), flag |
|
|
SCHED_CPUFREQ_CONTINUE);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the window change request is in pending, good place to
|
|
* change sched_ravg_window since all rq locks are acquired.
|
|
*
|
|
* If the current window roll over is delayed such that the
|
|
* mark_start (current wallclock with which roll over is done)
|
|
* of the current task went past the window start with the
|
|
* updated new window size, delay the update to the next
|
|
* window roll over. Otherwise the CPU counters (prs and crs) are
|
|
* not rolled over properly as mark_start > window_start.
|
|
*/
|
|
if (!is_migration) {
|
|
spin_lock_irqsave(&sched_ravg_window_lock, flags);
|
|
|
|
if ((sched_ravg_window != new_sched_ravg_window) &&
|
|
(wc < this_rq()->window_start + new_sched_ravg_window)) {
|
|
sched_ravg_window_change_time = sched_ktime_clock();
|
|
printk_deferred("ALERT: changing window size from %u to %u at %lu\n",
|
|
sched_ravg_window,
|
|
new_sched_ravg_window,
|
|
sched_ravg_window_change_time);
|
|
sched_ravg_window = new_sched_ravg_window;
|
|
walt_tunables_fixup();
|
|
}
|
|
spin_unlock_irqrestore(&sched_ravg_window_lock, flags);
|
|
}
|
|
|
|
for_each_cpu(cpu, cpu_possible_mask)
|
|
raw_spin_unlock(&cpu_rq(cpu)->lock);
|
|
|
|
if (!is_migration)
|
|
core_ctl_check(this_rq()->window_start);
|
|
}
|
|
|
|
void walt_rotation_checkpoint(int nr_big)
|
|
{
|
|
if (!hmp_capable())
|
|
return;
|
|
|
|
if (!sysctl_sched_walt_rotate_big_tasks || sched_boost() != NO_BOOST) {
|
|
walt_rotation_enabled = 0;
|
|
return;
|
|
}
|
|
|
|
walt_rotation_enabled = nr_big >= num_possible_cpus();
|
|
}
|
|
|
|
void walt_fill_ta_data(struct core_ctl_notif_data *data)
|
|
{
|
|
struct related_thread_group *grp;
|
|
unsigned long flags;
|
|
u64 total_demand = 0, wallclock;
|
|
struct task_struct *p;
|
|
int min_cap_cpu, scale = 1024;
|
|
struct sched_cluster *cluster;
|
|
int i = 0;
|
|
|
|
grp = lookup_related_thread_group(DEFAULT_CGROUP_COLOC_ID);
|
|
|
|
raw_spin_lock_irqsave(&grp->lock, flags);
|
|
if (list_empty(&grp->tasks)) {
|
|
raw_spin_unlock_irqrestore(&grp->lock, flags);
|
|
goto fill_util;
|
|
}
|
|
|
|
wallclock = sched_ktime_clock();
|
|
|
|
list_for_each_entry(p, &grp->tasks, grp_list) {
|
|
if (p->ravg.mark_start < wallclock -
|
|
(sched_ravg_window * sched_ravg_hist_size))
|
|
continue;
|
|
|
|
total_demand += p->ravg.coloc_demand;
|
|
}
|
|
|
|
raw_spin_unlock_irqrestore(&grp->lock, flags);
|
|
|
|
/*
|
|
* Scale the total demand to the lowest capacity CPU and
|
|
* convert into percentage.
|
|
*
|
|
* P = total_demand/sched_ravg_window * 1024/scale * 100
|
|
*/
|
|
|
|
min_cap_cpu = this_rq()->rd->min_cap_orig_cpu;
|
|
if (min_cap_cpu != -1)
|
|
scale = arch_scale_cpu_capacity(NULL, min_cap_cpu);
|
|
|
|
data->coloc_load_pct = div64_u64(total_demand * 1024 * 100,
|
|
(u64)sched_ravg_window * scale);
|
|
|
|
fill_util:
|
|
for_each_sched_cluster(cluster) {
|
|
int fcpu = cluster_first_cpu(cluster);
|
|
|
|
if (i == MAX_CLUSTERS)
|
|
break;
|
|
|
|
scale = arch_scale_cpu_capacity(NULL, fcpu);
|
|
data->ta_util_pct[i] = div64_u64(cluster->aggr_grp_load * 1024 *
|
|
100, (u64)sched_ravg_window * scale);
|
|
|
|
scale = arch_scale_freq_capacity(fcpu);
|
|
data->cur_cap_pct[i] = (scale * 100)/1024;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
int walt_proc_group_thresholds_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
static DEFINE_MUTEX(mutex);
|
|
struct rq *rq = cpu_rq(cpumask_first(cpu_possible_mask));
|
|
unsigned long flags;
|
|
|
|
if (unlikely(num_sched_clusters <= 0))
|
|
return -EPERM;
|
|
|
|
mutex_lock(&mutex);
|
|
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
|
|
if (ret || !write) {
|
|
mutex_unlock(&mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The load scale factor update happens with all
|
|
* rqs locked. so acquiring 1 CPU rq lock and
|
|
* updating the thresholds is sufficient for
|
|
* an atomic update.
