e7093703d9
Signed-off-by: David S. Miller <davem@davemloft.net>
1042 lines
28 KiB
C
1042 lines
28 KiB
C
/* $Id: pci_common.c,v 1.29 2002/02/01 00:56:03 davem Exp $
|
|
* pci_common.c: PCI controller common support.
|
|
*
|
|
* Copyright (C) 1999 David S. Miller (davem@redhat.com)
|
|
*/
|
|
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <asm/pbm.h>
|
|
|
|
/* Fix self device of BUS and hook it into BUS->self.
|
|
* The pci_scan_bus does not do this for the host bridge.
|
|
*/
|
|
void __init pci_fixup_host_bridge_self(struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
list_for_each_entry(pdev, &pbus->devices, bus_list) {
|
|
if (pdev->class >> 8 == PCI_CLASS_BRIDGE_HOST) {
|
|
pbus->self = pdev;
|
|
return;
|
|
}
|
|
}
|
|
|
|
prom_printf("PCI: Critical error, cannot find host bridge PDEV.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
/* Find the OBP PROM device tree node for a PCI device.
|
|
* Return zero if not found.
|
|
*/
|
|
static int __init find_device_prom_node(struct pci_pbm_info *pbm,
|
|
struct pci_dev *pdev,
|
|
int bus_prom_node,
|
|
struct linux_prom_pci_registers *pregs,
|
|
int *nregs)
|
|
{
|
|
int node;
|
|
|
|
/*
|
|
* Return the PBM's PROM node in case we are it's PCI device,
|
|
* as the PBM's reg property is different to standard PCI reg
|
|
* properties. We would delete this device entry otherwise,
|
|
* which confuses XFree86's device probing...
|
|
*/
|
|
if ((pdev->bus->number == pbm->pci_bus->number) && (pdev->devfn == 0) &&
|
|
(pdev->vendor == PCI_VENDOR_ID_SUN) &&
|
|
(pdev->device == PCI_DEVICE_ID_SUN_PBM ||
|
|
pdev->device == PCI_DEVICE_ID_SUN_SCHIZO ||
|
|
pdev->device == PCI_DEVICE_ID_SUN_TOMATILLO ||
|
|
pdev->device == PCI_DEVICE_ID_SUN_SABRE ||
|
|
pdev->device == PCI_DEVICE_ID_SUN_HUMMINGBIRD)) {
|
|
*nregs = 0;
|
|
return bus_prom_node;
|
|
}
|
|
|
|
node = prom_getchild(bus_prom_node);
|
|
while (node != 0) {
|
|
int err = prom_getproperty(node, "reg",
|
|
(char *)pregs,
|
|
sizeof(*pregs) * PROMREG_MAX);
|
|
if (err == 0 || err == -1)
|
|
goto do_next_sibling;
|
|
if (((pregs[0].phys_hi >> 8) & 0xff) == pdev->devfn) {
|
|
*nregs = err / sizeof(*pregs);
|
|
return node;
|
|
}
|
|
|
|
do_next_sibling:
|
|
node = prom_getsibling(node);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Older versions of OBP on PCI systems encode 64-bit MEM
|
|
* space assignments incorrectly, this fixes them up. We also
|
|
* take the opportunity here to hide other kinds of bogus
|
|
* assignments.
|
|
*/
|
|
static void __init fixup_obp_assignments(struct pci_dev *pdev,
|
|
struct pcidev_cookie *pcp)
|
|
{
|
|
int i;
|
|
|
|
if (pdev->vendor == PCI_VENDOR_ID_AL &&
|
|
(pdev->device == PCI_DEVICE_ID_AL_M7101 ||
|
|
pdev->device == PCI_DEVICE_ID_AL_M1533)) {
|
|
int i;
|
|
|
|
/* Zap all of the normal resources, they are
|
|
* meaningless and generate bogus resource collision
|
|
* messages. This is OpenBoot's ill-fated attempt to
|
|
* represent the implicit resources that these devices
|
|
* have.
