kernel-fxtec-pro1x/kernel/sched/stats.h
Johannes Weiner 3dc54b0444 psi: make disabling/enabling easier for vendor kernels
Mel Gorman reports a hackbench regression with psi that would prohibit
shipping the suse kernel with it default-enabled, but he'd still like
users to be able to opt in at little to no cost to others.

With the current combination of CONFIG_PSI and the psi_disabled bool set
from the commandline, this is a challenge.  Do the following things to
make it easier:

1. Add a config option CONFIG_PSI_DEFAULT_DISABLED that allows distros
   to enable CONFIG_PSI in their kernel but leave the feature disabled
   unless a user requests it at boot-time.

   To avoid double negatives, rename psi_disabled= to psi=.

2. Make psi_disabled a static branch to eliminate any branch costs
   when the feature is disabled.

In terms of numbers before and after this patch, Mel says:

: The following is a comparision using CONFIG_PSI=n as a baseline against
: your patch and a vanilla kernel
:
:                          4.20.0-rc4             4.20.0-rc4             4.20.0-rc4
:                 kconfigdisable-v1r1                vanilla        psidisable-v1r1
: Amean     1       1.3100 (   0.00%)      1.3923 (  -6.28%)      1.3427 (  -2.49%)
: Amean     3       3.8860 (   0.00%)      4.1230 *  -6.10%*      3.8860 (  -0.00%)
: Amean     5       6.8847 (   0.00%)      8.0390 * -16.77%*      6.7727 (   1.63%)
: Amean     7       9.9310 (   0.00%)     10.8367 *  -9.12%*      9.9910 (  -0.60%)
: Amean     12     16.6577 (   0.00%)     18.2363 *  -9.48%*     17.1083 (  -2.71%)
: Amean     18     26.5133 (   0.00%)     27.8833 *  -5.17%*     25.7663 (   2.82%)
: Amean     24     34.3003 (   0.00%)     34.6830 (  -1.12%)     32.0450 (   6.58%)
: Amean     30     40.0063 (   0.00%)     40.5800 (  -1.43%)     41.5087 (  -3.76%)
: Amean     32     40.1407 (   0.00%)     41.2273 (  -2.71%)     39.9417 (   0.50%)
:
: It's showing that the vanilla kernel takes a hit (as the bisection
: indicated it would) and that disabling PSI by default is reasonably
: close in terms of performance for this particular workload on this
: particular machine so;

Link: http://lkml.kernel.org/r/20181127165329.GA29728@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change-Id: Idbf6ec163adcea17e8697b963e0ca2fe93cf2501
Git-commit: e0c274472d5d27f277af722e017525e0b33784cd
Git-repo: https://source.codeaurora.org/quic/la/kernel/msm-4.19
Signed-off-by: Patrick Daly <pdaly@codeaurora.org>
2019-03-08 19:33:21 -08:00