|
|
*/
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
walt_update_group_thresholds();
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
|
|
mutex_unlock(&mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void walt_init_window_dep(void)
|
|
{
|
|
walt_cpu_util_freq_divisor =
|
|
(sched_ravg_window >> SCHED_CAPACITY_SHIFT) * 100;
|
|
walt_scale_demand_divisor = sched_ravg_window >> SCHED_CAPACITY_SHIFT;
|
|
|
|
sched_init_task_load_windows =
|
|
div64_u64((u64)sysctl_sched_init_task_load_pct *
|
|
(u64)sched_ravg_window, 100);
|
|
sched_init_task_load_windows_scaled =
|
|
scale_demand(sched_init_task_load_windows);
|
|
}
|
|
|
|
static void walt_init_once(void)
|
|
{
|
|
init_irq_work(&walt_migration_irq_work, walt_irq_work);
|
|
init_irq_work(&walt_cpufreq_irq_work, walt_irq_work);
|
|
walt_rotate_work_init();
|
|
walt_init_window_dep();
|
|
}
|
|
|
|
void walt_sched_init_rq(struct rq *rq)
|
|
{
|
|
int j;
|
|
|
|
if (cpu_of(rq) == 0)
|
|
walt_init_once();
|
|
|
|
cpumask_set_cpu(cpu_of(rq), &rq->freq_domain_cpumask);
|
|
|
|
rq->walt_stats.cumulative_runnable_avg_scaled = 0;
|
|
rq->prev_window_size = sched_ravg_window;
|
|
rq->window_start = 0;
|
|
rq->walt_stats.nr_big_tasks = 0;
|
|
rq->walt_flags = 0;
|
|
rq->cur_irqload = 0;
|
|
rq->avg_irqload = 0;
|
|
rq->irqload_ts = 0;
|
|
rq->task_exec_scale = 1024;
|
|
|
|
/*
|
|
* All cpus part of same cluster by default. This avoids the
|
|
* need to check for rq->cluster being non-NULL in hot-paths
|
|
* like select_best_cpu()
|
|
*/
|
|
rq->cluster = &init_cluster;
|
|
rq->curr_runnable_sum = rq->prev_runnable_sum = 0;
|
|
rq->nt_curr_runnable_sum = rq->nt_prev_runnable_sum = 0;
|
|
memset(&rq->grp_time, 0, sizeof(struct group_cpu_time));
|
|
rq->old_busy_time = 0;
|
|
rq->old_estimated_time = 0;
|
|
rq->old_busy_time_group = 0;
|
|
rq->walt_stats.pred_demands_sum_scaled = 0;
|
|
rq->ed_task = NULL;
|
|
rq->curr_table = 0;
|
|
rq->prev_top = 0;
|
|
rq->curr_top = 0;
|
|
rq->last_cc_update = 0;
|
|
rq->cycles = 0;
|
|
for (j = 0; j < NUM_TRACKED_WINDOWS; j++) {
|
|
memset(&rq->load_subs[j], 0,
|
|
sizeof(struct load_subtractions));
|
|
rq->top_tasks[j] = kcalloc(NUM_LOAD_INDICES,
|
|
sizeof(u8), GFP_NOWAIT);
|
|
/* No other choice */
|
|
BUG_ON(!rq->top_tasks[j]);
|
|
clear_top_tasks_bitmap(rq->top_tasks_bitmap[j]);
|
|
}
|
|
rq->cum_window_demand_scaled = 0;
|
|
rq->notif_pending = false;
|
|
}
|
|
|
|
int walt_proc_user_hint_handler(struct ctl_table *table,
|
|
int write, void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
unsigned int old_value;
|
|
static DEFINE_MUTEX(mutex);
|
|
|
|
mutex_lock(&mutex);
|
|
|
|
sched_user_hint_reset_time = jiffies + HZ;
|
|
old_value = sysctl_sched_user_hint;
|
|
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
|
|
if (ret || !write || (old_value == sysctl_sched_user_hint))
|
|
goto unlock;
|
|
|
|
irq_work_queue(&walt_migration_irq_work);
|
|
|
|
unlock:
|
|
mutex_unlock(&mutex);
|
|
return ret;
|
|
}
|
|
|
|
static inline void sched_window_nr_ticks_change(void)
|
|
{
|
|
int new_ticks;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sched_ravg_window_lock, flags);
|
|
|
|
new_ticks = min(display_sched_ravg_window_nr_ticks,
|
|
sysctl_sched_ravg_window_nr_ticks);
|
|
|
|
new_sched_ravg_window = new_ticks * (NSEC_PER_SEC / HZ);
|
|
spin_unlock_irqrestore(&sched_ravg_window_lock, flags);
|
|
}
|
|
|
|
int sched_ravg_window_handler(struct ctl_table *table,
|
|
int write, void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret = -EPERM;
|
|
static DEFINE_MUTEX(mutex);
|
|
unsigned int prev_value;
|
|
|
|
mutex_lock(&mutex);
|
|
|
|