|
|
*/
|
|
pcp->num_prom_assignments = 0;
|
|
for (i = 0; i < 6; i++) {
|
|
pdev->resource[i].start =
|
|
pdev->resource[i].end =
|
|
pdev->resource[i].flags = 0;
|
|
}
|
|
pdev->resource[PCI_ROM_RESOURCE].start =
|
|
pdev->resource[PCI_ROM_RESOURCE].end =
|
|
pdev->resource[PCI_ROM_RESOURCE].flags = 0;
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < pcp->num_prom_assignments; i++) {
|
|
struct linux_prom_pci_registers *ap;
|
|
int space;
|
|
|
|
ap = &pcp->prom_assignments[i];
|
|
space = ap->phys_hi >> 24;
|
|
if ((space & 0x3) == 2 &&
|
|
(space & 0x4) != 0) {
|
|
ap->phys_hi &= ~(0x7 << 24);
|
|
ap->phys_hi |= 0x3 << 24;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Fill in the PCI device cookie sysdata for the given
|
|
* PCI device. This cookie is the means by which one
|
|
* can get to OBP and PCI controller specific information
|
|
* for a PCI device.
|
|
*/
|
|
static void __init pdev_cookie_fillin(struct pci_pbm_info *pbm,
|
|
struct pci_dev *pdev,
|
|
int bus_prom_node)
|
|
{
|
|
struct linux_prom_pci_registers pregs[PROMREG_MAX];
|
|
struct pcidev_cookie *pcp;
|
|
int device_prom_node, nregs, err;
|
|
|
|
device_prom_node = find_device_prom_node(pbm, pdev, bus_prom_node,
|
|
pregs, &nregs);
|
|
if (device_prom_node == 0) {
|
|
/* If it is not in the OBP device tree then
|
|
* there must be a damn good reason for it.
|
|
*
|
|
* So what we do is delete the device from the
|
|
* PCI device tree completely. This scenario
|
|
* is seen, for example, on CP1500 for the
|
|
* second EBUS/HappyMeal pair if the external
|
|
* connector for it is not present.
|
|
*/
|
|
pci_remove_bus_device(pdev);
|
|
return;
|
|
}
|
|
|
|
pcp = kmalloc(sizeof(*pcp), GFP_ATOMIC);
|
|
if (pcp == NULL) {
|
|
prom_printf("PCI_COOKIE: Fatal malloc error, aborting...\n");
|
|
prom_halt();
|
|
}
|
|
pcp->pbm = pbm;
|
|
pcp->prom_node = device_prom_node;
|
|
memcpy(pcp->prom_regs, pregs, sizeof(pcp->prom_regs));
|
|
pcp->num_prom_regs = nregs;
|
|
err = prom_getproperty(device_prom_node, "name",
|
|
pcp->prom_name, sizeof(pcp->prom_name));
|
|
if (err > 0)
|
|
pcp->prom_name[err] = 0;
|
|
else
|
|
pcp->prom_name[0] = 0;
|
|
|
|
err = prom_getproperty(device_prom_node,
|
|
"assigned-addresses",
|
|
(char *)pcp->prom_assignments,
|
|
sizeof(pcp->prom_assignments));
|
|
if (err == 0 || err == -1)
|
|
pcp->num_prom_assignments = 0;
|
|
else
|
|
pcp->num_prom_assignments =
|
|
(err / sizeof(pcp->prom_assignments[0]));
|
|
|
|
if (strcmp(pcp->prom_name, "ebus") == 0) {
|
|
struct linux_prom_ebus_ranges erng[PROM_PCIRNG_MAX];
|
|
int iter;
|
|
|
|
/* EBUS is special... */
|
|
err = prom_getproperty(device_prom_node, "ranges",
|
|
(char *)&erng[0], sizeof(erng));
|
|
if (err == 0 || err == -1) {
|
|
prom_printf("EBUS: Fatal error, no range property\n");
|
|
prom_halt();
|
|
}
|
|
err = (err / sizeof(erng[0]));
|
|
for(iter = 0; iter < err; iter++) {
|
|
struct linux_prom_ebus_ranges *ep = &erng[iter];
|
|
struct linux_prom_pci_registers *ap;
|
|
|
|
ap = &pcp->prom_assignments[iter];
|
|
|
|
ap->phys_hi = ep->parent_phys_hi;
|
|
ap->phys_mid = ep->parent_phys_mid;
|
|
ap->phys_lo = ep->parent_phys_lo;
|
|
ap->size_hi = 0;
|
|
ap->size_lo = ep->size;
|
|
}
|
|
pcp->num_prom_assignments = err;
|
|
}
|
|
|
|
fixup_obp_assignments(pdev, pcp);
|
|
|
|
pdev->sysdata = pcp;
|
|
}
|
|
|
|
void __init pci_fill_in_pbm_cookies(struct pci_bus *pbus,
|
|
struct pci_pbm_info *pbm,
|
|
int prom_node)
|
|
{
|
|
struct pci_dev *pdev, *pdev_next;
|
|
struct pci_bus *this_pbus, *pbus_next;
|
|
|
|
/* This must be _safe because the cookie fillin
