a2812e1783
The style that we normally use in asm-generic is to test the macro itself for existence, so in asm-generic, do: #ifndef find_next_zero_bit_le extern unsigned long find_next_zero_bit_le(const void *addr, unsigned long size, unsigned long offset); #endif and in the architectures, write static inline unsigned long find_next_zero_bit_le(const void *addr, unsigned long size, unsigned long offset) #define find_next_zero_bit_le find_next_zero_bit_le This adds the #define for each of the optimized find bitops in the architectures. Suggested-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Acked-by: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com> Acked-by: Russell King <rmk+kernel@arm.linux.org.uk> Acked-by: Greg Ungerer <gerg@uclinux.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
501 lines
11 KiB
C
501 lines
11 KiB
C
#ifndef _M68K_BITOPS_H
|
|
#define _M68K_BITOPS_H
|
|
/*
|
|
* Copyright 1992, Linus Torvalds.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file COPYING in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
|
|
#ifndef _LINUX_BITOPS_H
|
|
#error only <linux/bitops.h> can be included directly
|
|
#endif
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
/*
|
|
* Require 68020 or better.
|
|
*
|
|
* They use the standard big-endian m680x0 bit ordering.
|
|
*/
|
|
|
|
#define test_and_set_bit(nr,vaddr) \
|
|
(__builtin_constant_p(nr) ? \
|
|
__constant_test_and_set_bit(nr, vaddr) : \
|
|
__generic_test_and_set_bit(nr, vaddr))
|
|
|
|
#define __test_and_set_bit(nr,vaddr) test_and_set_bit(nr,vaddr)
|
|
|
|
static inline int __constant_test_and_set_bit(int nr, unsigned long *vaddr)
|
|
{
|
|
char *p = (char *)vaddr + (nr ^ 31) / 8;
|
|
char retval;
|
|
|
|
__asm__ __volatile__ ("bset %2,%1; sne %0"
|
|
: "=d" (retval), "+m" (*p)
|
|
: "di" (nr & 7));
|
|
|
|
return retval;
|
|
}
|
|
|
|
static inline int __generic_test_and_set_bit(int nr, unsigned long *vaddr)
|
|
{
|
|
char retval;
|
|
|
|
__asm__ __volatile__ ("bfset %2{%1:#1}; sne %0"
|
|
: "=d" (retval) : "d" (nr^31), "o" (*vaddr) : "memory");
|
|
|
|
return retval;
|
|
}
|
|
|
|
#define set_bit(nr,vaddr) \
|
|
(__builtin_constant_p(nr) ? \
|
|
__constant_set_bit(nr, vaddr) : \
|
|
__generic_set_bit(nr, vaddr))
|
|
|
|
#define __set_bit(nr,vaddr) set_bit(nr,vaddr)
|
|
|
|
static inline void __constant_set_bit(int nr, volatile unsigned long *vaddr)
|
|
{
|
|
char *p = (char *)vaddr + (nr ^ 31) / 8;
|
|
__asm__ __volatile__ ("bset %1,%0"
|
|
: "+m" (*p) : "di" (nr & 7));
|
|
}
|
|
|
|
static inline void __generic_set_bit(int nr, volatile unsigned long *vaddr)
|
|
{
|
|
__asm__ __volatile__ ("bfset %1{%0:#1}"
|
|
: : "d" (nr^31), "o" (*vaddr) : "memory");
|
|
}
|
|
|
|
#define test_and_clear_bit(nr,vaddr) \
|
|
(__builtin_constant_p(nr) ? \
|
|
__constant_test_and_clear_bit(nr, vaddr) : \
|
|
__generic_test_and_clear_bit(nr, vaddr))
|
|
|
|
#define __test_and_clear_bit(nr,vaddr) test_and_clear_bit(nr,vaddr)
|
|
|
|
static inline int __constant_test_and_clear_bit(int nr, unsigned long *vaddr)
|
|
{
|
|
char *p = (char *)vaddr + (nr ^ 31) / 8;
|
|
char retval;
|
|
|
|
__asm__ __volatile__ ("bclr %2,%1; sne %0"
|
|
: "=d" (retval), "+m" (*p)
|
|
: "di" (nr & 7));
|
|
|
|
return retval;
|
|
}
|
|
|
|
static inline int __generic_test_and_clear_bit(int nr, unsigned long *vaddr)
|
|
{
|
|
char retval;
|
|
|
|
__asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0"
|
|
: "=d" (retval) : "d" (nr^31), "o" (*vaddr) : "memory");
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* clear_bit() doesn't provide any barrier for the compiler.