if (write && (HZ != 250 || !sysctl_sched_dynamic_ravg_window_enable))
|
|
goto unlock;
|
|
|
|
prev_value = sysctl_sched_ravg_window_nr_ticks;
|
|
ret = proc_douintvec_ravg_window(table, write, buffer, lenp, ppos);
|
|
if (ret || !write || (prev_value == sysctl_sched_ravg_window_nr_ticks))
|
|
goto unlock;
|
|
|
|
sched_window_nr_ticks_change();
|
|
|
|
unlock:
|
|
mutex_unlock(&mutex);
|
|
return ret;
|
|
}
|
|
|
|
void sched_set_refresh_rate(enum fps fps)
|
|
{
|
|
if (HZ == 250 && sysctl_sched_dynamic_ravg_window_enable) {
|
|
if (fps > FPS90)
|
|
display_sched_ravg_window_nr_ticks = 2;
|
|
else if (fps == FPS90)
|
|
display_sched_ravg_window_nr_ticks = 3;
|
|
else
|
|
display_sched_ravg_window_nr_ticks = 5;
|
|
|
|
sched_window_nr_ticks_change();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(sched_set_refresh_rate);
|
|
|
|
/* Migration margins */
|
|
unsigned int sysctl_sched_capacity_margin_up[MAX_MARGIN_LEVELS] = {
|
|
[0 ... MAX_MARGIN_LEVELS-1] = 1078}; /* ~5% margin */
|
|
unsigned int sysctl_sched_capacity_margin_down[MAX_MARGIN_LEVELS] = {
|
|
[0 ... MAX_MARGIN_LEVELS-1] = 1205}; /* ~15% margin */
|
|
|
|
#ifdef CONFIG_PROC_SYSCTL
|
|
static void sched_update_updown_migrate_values(bool up)
|
|
{
|
|
int i = 0, cpu;
|
|
struct sched_cluster *cluster;
|
|
int cap_margin_levels = num_sched_clusters - 1;
|
|
|
|
if (cap_margin_levels > 1) {
|
|
/*
|
|
* No need to worry about CPUs in last cluster
|
|
* if there are more than 2 clusters in the system
|
|
*/
|
|
for_each_sched_cluster(cluster) {
|
|
for_each_cpu(cpu, &cluster->cpus) {
|
|
|
|
if (up)
|
|
sched_capacity_margin_up[cpu] =
|
|
sysctl_sched_capacity_margin_up[i];
|
|
else
|
|
sched_capacity_margin_down[cpu] =
|
|
sysctl_sched_capacity_margin_down[i];
|
|
}
|
|
|
|
if (++i >= cap_margin_levels)
|
|
break;
|
|
}
|
|
} else {
|
|
for_each_possible_cpu(cpu) {
|
|
if (up)
|
|
sched_capacity_margin_up[cpu] =
|
|
sysctl_sched_capacity_margin_up[0];
|
|
else
|
|
sched_capacity_margin_down[cpu] =
|
|
sysctl_sched_capacity_margin_down[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
int sched_updown_migrate_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret, i;
|
|
unsigned int *data = (unsigned int *)table->data;
|
|
unsigned int *old_val;
|
|
static DEFINE_MUTEX(mutex);
|
|
int cap_margin_levels = num_sched_clusters ? num_sched_clusters - 1 : 0;
|
|
|
|
if (cap_margin_levels <= 0)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&mutex);
|
|
|
|
if (table->maxlen != (sizeof(unsigned int) * cap_margin_levels))
|
|
table->maxlen = sizeof(unsigned int) * cap_margin_levels;
|
|
|
|
if (!write) {
|
|
ret = proc_douintvec_capacity(table, write, buffer, lenp, ppos);
|
|
goto unlock_mutex;
|
|
}
|
|
|
|
/*
|
|
* Cache the old values so that they can be restored
|
|
* if either the write fails (for example out of range values)
|
|
* or the downmigrate and upmigrate are not in sync.
|
|
*/
|
|
old_val = kmemdup(data, table->maxlen, GFP_KERNEL);
|
|
if (!old_val) {
|
|
ret = -ENOMEM;
|
|
goto unlock_mutex;
|
|
}
|
|
|
|
ret = proc_douintvec_capacity(table, write, buffer, lenp, ppos);
|
|
|
|
if (ret) {
|
|
memcpy(data, old_val, table->maxlen);
|
|
goto free_old_val;
|
|
}
|
|
|
|
for (i = 0; i < cap_margin_levels; i++) {
|
|
if (sysctl_sched_capacity_margin_up[i] >
|
|
sysctl_sched_capacity_margin_down[i]) {
|
|
memcpy(data, old_val, table->maxlen);
|
|
ret = -EINVAL;
|
|
goto free_old_val;
|
|
}
|
|
}
|
|
|
|
sched_update_updown_migrate_values(data ==
|
|
&sysctl_sched_capacity_margin_up[0]);
|
|
|
|
free_old_val:
|
|
kfree(old_val);
|
|
unlock_mutex:
|
|
mutex_unlock(&mutex);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|