|
|
routine can delete devices from the tree. */
|
|
list_for_each_entry_safe(pdev, pdev_next, &pbus->devices, bus_list)
|
|
pdev_cookie_fillin(pbm, pdev, prom_node);
|
|
|
|
list_for_each_entry_safe(this_pbus, pbus_next, &pbus->children, node) {
|
|
struct pcidev_cookie *pcp = this_pbus->self->sysdata;
|
|
|
|
pci_fill_in_pbm_cookies(this_pbus, pbm, pcp->prom_node);
|
|
}
|
|
}
|
|
|
|
static void __init bad_assignment(struct pci_dev *pdev,
|
|
struct linux_prom_pci_registers *ap,
|
|
struct resource *res,
|
|
int do_prom_halt)
|
|
{
|
|
prom_printf("PCI: Bogus PROM assignment. BUS[%02x] DEVFN[%x]\n",
|
|
pdev->bus->number, pdev->devfn);
|
|
if (ap)
|
|
prom_printf("PCI: phys[%08x:%08x:%08x] size[%08x:%08x]\n",
|
|
ap->phys_hi, ap->phys_mid, ap->phys_lo,
|
|
ap->size_hi, ap->size_lo);
|
|
if (res)
|
|
prom_printf("PCI: RES[%016lx-->%016lx:(%lx)]\n",
|
|
res->start, res->end, res->flags);
|
|
prom_printf("Please email this information to davem@redhat.com\n");
|
|
if (do_prom_halt)
|
|
prom_halt();
|
|
}
|
|
|
|
static struct resource *
|
|
__init get_root_resource(struct linux_prom_pci_registers *ap,
|
|
struct pci_pbm_info *pbm)
|
|
{
|
|
int space = (ap->phys_hi >> 24) & 3;
|
|
|
|
switch (space) {
|
|
case 0:
|
|
/* Configuration space, silently ignore it. */
|
|
return NULL;
|
|
|
|
case 1:
|
|
/* 16-bit IO space */
|
|
return &pbm->io_space;
|
|
|
|
case 2:
|
|
/* 32-bit MEM space */
|
|
return &pbm->mem_space;
|
|
|
|
case 3:
|
|
/* 64-bit MEM space, these are allocated out of
|
|
* the 32-bit mem_space range for the PBM, ie.
|
|
* we just zero out the upper 32-bits.
|
|
*/
|
|
return &pbm->mem_space;
|
|
|
|
default:
|
|
printk("PCI: What is resource space %x? "
|
|
"Tell davem@redhat.com about it!\n", space);
|
|
return NULL;
|
|
};
|
|
}
|
|
|
|
static struct resource *
|
|
__init get_device_resource(struct linux_prom_pci_registers *ap,
|
|
struct pci_dev *pdev)
|
|
{
|
|
struct resource *res;
|
|
int breg = (ap->phys_hi & 0xff);
|
|
|
|
switch (breg) {
|
|
case PCI_ROM_ADDRESS:
|
|
/* Unfortunately I have seen several cases where
|
|
* buggy FCODE uses a space value of '1' (I/O space)
|
|
* in the register property for the ROM address
|
|
* so disable this sanity check for now.
|
|
*/
|
|
#if 0
|
|
{
|
|
int space = (ap->phys_hi >> 24) & 3;
|
|
|
|
/* It had better be MEM space. */
|
|
if (space != 2)
|
|
bad_assignment(pdev, ap, NULL, 0);
|
|
}
|
|
#endif
|
|
res = &pdev->resource[PCI_ROM_RESOURCE];
|
|
break;
|
|
|
|
case PCI_BASE_ADDRESS_0:
|
|
case PCI_BASE_ADDRESS_1:
|
|
case PCI_BASE_ADDRESS_2:
|
|
case PCI_BASE_ADDRESS_3:
|
|
case PCI_BASE_ADDRESS_4:
|
|
case PCI_BASE_ADDRESS_5:
|
|
res = &pdev->resource[(breg - PCI_BASE_ADDRESS_0) / 4];
|
|
break;
|
|
|
|
default:
|
|
bad_assignment(pdev, ap, NULL, 0);
|
|
res = NULL;
|
|
break;
|
|
};
|
|
|
|
return res;
|
|
}
|
|
|
|
static int __init pdev_resource_collisions_expected(struct pci_dev *pdev)
|
|
{
|
|
if (pdev->vendor != PCI_VENDOR_ID_SUN)
|
|
return 0;
|
|
|
|
if (pdev->device == PCI_DEVICE_ID_SUN_RIO_EBUS ||
|
|
pdev->device == PCI_DEVICE_ID_SUN_RIO_1394 ||
|
|
pdev->device == PCI_DEVICE_ID_SUN_RIO_USB)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init pdev_record_assignments(struct pci_pbm_info *pbm,
|
|
struct pci_dev *pdev)
|
|
{
|
|
struct pcidev_cookie *pcp = pdev->sysdata;
|
|
int i;
|
|
|
|
for (i = 0; i < pcp->num_prom_assignments; i++) {
|
|
struct linux_prom_pci_registers *ap;
|
|
struct resource *root, *res;
|
|
|
|
/* The format of this property is specified in
|
|
* the PCI Bus Binding to IEEE1275-1994.
