kernel-fxtec-pro1x/arch/sh/kernel/setup.c
Paul Mundt a0ab36689a sh: fixed PMB mode refactoring.
This introduces some much overdue chainsawing of the fixed PMB support.
fixed PMB was introduced initially to work around the fact that dynamic
PMB mode was relatively broken, though they were never intended to
converge. The main areas where there are differences are whether the
system is booted in 29-bit mode or 32-bit mode, and whether legacy
mappings are to be preserved. Any system booting in true 32-bit mode will
not care about legacy mappings, so these are roughly decoupled.

Regardless of the entry point, PMB and 32BIT are directly related as far
as the kernel is concerned, so we also switch back to having one select
the other.

With legacy mappings iterated through and applied in the initialization
path it's now possible to finally merge the two implementations and
permit dynamic remapping overtop of remaining entries regardless of
whether boot mappings are crafted by hand or inherited from the boot
loader.

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2010-01-13 18:31:48 +09:00

630 lines
16 KiB
C

/*
* arch/sh/kernel/setup.c
*
* This file handles the architecture-dependent parts of initialization
*
* Copyright (C) 1999 Niibe Yutaka
* Copyright (C) 2002 - 2007 Paul Mundt
*/
#include <linux/screen_info.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/bootmem.h>
#include <linux/console.h>
#include <linux/seq_file.h>
#include <linux/root_dev.h>
#include <linux/utsname.h>
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/pfn.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/kexec.h>
#include <linux/module.h>
#include <linux/smp.h>
#include <linux/err.h>
#include <linux/debugfs.h>
#include <linux/crash_dump.h>
#include <linux/mmzone.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/lmb.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/page.h>
#include <asm/elf.h>
#include <asm/sections.h>
#include <asm/irq.h>
#include <asm/setup.h>
#include <asm/clock.h>
#include <asm/mmu_context.h>
/*
* Initialize loops_per_jiffy as 10000000 (1000MIPS).
* This value will be used at the very early stage of serial setup.
* The bigger value means no problem.
*/
struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
[0] = {
.type = CPU_SH_NONE,
.family = CPU_FAMILY_UNKNOWN,
.loops_per_jiffy = 10000000,
},
};
EXPORT_SYMBOL(cpu_data);
/*
* The machine vector. First entry in .machvec.init, or clobbered by
* sh_mv= on the command line, prior to .machvec.init teardown.
*/
struct sh_machine_vector sh_mv = { .mv_name = "generic", };
EXPORT_SYMBOL(sh_mv);
#ifdef CONFIG_VT
struct screen_info screen_info;
#endif
extern int root_mountflags;
#define RAMDISK_IMAGE_START_MASK 0x07FF
#define RAMDISK_PROMPT_FLAG 0x8000
#define RAMDISK_LOAD_FLAG 0x4000
static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
static struct resource code_resource = {
.name = "Kernel code",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
static struct resource data_resource = {
.name = "Kernel data",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
static struct resource bss_resource = {
.name = "Kernel bss",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
unsigned long memory_start;
EXPORT_SYMBOL(memory_start);
unsigned long memory_end = 0;
EXPORT_SYMBOL(memory_end);
static struct resource mem_resources[MAX_NUMNODES];
int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
static int __init early_parse_mem(char *p)
{
unsigned long size;
memory_start = (unsigned long)__va(__MEMORY_START);
size = memparse(p, &p);
if (size > __MEMORY_SIZE) {
printk(KERN_ERR
"Using mem= to increase the size of kernel memory "
"is not allowed.\n"
" Recompile the kernel with the correct value for "
"CONFIG_MEMORY_SIZE.\n");
return 0;
}
memory_end = memory_start + size;
return 0;
}
early_param("mem", early_parse_mem);
/*
* Register fully available low RAM pages with the bootmem allocator.