|
|
*/
|
|
#define smp_mb__before_clear_bit() barrier()
|
|
#define smp_mb__after_clear_bit() barrier()
|
|
|
|
#define clear_bit(nr,vaddr) \
|
|
(__builtin_constant_p(nr) ? \
|
|
__constant_clear_bit(nr, vaddr) : \
|
|
__generic_clear_bit(nr, vaddr))
|
|
#define __clear_bit(nr,vaddr) clear_bit(nr,vaddr)
|
|
|
|
static inline void __constant_clear_bit(int nr, volatile unsigned long *vaddr)
|
|
{
|
|
char *p = (char *)vaddr + (nr ^ 31) / 8;
|
|
__asm__ __volatile__ ("bclr %1,%0"
|
|
: "+m" (*p) : "di" (nr & 7));
|
|
}
|
|
|
|
static inline void __generic_clear_bit(int nr, volatile unsigned long *vaddr)
|
|
{
|
|
__asm__ __volatile__ ("bfclr %1{%0:#1}"
|
|
: : "d" (nr^31), "o" (*vaddr) : "memory");
|
|
}
|
|
|
|
#define test_and_change_bit(nr,vaddr) \
|
|
(__builtin_constant_p(nr) ? \
|
|
__constant_test_and_change_bit(nr, vaddr) : \
|
|
__generic_test_and_change_bit(nr, vaddr))
|
|
|
|
#define __test_and_change_bit(nr,vaddr) test_and_change_bit(nr,vaddr)
|
|
#define __change_bit(nr,vaddr) change_bit(nr,vaddr)
|
|
|
|
static inline int __constant_test_and_change_bit(int nr, unsigned long *vaddr)
|
|
{
|
|
char *p = (char *)vaddr + (nr ^ 31) / 8;
|
|
char retval;
|
|
|
|
__asm__ __volatile__ ("bchg %2,%1; sne %0"
|
|
: "=d" (retval), "+m" (*p)
|
|
: "di" (nr & 7));
|
|
|
|
return retval;
|
|
}
|
|
|
|
static inline int __generic_test_and_change_bit(int nr, unsigned long *vaddr)
|
|
{
|
|
char retval;
|
|
|
|
__asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0"
|
|
: "=d" (retval) : "d" (nr^31), "o" (*vaddr) : "memory");
|
|
|
|
return retval;
|
|
}
|
|
|
|
#define change_bit(nr,vaddr) \
|
|
(__builtin_constant_p(nr) ? \
|
|
__constant_change_bit(nr, vaddr) : \
|
|
__generic_change_bit(nr, vaddr))
|
|
|
|
static inline void __constant_change_bit(int nr, unsigned long *vaddr)
|
|
{
|
|
char *p = (char *)vaddr + (nr ^ 31) / 8;
|
|
__asm__ __volatile__ ("bchg %1,%0"
|
|
: "+m" (*p) : "di" (nr & 7));
|
|
}
|
|
|
|
static inline void __generic_change_bit(int nr, unsigned long *vaddr)
|
|
{
|
|
__asm__ __volatile__ ("bfchg %1{%0:#1}"
|
|
: : "d" (nr^31), "o" (*vaddr) : "memory");
|
|
}
|
|
|
|
static inline int test_bit(int nr, const unsigned long *vaddr)
|
|
{
|
|
return (vaddr[nr >> 5] & (1UL << (nr & 31))) != 0;
|
|
}
|
|
|
|
static inline int find_first_zero_bit(const unsigned long *vaddr,
|
|
unsigned size)
|
|
{
|
|
const unsigned long *p = vaddr;
|
|
int res = 32;
|
|
unsigned int words;
|
|
unsigned long num;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
words = (size + 31) >> 5;
|
|
while (!(num = ~*p++)) {
|
|
if (!--words)
|
|
goto out;
|
|
}
|
|
|
|
__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
|
|
: "=d" (res) : "d" (num & -num));
|
|
res ^= 31;
|
|
out:
|
|
res += ((long)p - (long)vaddr - 4) * 8;
|
|
return res < size ? res : size;
|
|
}
|
|
#define find_first_zero_bit find_first_zero_bit
|
|
|
|
static inline int find_next_zero_bit(const unsigned long *vaddr, int size,