|
|
*/
|
|
ap = &pcp->prom_assignments[i];
|
|
root = get_root_resource(ap, pbm);
|
|
res = get_device_resource(ap, pdev);
|
|
if (root == NULL || res == NULL ||
|
|
res->flags == 0)
|
|
continue;
|
|
|
|
/* Ok we know which resource this PROM assignment is
|
|
* for, sanity check it.
|
|
*/
|
|
if ((res->start & 0xffffffffUL) != ap->phys_lo)
|
|
bad_assignment(pdev, ap, res, 1);
|
|
|
|
/* If it is a 64-bit MEM space assignment, verify that
|
|
* the resource is too and that the upper 32-bits match.
|
|
*/
|
|
if (((ap->phys_hi >> 24) & 3) == 3) {
|
|
if (((res->flags & IORESOURCE_MEM) == 0) ||
|
|
((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK)
|
|
!= PCI_BASE_ADDRESS_MEM_TYPE_64))
|
|
bad_assignment(pdev, ap, res, 1);
|
|
if ((res->start >> 32) != ap->phys_mid)
|
|
bad_assignment(pdev, ap, res, 1);
|
|
|
|
/* PBM cannot generate cpu initiated PIOs
|
|
* to the full 64-bit space. Therefore the
|
|
* upper 32-bits better be zero. If it is
|
|
* not, just skip it and we will assign it
|
|
* properly ourselves.
|
|
*/
|
|
if ((res->start >> 32) != 0UL) {
|
|
printk(KERN_ERR "PCI: OBP assigns out of range MEM address "
|
|
"%016lx for region %ld on device %s\n",
|
|
res->start, (res - &pdev->resource[0]), pci_name(pdev));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Adjust the resource into the physical address space
|
|
* of this PBM.
|
|
*/
|
|
pbm->parent->resource_adjust(pdev, res, root);
|
|
|
|
if (request_resource(root, res) < 0) {
|
|
/* OK, there is some conflict. But this is fine
|
|
* since we'll reassign it in the fixup pass.
|
|
*
|
|
* We notify the user that OBP made an error if it
|
|
* is a case we don't expect.
|
|
*/
|
|
if (!pdev_resource_collisions_expected(pdev)) {
|
|
printk(KERN_ERR "PCI: Address space collision on region %ld "
|
|
"[%016lx:%016lx] of device %s\n",
|
|
(res - &pdev->resource[0]),
|
|
res->start, res->end,
|
|
pci_name(pdev));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void __init pci_record_assignments(struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *dev;
|
|
struct pci_bus *bus;
|
|
|
|
list_for_each_entry(dev, &pbus->devices, bus_list)
|
|
pdev_record_assignments(pbm, dev);
|
|
|
|
list_for_each_entry(bus, &pbus->children, node)
|
|
pci_record_assignments(pbm, bus);
|
|
}
|
|
|
|
/* Return non-zero if PDEV has implicit I/O resources even
|
|
* though it may not have an I/O base address register
|
|
* active.
|
|
*/
|
|
static int __init has_implicit_io(struct pci_dev *pdev)
|
|
{
|
|
int class = pdev->class >> 8;
|
|
|
|
if (class == PCI_CLASS_NOT_DEFINED ||
|
|
class == PCI_CLASS_NOT_DEFINED_VGA ||
|
|
class == PCI_CLASS_STORAGE_IDE ||
|
|
(pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init pdev_assign_unassigned(struct pci_pbm_info *pbm,
|
|
struct pci_dev *pdev)
|
|
{
|
|
u32 reg;
|
|
u16 cmd;
|
|
int i, io_seen, mem_seen;
|
|
|
|
io_seen = mem_seen = 0;
|
|
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
|
|
struct resource *root, *res;
|
|
unsigned long size, min, max, align;
|
|
|
|
res = &pdev->resource[i];
|
|
|
|
if (res->flags & IORESOURCE_IO)
|
|
io_seen++;
|
|
else if (res->flags & IORESOURCE_MEM)
|
|
mem_seen++;
|
|
|
|
/* If it is already assigned or the resource does
|
|
* not exist, there is nothing to do.