*/
static void __init register_bootmem_low_pages(void)
{
unsigned long curr_pfn, last_pfn, pages;
/*
* We are rounding up the start address of usable memory:
*/
curr_pfn = PFN_UP(__MEMORY_START);
/*
* ... and at the end of the usable range downwards:
*/
last_pfn = PFN_DOWN(__pa(memory_end));
if (last_pfn > max_low_pfn)
last_pfn = max_low_pfn;
pages = last_pfn - curr_pfn;
free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
}
#ifdef CONFIG_KEXEC
static void __init reserve_crashkernel(void)
{
unsigned long long free_mem;
unsigned long long crash_size, crash_base;
void *vp;
int ret;
free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
ret = parse_crashkernel(boot_command_line, free_mem,
&crash_size, &crash_base);
if (ret == 0 && crash_size) {
if (crash_base <= 0) {
vp = alloc_bootmem_nopanic(crash_size);
if (!vp) {
printk(KERN_INFO "crashkernel allocation "
"failed\n");
return;
}
crash_base = __pa(vp);
} else if (reserve_bootmem(crash_base, crash_size,
BOOTMEM_EXCLUSIVE) < 0) {
printk(KERN_INFO "crashkernel reservation failed - "
"memory is in use\n");
return;
}
printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
"for crashkernel (System RAM: %ldMB)\n",
(unsigned long)(crash_size >> 20),
(unsigned long)(crash_base >> 20),
(unsigned long)(free_mem >> 20));
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
insert_resource(&iomem_resource, &crashk_res);
}
}
#else
static inline void __init reserve_crashkernel(void)
{}
#endif
void __cpuinit calibrate_delay(void)
{
struct clk *clk = clk_get(NULL, "cpu_clk");
if (IS_ERR(clk))
panic("Need a sane CPU clock definition!");
loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
printk(KERN_INFO "Calibrating delay loop (skipped)... "
"%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
loops_per_jiffy/(500000/HZ),
(loops_per_jiffy/(5000/HZ)) % 100,
loops_per_jiffy);
}
void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
unsigned long end_pfn)
{
struct resource *res = &mem_resources[nid];
WARN_ON(res->name); /* max one active range per node for now */
res->name = "System RAM";
res->start = start_pfn << PAGE_SHIFT;
res->end = (end_pfn << PAGE_SHIFT) - 1;
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
if (request_resource(&iomem_resource, res)) {
pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
start_pfn, end_pfn);
return;
}
/*
* We don't know which RAM region contains kernel data,
* so we try it repeatedly and let the resource manager
* test it.
*/
request_resource(res, &code_resource);
request_resource(res, &data_resource);
request_resource(res, &bss_resource);
add_active_range(nid, start_pfn, end_pfn);
}
void __init setup_bootmem_allocator(unsigned long free_pfn)
{
unsigned long bootmap_size;
unsigned long bootmap_pages, bootmem_paddr;
u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT;
int i;
bootmap_pages = bootmem_bootmap_pages(total_pages);
bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
/*
* Find a proper area for the bootmem bitmap. After this
* bootstrap step all allocations (until the page allocator
* is intact) must be done via bootmem_alloc().
*/
bootmap_size = init_bootmem_node(NODE_DATA(0),
bootmem_paddr >> PAGE_SHIFT,
min_low_pfn, max_low_pfn);
/* Add active regions with valid PFNs. */
for (i = 0; i < lmb.memory.cnt; i++) {
unsigned long start_pfn, end_pfn;
start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
__add_active_range(0, start_pfn, end_pfn);
}
/*
* Add all physical memory to the bootmem map and mark each
* area as present.