253 lines
7.5 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifdef CONFIG_SCHEDSTATS
/*
* Expects runqueue lock to be held for atomicity of update
*/
static inline void
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
{
if (rq) {
rq->rq_sched_info.run_delay += delta;
rq->rq_sched_info.pcount++;
}
}
/*
* Expects runqueue lock to be held for atomicity of update
*/
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
{
if (rq)
rq->rq_cpu_time += delta;
}
static inline void
rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
{
if (rq)
rq->rq_sched_info.run_delay += delta;
}
#define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
#define __schedstat_inc(var) do { var++; } while (0)
#define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0)
#define __schedstat_add(var, amt) do { var += (amt); } while (0)
#define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0)
#define __schedstat_set(var, val) do { var = (val); } while (0)
#define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
#define schedstat_val(var) (var)
#define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0)
#else /* !CONFIG_SCHEDSTATS: */
static inline void rq_sched_info_arrive (struct rq *rq, unsigned long long delta) { }
static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { }
static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delta) { }
# define schedstat_enabled() 0
# define __schedstat_inc(var) do { } while (0)
# define schedstat_inc(var) do { } while (0)
# define __schedstat_add(var, amt) do { } while (0)
# define schedstat_add(var, amt) do { } while (0)
# define __schedstat_set(var, val) do { } while (0)
# define schedstat_set(var, val) do { } while (0)
# define schedstat_val(var) 0
# define schedstat_val_or_zero(var) 0
#endif /* CONFIG_SCHEDSTATS */
#ifdef CONFIG_PSI
/*
* PSI tracks state that persists across sleeps, such as iowaits and
* memory stalls. As a result, it has to distinguish between sleeps,
* where a task's runnable state changes, and requeues, where a task
* and its state are being moved between CPUs and runqueues.
*/
static inline void psi_enqueue(struct task_struct *p, bool wakeup)
{
int clear = 0, set = TSK_RUNNING;
if (static_branch_likely(&psi_disabled))
return;
if (!wakeup || p->sched_psi_wake_requeue) {
if (p->flags & PF_MEMSTALL)
set |= TSK_MEMSTALL;
if (p->sched_psi_wake_requeue)
p->sched_psi_wake_requeue = 0;
} else {
if (p->in_iowait)
clear |= TSK_IOWAIT;
}
psi_task_change(p, clear, set);
}
static inline void psi_dequeue(struct task_struct *p, bool sleep)
{
int clear = TSK_RUNNING, set = 0;
if (static_branch_likely(&psi_disabled))
return;
if (!sleep) {
if (p->flags & PF_MEMSTALL)
clear |= TSK_MEMSTALL;
} else {
if (p->in_iowait)
set |= TSK_IOWAIT;
}
psi_task_change(p, clear, set);
}
static inline void psi_ttwu_dequeue(struct task_struct *p)
{
if (static_branch_likely(&psi_disabled))
return;
/*
* Is the task being migrated during a wakeup? Make sure to
* deregister its sleep-persistent psi states from the old
* queue, and let psi_enqueue() know it has to requeue.
*/
if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) {
struct rq_flags rf;
struct rq *rq;
int clear = 0;
if (p->in_iowait)
clear |= TSK_IOWAIT;
if (p->flags & PF_MEMSTALL)
clear |= TSK_MEMSTALL;
rq = __task_rq_lock(p, &rf);
psi_task_change(p, clear, 0);
p->sched_psi_wake_requeue = 1;
__task_rq_unlock(rq, &rf);
}
}
static inline void psi_task_tick(struct rq *rq)
{
if (static_branch_likely(&psi_disabled))
return;
if (unlikely(rq->curr->flags & PF_MEMSTALL))
psi_memstall_tick(rq->curr, cpu_of(rq));
}
#else /* CONFIG_PSI */
static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
static inline void psi_ttwu_dequeue(struct task_struct *p) {}
static inline void psi_task_tick(struct rq *rq) {}
#endif /* CONFIG_PSI */
#ifdef CONFIG_SCHED_INFO
static inline void sched_info_reset_dequeued(struct task_struct *t)
{
t->sched_info.last_queued = 0;
}
/*
* We are interested in knowing how long it was from the *first* time a
* task was queued to the time that it finally hit a CPU, we call this routine
* from dequeue_task() to account for possible rq->clock skew across CPUs. The
* delta taken on each CPU would annul the skew.
*/
static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
{
unsigned long long now = rq_clock(rq), delta = 0;
if (unlikely(sched_info_on()))
if (t->sched_info.last_queued)
delta = now - t->sched_info.last_queued;
sched_info_reset_dequeued(t);
t->sched_info.run_delay += delta;
rq_sched_info_dequeued(rq, delta);
}
/*
* Called when a task finally hits the CPU. We can now calculate how
* long it was waiting to run. We also note when it began so that we
* can keep stats on how long its timeslice is.
*/
static void sched_info_arrive(struct rq *rq, struct task_struct *t)
{
unsigned long long now = rq_clock(rq), delta = 0;
if (t->sched_info.last_queued)
delta = now - t->sched_info.last_queued;
sched_info_reset_dequeued(t);
t->sched_info.run_delay += delta;
t->sched_info.last_arrival = now;
t->sched_info.pcount++;
rq_sched_info_arrive(rq, delta);
}
/*
* This function is only called from enqueue_task(), but also only updates
* the timestamp if it is already not set. It's assumed that
* sched_info_dequeued() will clear that stamp when appropriate.
*/
static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
{
if (unlikely(sched_info_on())) {
if (!t->sched_info.last_queued)
t->sched_info.last_queued = rq_clock(rq);
}
}
/*
* Called when a process ceases being the active-running process involuntarily
* due, typically, to expiring its time slice (this may also be called when
* switching to the idle task). Now we can calculate how long we ran.
* Also, if the process is still in the TASK_RUNNING state, call
* sched_info_queued() to mark that it has now again started waiting on
* the runqueue.
*/
static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
{
unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
rq_sched_info_depart(rq, delta);
if (t->state == TASK_RUNNING)
sched_info_queued(rq, t);
}
/*
* Called when tasks are switched involuntarily due, typically, to expiring
* their time slice. (This may also be called when switching to or from
* the idle task.) We are only called when prev != next.
*/
static inline void
__sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
{
/*
* prev now departs the CPU. It's not interesting to record
* stats about how efficient we were at scheduling the idle
* process, however.
*/
if (prev != rq->idle)
sched_info_depart(rq, prev);
if (next != rq->idle)
sched_info_arrive(rq, next);
}
static inline void
sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
{
if (unlikely(sched_info_on()))
__sched_info_switch(rq, prev, next);
}
#else /* !CONFIG_SCHED_INFO: */
# define sched_info_queued(rq, t) do { } while (0)
# define sched_info_reset_dequeued(t) do { } while (0)
# define sched_info_dequeued(rq, t) do { } while (0)
# define sched_info_depart(rq, t) do { } while (0)
# define sched_info_arrive(rq, next) do { } while (0)
# define sched_info_switch(rq, t, next) do { } while (0)
#endif /* CONFIG_SCHED_INFO */