|
|
*/
|
|
if (res->parent != NULL || res->flags == 0UL)
|
|
continue;
|
|
|
|
/* Determine the root we allocate from. */
|
|
if (res->flags & IORESOURCE_IO) {
|
|
root = &pbm->io_space;
|
|
min = root->start + 0x400UL;
|
|
max = root->end;
|
|
} else {
|
|
root = &pbm->mem_space;
|
|
min = root->start;
|
|
max = min + 0x80000000UL;
|
|
}
|
|
|
|
size = res->end - res->start;
|
|
align = size + 1;
|
|
if (allocate_resource(root, res, size + 1, min, max, align, NULL, NULL) < 0) {
|
|
/* uh oh */
|
|
prom_printf("PCI: Failed to allocate resource %d for %s\n",
|
|
i, pci_name(pdev));
|
|
prom_halt();
|
|
}
|
|
|
|
/* Update PCI config space. */
|
|
pbm->parent->base_address_update(pdev, i);
|
|
}
|
|
|
|
/* Special case, disable the ROM. Several devices
|
|
* act funny (ie. do not respond to memory space writes)
|
|
* when it is left enabled. A good example are Qlogic,ISP
|
|
* adapters.
|
|
*/
|
|
pci_read_config_dword(pdev, PCI_ROM_ADDRESS, ®);
|
|
reg &= ~PCI_ROM_ADDRESS_ENABLE;
|
|
pci_write_config_dword(pdev, PCI_ROM_ADDRESS, reg);
|
|
|
|
/* If we saw I/O or MEM resources, enable appropriate
|
|
* bits in PCI command register.
|
|
*/
|
|
if (io_seen || mem_seen) {
|
|
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
|
|
if (io_seen || has_implicit_io(pdev))
|
|
cmd |= PCI_COMMAND_IO;
|
|
if (mem_seen)
|
|
cmd |= PCI_COMMAND_MEMORY;
|
|
pci_write_config_word(pdev, PCI_COMMAND, cmd);
|
|
}
|
|
|
|
/* If this is a PCI bridge or an IDE controller,
|
|
* enable bus mastering. In the former case also
|
|
* set the cache line size correctly.
|
|
*/
|
|
if (((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) ||
|
|
(((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) &&
|
|
((pdev->class & 0x80) != 0))) {
|
|
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
|
|
cmd |= PCI_COMMAND_MASTER;
|
|
pci_write_config_word(pdev, PCI_COMMAND, cmd);
|
|
|
|
if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
|
|
pci_write_config_byte(pdev,
|
|
PCI_CACHE_LINE_SIZE,
|
|
(64 / sizeof(u32)));
|
|
}
|
|
}
|
|
|
|
void __init pci_assign_unassigned(struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *dev;
|
|
struct pci_bus *bus;
|
|
|
|
list_for_each_entry(dev, &pbus->devices, bus_list)
|
|
pdev_assign_unassigned(pbm, dev);
|
|
|
|
list_for_each_entry(bus, &pbus->children, node)
|
|
pci_assign_unassigned(pbm, bus);
|
|
}
|
|
|
|
static int __init pci_intmap_match(struct pci_dev *pdev, unsigned int *interrupt)
|
|
{
|
|
struct linux_prom_pci_intmap bridge_local_intmap[PROM_PCIIMAP_MAX], *intmap;
|
|
struct linux_prom_pci_intmask bridge_local_intmask, *intmask;
|
|
struct pcidev_cookie *dev_pcp = pdev->sysdata;
|
|
struct pci_pbm_info *pbm = dev_pcp->pbm;
|
|
struct linux_prom_pci_registers *pregs = dev_pcp->prom_regs;
|
|
unsigned int hi, mid, lo, irq;
|
|
int i, num_intmap, map_slot;
|
|
|
|
intmap = &pbm->pbm_intmap[0];
|
|
intmask = &pbm->pbm_intmask;
|
|
num_intmap = pbm->num_pbm_intmap;
|
|
map_slot = 0;
|
|
|
|
/* If we are underneath a PCI bridge, use PROM register
|
|
* property of the parent bridge which is closest to
|
|
* the PBM.