*/
register_bootmem_low_pages();
/* Reserve the sections we're already using. */
for (i = 0; i < lmb.reserved.cnt; i++)
reserve_bootmem(lmb.reserved.region[i].base,
lmb_size_bytes(&lmb.reserved, i),
BOOTMEM_DEFAULT);
node_set_online(0);
sparse_memory_present_with_active_regions(0);
#ifdef CONFIG_BLK_DEV_INITRD
ROOT_DEV = Root_RAM0;
if (LOADER_TYPE && INITRD_START) {
unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
reserve_bootmem(initrd_start_phys, INITRD_SIZE,
BOOTMEM_DEFAULT);
initrd_start = (unsigned long)__va(initrd_start_phys);
initrd_end = initrd_start + INITRD_SIZE;
} else {
printk("initrd extends beyond end of memory "
"(0x%08lx > 0x%08lx)\ndisabling initrd\n",
initrd_start_phys + INITRD_SIZE,
(unsigned long)PFN_PHYS(max_low_pfn));
initrd_start = 0;
}
}
#endif
reserve_crashkernel();
}
#ifndef CONFIG_NEED_MULTIPLE_NODES
static void __init setup_memory(void)
{
unsigned long start_pfn;
u64 base = min_low_pfn << PAGE_SHIFT;
u64 size = (max_low_pfn << PAGE_SHIFT) - base;
/*
* Partially used pages are not usable - thus
* we are rounding upwards:
*/
start_pfn = PFN_UP(__pa(_end));
lmb_add(base, size);
/*
* Reserve the kernel text and
* Reserve the bootmem bitmap. We do this in two steps (first step
* was init_bootmem()), because this catches the (definitely buggy)
* case of us accidentally initializing the bootmem allocator with
* an invalid RAM area.
*/
lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
(PFN_PHYS(start_pfn) + PAGE_SIZE - 1) -
(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET));
/*
* Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
*/
if (CONFIG_ZERO_PAGE_OFFSET != 0)
lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET);
lmb_analyze();
lmb_dump_all();
setup_bootmem_allocator(start_pfn);
}
#else
extern void __init setup_memory(void);
#endif
/*
* Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
* is_kdump_kernel() to determine if we are booting after a panic. Hence
* ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
*/
#ifdef CONFIG_CRASH_DUMP
/* elfcorehdr= specifies the location of elf core header
* stored by the crashed kernel.
*/
static int __init parse_elfcorehdr(char *arg)
{
if (!arg)
return -EINVAL;
elfcorehdr_addr = memparse(arg, &arg);
return 0;
}
early_param("elfcorehdr", parse_elfcorehdr);
#endif
void __init __attribute__ ((weak)) plat_early_device_setup(void)
{
}
void __init setup_arch(char **cmdline_p)
{
enable_mmu();
ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
printk(KERN_NOTICE "Boot params:\n"
"... MOUNT_ROOT_RDONLY - %08lx\n"
"... RAMDISK_FLAGS - %08lx\n"
"... ORIG_ROOT_DEV - %08lx\n"
"... LOADER_TYPE - %08lx\n"
"... INITRD_START - %08lx\n"
"... INITRD_SIZE - %08lx\n",
MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
ORIG_ROOT_DEV, LOADER_TYPE,
INITRD_START, INITRD_SIZE);
#ifdef CONFIG_BLK_DEV_RAM
rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
#endif
if (!MOUNT_ROOT_RDONLY)
root_mountflags &= ~MS_RDONLY;
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
code_resource.start = virt_to_phys(_text);
code_resource.end = virt_to_phys(_etext)-1;
data_resource.start = virt_to_phys(_etext);
data_resource.end = virt_to_phys(_edata)-1;
bss_resource.start = virt_to_phys(__bss_start);
bss_resource.end = virt_to_phys(_ebss)-1;
memory_start = (unsigned long)__va(__MEMORY_START);
if (!memory_end)
memory_end = memory_start + __MEMORY_SIZE;
#ifdef CONFIG_CMDLINE_OVERWRITE
strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
#else
strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
#ifdef CONFIG_CMDLINE_EXTEND
strlcat(command_line, " ", sizeof(command_line));
strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line));
#endif
#endif
/* Save unparsed command line copy for /proc/cmdline */
memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
*cmdline_p = command_line;
parse_early_param();
plat_early_device_setup();
/* Let earlyprintk output early console messages */
early_platform_driver_probe("earlyprintk", 1, 1);
sh_mv_setup();
/*
* Find the highest page frame number we have available
*/
max_pfn = PFN_DOWN(__pa(memory_end));
/*
* Determine low and high memory ranges:
*/
max_low_pfn = max_pfn;
min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
nodes_clear(node_online_map);