|
|
int offset)
|
|
{
|
|
const unsigned long *p = vaddr + (offset >> 5);
|
|
int bit = offset & 31UL, res;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
|
|
if (bit) {
|
|
unsigned long num = ~*p++ & (~0UL << bit);
|
|
offset -= bit;
|
|
|
|
/* Look for zero in first longword */
|
|
__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
|
|
: "=d" (res) : "d" (num & -num));
|
|
if (res < 32) {
|
|
offset += res ^ 31;
|
|
return offset < size ? offset : size;
|
|
}
|
|
offset += 32;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
}
|
|
/* No zero yet, search remaining full bytes for a zero */
|
|
return offset + find_first_zero_bit(p, size - offset);
|
|
}
|
|
#define find_next_zero_bit find_next_zero_bit
|
|
|
|
static inline int find_first_bit(const unsigned long *vaddr, unsigned size)
|
|
{
|
|
const unsigned long *p = vaddr;
|
|
int res = 32;
|
|
unsigned int words;
|
|
unsigned long num;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
words = (size + 31) >> 5;
|
|
while (!(num = *p++)) {
|
|
if (!--words)
|
|
goto out;
|
|
}
|
|
|
|
__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
|
|
: "=d" (res) : "d" (num & -num));
|
|
res ^= 31;
|
|
out:
|
|
res += ((long)p - (long)vaddr - 4) * 8;
|
|
return res < size ? res : size;
|
|
}
|
|
#define find_first_bit find_first_bit
|
|
|
|
static inline int find_next_bit(const unsigned long *vaddr, int size,
|
|
int offset)
|
|
{
|
|
const unsigned long *p = vaddr + (offset >> 5);
|
|
int bit = offset & 31UL, res;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
|
|
if (bit) {
|
|
unsigned long num = *p++ & (~0UL << bit);
|
|
offset -= bit;
|
|
|
|
/* Look for one in first longword */
|
|
__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
|
|
: "=d" (res) : "d" (num & -num));
|
|
if (res < 32) {
|
|
offset += res ^ 31;
|
|
return offset < size ? offset : size;
|
|
}
|
|
offset += 32;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
}
|
|
/* No one yet, search remaining full bytes for a one */
|
|
return offset + find_first_bit(p, size - offset);
|
|
}
|
|
#define find_next_bit find_next_bit
|
|
|
|
/*
|
|
* ffz = Find First Zero in word. Undefined if no zero exists,
|
|
* so code should check against ~0UL first..
|
|
*/
|
|
static inline unsigned long ffz(unsigned long word)
|
|
{
|
|
int res;
|
|
|
|
__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
|
|
: "=d" (res) : "d" (~word & -~word));
|
|
return res ^ 31;
|
|
}
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
/*
|
|
* ffs: find first bit set. This is defined the same way as
|
|
* the libc and compiler builtin ffs routines, therefore
|
|
* differs in spirit from the above ffz (man ffs).
|
|
*/
|
|
|
|
static inline int ffs(int x)
|
|
{
|
|
int cnt;
|
|
|
|
asm ("bfffo %1{#0:#0},%0" : "=d" (cnt) : "dm" (x & -x));
|
|
|
|
return 32 - cnt;
|
|
}
|
|
#define __ffs(x) (ffs(x) - 1)
|
|
|
|
/*
|
|
* fls: find last bit set.