|
|
*
|
|
* However if that parent bridge has interrupt map/mask
|
|
* properties of its own we use the PROM register property
|
|
* of the next child device on the path to PDEV.
|
|
*
|
|
* In detail the two cases are (note that the 'X' below is the
|
|
* 'next child on the path to PDEV' mentioned above):
|
|
*
|
|
* 1) PBM --> PCI bus lacking int{map,mask} --> X ... PDEV
|
|
*
|
|
* Here we use regs of 'PCI bus' device.
|
|
*
|
|
* 2) PBM --> PCI bus with int{map,mask} --> X ... PDEV
|
|
*
|
|
* Here we use regs of 'X'. Note that X can be PDEV.
|
|
*/
|
|
if (pdev->bus->number != pbm->pci_first_busno) {
|
|
struct pcidev_cookie *bus_pcp, *regs_pcp;
|
|
struct pci_dev *bus_dev, *regs_dev;
|
|
int plen;
|
|
|
|
bus_dev = pdev->bus->self;
|
|
regs_dev = pdev;
|
|
|
|
while (bus_dev->bus &&
|
|
bus_dev->bus->number != pbm->pci_first_busno) {
|
|
regs_dev = bus_dev;
|
|
bus_dev = bus_dev->bus->self;
|
|
}
|
|
|
|
regs_pcp = regs_dev->sysdata;
|
|
pregs = regs_pcp->prom_regs;
|
|
|
|
bus_pcp = bus_dev->sysdata;
|
|
|
|
/* But if the PCI bridge has it's own interrupt map
|
|
* and mask properties, use that and the regs of the
|
|
* PCI entity at the next level down on the path to the
|
|
* device.
|
|
*/
|
|
plen = prom_getproperty(bus_pcp->prom_node, "interrupt-map",
|
|
(char *) &bridge_local_intmap[0],
|
|
sizeof(bridge_local_intmap));
|
|
if (plen != -1) {
|
|
intmap = &bridge_local_intmap[0];
|
|
num_intmap = plen / sizeof(struct linux_prom_pci_intmap);
|
|
plen = prom_getproperty(bus_pcp->prom_node,
|
|
"interrupt-map-mask",
|
|
(char *) &bridge_local_intmask,
|
|
sizeof(bridge_local_intmask));
|
|
if (plen == -1) {
|
|
printk("pci_intmap_match: Warning! Bridge has intmap "
|
|
"but no intmask.\n");
|
|
printk("pci_intmap_match: Trying to recover.\n");
|
|
return 0;
|
|
}
|
|
|
|
if (pdev->bus->self != bus_dev)
|
|
map_slot = 1;
|
|
} else {
|
|
pregs = bus_pcp->prom_regs;
|
|
map_slot = 1;
|
|
}
|
|
}
|
|
|
|
if (map_slot) {
|
|
*interrupt = ((*interrupt
|
|
- 1
|
|
+ PCI_SLOT(pdev->devfn)) & 0x3) + 1;
|
|
}
|
|
|
|
hi = pregs->phys_hi & intmask->phys_hi;
|
|
mid = pregs->phys_mid & intmask->phys_mid;
|
|
lo = pregs->phys_lo & intmask->phys_lo;
|
|
irq = *interrupt & intmask->interrupt;
|
|
|
|
for (i = 0; i < num_intmap; i++) {
|
|
if (intmap[i].phys_hi == hi &&
|
|
intmap[i].phys_mid == mid &&
|
|
intmap[i].phys_lo == lo &&
|
|
intmap[i].interrupt == irq) {
|
|
*interrupt = intmap[i].cinterrupt;
|
|
printk("PCI-IRQ: Routing bus[%2x] slot[%2x] map[%d] to INO[%02x]\n",
|
|
pdev->bus->number, PCI_SLOT(pdev->devfn),
|
|
map_slot, *interrupt);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* We will run this code even if pbm->num_pbm_intmap is zero, just so
|
|
* we can apply the slot mapping to the PROM interrupt property value.
|
|
* So do not spit out these warnings in that case.
|
|
*/
|
|
if (num_intmap != 0) {
|
|
/* Print it both to OBP console and kernel one so that if bootup
|
|
* hangs here the user has the information to report.