/* Setup bootmem with available RAM */
lmb_init();
setup_memory();
sparse_init();
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#endif
/* Perform the machine specific initialisation */
if (likely(sh_mv.mv_setup))
sh_mv.mv_setup(cmdline_p);
paging_init();
pmb_init();
#ifdef CONFIG_SMP
plat_smp_setup();
#endif
}
/* processor boot mode configuration */
int generic_mode_pins(void)
{
pr_warning("generic_mode_pins(): missing mode pin configuration\n");
return 0;
}
int test_mode_pin(int pin)
{
return sh_mv.mv_mode_pins() & pin;
}
static const char *cpu_name[] = {
[CPU_SH7201] = "SH7201",
[CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
[CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
[CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
[CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
[CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
[CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
[CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
[CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
[CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
[CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
[CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
[CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
[CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
[CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
[CPU_SH7786] = "SH7786", [CPU_SH7757] = "SH7757",
[CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
[CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
[CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
[CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724",
[CPU_SH_NONE] = "Unknown"
};
const char *get_cpu_subtype(struct sh_cpuinfo *c)
{
return cpu_name[c->type];
}
EXPORT_SYMBOL(get_cpu_subtype);
#ifdef CONFIG_PROC_FS
/* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
static const char *cpu_flags[] = {
"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
"ptea", "llsc", "l2", "op32", "pteaex", NULL
};
static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
{
unsigned long i;
seq_printf(m, "cpu flags\t:");
if (!c->flags) {
seq_printf(m, " %s\n", cpu_flags[0]);
return;
}
for (i = 0; cpu_flags[i]; i++)
if ((c->flags & (1 << i)))
seq_printf(m, " %s", cpu_flags[i+1]);
seq_printf(m, "\n");
}
static void show_cacheinfo(struct seq_file *m, const char *type,
struct cache_info info)
{
unsigned int cache_size;
cache_size = info.ways * info.sets * info.linesz;
seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
type, cache_size >> 10, info.ways);
}
/*
* Get CPU information for use by the procfs.
*/
static int show_cpuinfo(struct seq_file *m, void *v)
{
struct sh_cpuinfo *c = v;
unsigned int cpu = c - cpu_data;
if (!cpu_online(cpu))
return 0;
if (cpu == 0)
seq_printf(m, "machine\t\t: %s\n", get_system_type());
else
seq_printf(m, "\n");
seq_printf(m, "processor\t: %d\n", cpu);
seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
if (c->cut_major == -1)
seq_printf(m, "cut\t\t: unknown\n");
else if (c->cut_minor == -1)
seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
else
seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
show_cpuflags(m, c);
seq_printf(m, "cache type\t: ");
/*
* Check for what type of cache we have, we support both the
* unified cache on the SH-2 and SH-3, as well as the harvard
* style cache on the SH-4.
*/
if (c->icache.flags & SH_CACHE_COMBINED) {
seq_printf(m, "unified\n");
show_cacheinfo(m, "cache", c->icache);
} else {
seq_printf(m, "split (harvard)\n");
show_cacheinfo(m, "icache", c->icache);
show_cacheinfo(m, "dcache", c->dcache);
}
/* Optional secondary cache */
if (c->flags & CPU_HAS_L2_CACHE)
show_cacheinfo(m, "scache", c->scache);
seq_printf(m, "bogomips\t: %lu.%02lu\n",
c->loops_per_jiffy/(500000/HZ),
(c->loops_per_jiffy/(5000/HZ)) % 100);
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < NR_CPUS ? cpu_data + *pos : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
#endif /* CONFIG_PROC_FS */
struct dentry *sh_debugfs_root;
static int __init sh_debugfs_init(void)
{
sh_debugfs_root = debugfs_create_dir("sh", NULL);
if (!sh_debugfs_root)
return -ENOMEM;
if (IS_ERR(sh_debugfs_root))
return PTR_ERR(sh_debugfs_root);
return 0;
}
arch_initcall(sh_debugfs_init);