|
|
*/
|
|
|
|
static inline int fls(int x)
|
|
{
|
|
int cnt;
|
|
|
|
asm ("bfffo %1{#0,#0},%0" : "=d" (cnt) : "dm" (x));
|
|
|
|
return 32 - cnt;
|
|
}
|
|
|
|
static inline int __fls(int x)
|
|
{
|
|
return fls(x) - 1;
|
|
}
|
|
|
|
#include <asm-generic/bitops/fls64.h>
|
|
#include <asm-generic/bitops/sched.h>
|
|
#include <asm-generic/bitops/hweight.h>
|
|
#include <asm-generic/bitops/lock.h>
|
|
|
|
/* Bitmap functions for the little endian bitmap. */
|
|
|
|
static inline void __set_bit_le(int nr, void *addr)
|
|
{
|
|
__set_bit(nr ^ 24, addr);
|
|
}
|
|
|
|
static inline void __clear_bit_le(int nr, void *addr)
|
|
{
|
|
__clear_bit(nr ^ 24, addr);
|
|
}
|
|
|
|
static inline int __test_and_set_bit_le(int nr, void *addr)
|
|
{
|
|
return __test_and_set_bit(nr ^ 24, addr);
|
|
}
|
|
|
|
static inline int test_and_set_bit_le(int nr, void *addr)
|
|
{
|
|
return test_and_set_bit(nr ^ 24, addr);
|
|
}
|
|
|
|
static inline int __test_and_clear_bit_le(int nr, void *addr)
|
|
{
|
|
return __test_and_clear_bit(nr ^ 24, addr);
|
|
}
|
|
|
|
static inline int test_and_clear_bit_le(int nr, void *addr)
|
|
{
|
|
return test_and_clear_bit(nr ^ 24, addr);
|
|
}
|
|
|
|
static inline int test_bit_le(int nr, const void *vaddr)
|
|
{
|
|
const unsigned char *p = vaddr;
|
|
return (p[nr >> 3] & (1U << (nr & 7))) != 0;
|
|
}
|
|
|
|
static inline int find_first_zero_bit_le(const void *vaddr, unsigned size)
|
|
{
|
|
const unsigned long *p = vaddr, *addr = vaddr;
|
|
int res = 0;
|
|
unsigned int words;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
words = (size >> 5) + ((size & 31) > 0);
|
|
while (*p++ == ~0UL) {
|
|
if (--words == 0)
|
|
goto out;
|
|
}
|
|
|
|
--p;
|
|
for (res = 0; res < 32; res++)
|
|
if (!test_bit_le(res, p))
|
|
break;
|
|
out:
|
|
res += (p - addr) * 32;
|
|
return res < size ? res : size;
|
|
}
|
|
#define find_first_zero_bit_le find_first_zero_bit_le
|
|
|
|
static inline unsigned long find_next_zero_bit_le(const void *addr,
|
|
unsigned long size, unsigned long offset)
|
|
{
|
|
const unsigned long *p = addr;
|
|
int bit = offset & 31UL, res;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
|
|
p += offset >> 5;
|
|
|
|
if (bit) {
|
|
offset -= bit;
|
|
/* Look for zero in first longword */
|
|
for (res = bit; res < 32; res++)
|
|
if (!test_bit_le(res, p)) {
|
|
offset += res;
|
|
return offset < size ? offset : size;
|
|
}
|
|
p++;
|
|
offset += 32;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
}
|
|
/* No zero yet, search remaining full bytes for a zero */
|
|
return offset + find_first_zero_bit_le(p, size - offset);
|
|
}
|
|
#define find_next_zero_bit_le find_next_zero_bit_le
|
|
|
|
static inline int find_first_bit_le(const void *vaddr, unsigned size)
|
|
{
|
|
const unsigned long *p = vaddr, *addr = vaddr;
|
|
int res = 0;
|
|
unsigned int words;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
words = (size >> 5) + ((size & 31) > 0);
|
|
while (*p++ == 0UL) {
|
|
if (--words == 0)
|
|
goto out;
|
|
}
|
|
|
|
--p;
|
|
for (res = 0; res < 32; res++)
|
|
if (test_bit_le(res, p))
|
|
break;
|
|
out:
|
|
res += (p - addr) * 32;
|
|
return res < size ? res : size;
|
|
}
|
|
#define find_first_bit_le find_first_bit_le
|
|
|
|
static inline unsigned long find_next_bit_le(const void *addr,
|
|
unsigned long size, unsigned long offset)
|
|
{
|
|
const unsigned long *p = addr;
|
|
int bit = offset & 31UL, res;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
|
|
p += offset >> 5;
|
|
|
|
if (bit) {
|
|
offset -= bit;
|
|
/* Look for one in first longword */
|
|
for (res = bit; res < 32; res++)
|
|
if (test_bit_le(res, p)) {
|
|
offset += res;
|
|
return offset < size ? offset : size;
|
|
}
|
|
p++;
|
|
offset += 32;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
}
|
|
/* No set bit yet, search remaining full bytes for a set bit */
|
|
return offset + find_first_bit_le(p, size - offset);
|
|
}
|
|
#define find_next_bit_le find_next_bit_le
|
|
|
|
/* Bitmap functions for the ext2 filesystem. */
|
|
|
|
#define ext2_set_bit_atomic(lock, nr, addr) \
|
|
test_and_set_bit_le(nr, addr)
|
|
#define ext2_clear_bit_atomic(lock, nr, addr) \
|
|
test_and_clear_bit_le(nr, addr)
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* _M68K_BITOPS_H */
|