|
|
*/
|
|
prom_printf("pci_intmap_match: bus %02x, devfn %02x: ",
|
|
pdev->bus->number, pdev->devfn);
|
|
prom_printf("IRQ [%08x.%08x.%08x.%08x] not found in interrupt-map\n",
|
|
pregs->phys_hi, pregs->phys_mid, pregs->phys_lo, *interrupt);
|
|
prom_printf("Please email this information to davem@redhat.com\n");
|
|
|
|
printk("pci_intmap_match: bus %02x, devfn %02x: ",
|
|
pdev->bus->number, pdev->devfn);
|
|
printk("IRQ [%08x.%08x.%08x.%08x] not found in interrupt-map\n",
|
|
pregs->phys_hi, pregs->phys_mid, pregs->phys_lo, *interrupt);
|
|
printk("Please email this information to davem@redhat.com\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init pdev_fixup_irq(struct pci_dev *pdev)
|
|
{
|
|
struct pcidev_cookie *pcp = pdev->sysdata;
|
|
struct pci_pbm_info *pbm = pcp->pbm;
|
|
struct pci_controller_info *p = pbm->parent;
|
|
unsigned int portid = pbm->portid;
|
|
unsigned int prom_irq;
|
|
int prom_node = pcp->prom_node;
|
|
int err;
|
|
|
|
/* If this is an empty EBUS device, sometimes OBP fails to
|
|
* give it a valid fully specified interrupts property.
|
|
* The EBUS hooked up to SunHME on PCI I/O boards of
|
|
* Ex000 systems is one such case.
|
|
*
|
|
* The interrupt is not important so just ignore it.
|
|
*/
|
|
if (pdev->vendor == PCI_VENDOR_ID_SUN &&
|
|
pdev->device == PCI_DEVICE_ID_SUN_EBUS &&
|
|
!prom_getchild(prom_node)) {
|
|
pdev->irq = 0;
|
|
return;
|
|
}
|
|
|
|
err = prom_getproperty(prom_node, "interrupts",
|
|
(char *)&prom_irq, sizeof(prom_irq));
|
|
if (err == 0 || err == -1) {
|
|
pdev->irq = 0;
|
|
return;
|
|
}
|
|
|
|
if (tlb_type != hypervisor) {
|
|
/* Fully specified already? */
|
|
if (((prom_irq & PCI_IRQ_IGN) >> 6) == portid) {
|
|
pdev->irq = p->irq_build(pbm, pdev, prom_irq);
|
|
goto have_irq;
|
|
}
|
|
|
|
/* An onboard device? (bit 5 set) */
|
|
if ((prom_irq & PCI_IRQ_INO) & 0x20) {
|
|
pdev->irq = p->irq_build(pbm, pdev, (portid << 6 | prom_irq));
|
|
goto have_irq;
|
|
}
|
|
}
|
|
|
|
/* Can we find a matching entry in the interrupt-map? */
|
|
if (pci_intmap_match(pdev, &prom_irq)) {
|
|
pdev->irq = p->irq_build(pbm, pdev, (portid << 6) | prom_irq);
|
|
goto have_irq;
|
|
}
|
|
|
|
/* Ok, we have to do it the hard way. */
|
|
{
|
|
unsigned int bus, slot, line;
|
|
|
|
bus = (pbm == &pbm->parent->pbm_B) ? (1 << 4) : 0;
|
|
|
|
/* If we have a legal interrupt property, use it as
|
|
* the IRQ line.
|
|
*/
|
|
if (prom_irq > 0 && prom_irq < 5) {
|
|
line = ((prom_irq - 1) & 3);
|
|
} else {
|
|
u8 pci_irq_line;
|
|
|
|
/* Else just directly consult PCI config space. */
|
|
pci_read_config_byte(pdev, PCI_INTERRUPT_PIN, &pci_irq_line);
|
|
line = ((pci_irq_line - 1) & 3);
|
|
}
|
|
|
|
/* Now figure out the slot.
|
|
*
|
|
* Basically, device number zero on the top-level bus is
|
|
* always the PCI host controller. Slot 0 is then device 1.
|
|
* PBM A supports two external slots (0 and 1), and PBM B
|
|
* supports 4 external slots (0, 1, 2, and 3). On-board PCI
|
|
* devices are wired to device numbers outside of these
|
|
* ranges. -DaveM
|
|
*/
|
|
if (pdev->bus->number == pbm->pci_first_busno) {
|
|
slot = PCI_SLOT(pdev->devfn) - pbm->pci_first_slot;
|
|
} else {
|
|
struct pci_dev *bus_dev;
|
|
|
|
/* Underneath a bridge, use slot number of parent
|
|
* bridge which is closest to the PBM.
|
|
*/
|
|
bus_dev = pdev->bus->self;
|
|
while (bus_dev->bus &&
|
|
bus_dev->bus->number != pbm->pci_first_busno)
|
|
bus_dev = bus_dev->bus->self;
|
|
|
|
slot = PCI_SLOT(bus_dev->devfn) - pbm->pci_first_slot;
|
|
}
|
|
slot = slot << 2;
|
|
|
|
pdev->irq = p->irq_build(pbm, pdev,
|
|
((portid << 6) & PCI_IRQ_IGN) |
|
|
(bus | slot | line));
|
|
}
|
|
|
|
have_irq:
|
|
pci_write_config_byte(pdev, PCI_INTERRUPT_LINE,
|
|
pdev->irq & PCI_IRQ_INO);
|
|
}
|
|
|
|
void __init pci_fixup_irq(struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *dev;
|
|
struct pci_bus *bus;
|
|
|
|
list_for_each_entry(dev, &pbus->devices, bus_list)
|
|
pdev_fixup_irq(dev);
|
|
|
|
list_for_each_entry(bus, &pbus->children, node)
|
|
pci_fixup_irq(pbm, bus);
|
|
}
|
|
|
|
static void pdev_setup_busmastering(struct pci_dev *pdev, int is_66mhz)
|
|
{
|
|
u16 cmd;
|
|
u8 hdr_type, min_gnt, ltimer;
|
|
|
|
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
|
|
cmd |= PCI_COMMAND_MASTER;
|
|
pci_write_config_word(pdev, PCI_COMMAND, cmd);
|
|
|
|
/* Read it back, if the mastering bit did not
|
|
* get set, the device does not support bus
|
|
* mastering so we have nothing to do here.
|
|
*/
|
|
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
|
|
if ((cmd & PCI_COMMAND_MASTER) == 0)
|
|
return;
|
|
|
|
/* Set correct cache line size, 64-byte on all
|
|
* Sparc64 PCI systems. Note that the value is
|
|
* measured in 32-bit words.
|
|
*/
|
|
pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
|
|
64 / sizeof(u32));
|
|
|
|
pci_read_config_byte(pdev, PCI_HEADER_TYPE, &hdr_type);
|
|
hdr_type &= ~0x80;
|
|
if (hdr_type != PCI_HEADER_TYPE_NORMAL)
|
|
return;
|
|
|
|
/* If the latency timer is already programmed with a non-zero
|
|
* value, assume whoever set it (OBP or whoever) knows what
|
|
* they are doing.
|
|
*/
|
|
pci_read_config_byte(pdev, PCI_LATENCY_TIMER, <imer);
|
|
if (ltimer != 0)
|
|
return;
|
|
|
|
/* XXX Since I'm tipping off the min grant value to
|
|
* XXX choose a suitable latency timer value, I also
|
|
* XXX considered making use of the max latency value
|
|
* XXX as well. Unfortunately I've seen too many bogusly
|
|
* XXX low settings for it to the point where it lacks
|
|
* XXX any usefulness. In one case, an ethernet card
|
|
* XXX claimed a min grant of 10 and a max latency of 5.
|
|
* XXX Now, if I had two such cards on the same bus I
|
|
* XXX could not set the desired burst period (calculated
|
|
* XXX from min grant) without violating the max latency
|
|
* XXX bound. Duh...
|
|
* XXX
|
|
* XXX I blame dumb PC bios implementors for stuff like
|
|
* XXX this, most of them don't even try to do something
|
|
* XXX sensible with latency timer values and just set some
|
|
* XXX default value (usually 32) into every device.
|
|
*/
|
|
|
|
pci_read_config_byte(pdev, PCI_MIN_GNT, &min_gnt);
|
|
|
|
if (min_gnt == 0) {
|
|
/* If no min_gnt setting then use a default
|
|
* value.
|
|
*/
|
|
if (is_66mhz)
|
|
ltimer = 16;
|
|
else
|
|
ltimer = 32;
|
|
} else {
|
|
int shift_factor;
|
|
|
|
if (is_66mhz)
|
|
shift_factor = 2;
|
|
else
|
|
shift_factor = 3;
|
|
|
|
/* Use a default value when the min_gnt value
|
|
* is erroneously high.
|
|
*/
|
|
if (((unsigned int) min_gnt << shift_factor) > 512 ||
|
|
((min_gnt << shift_factor) & 0xff) == 0) {
|
|
ltimer = 8 << shift_factor;
|
|
} else {
|
|
ltimer = min_gnt << shift_factor;
|
|
}
|
|
}
|
|
|
|
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ltimer);
|
|
}
|
|
|
|
void pci_determine_66mhz_disposition(struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *pdev;
|
|
int all_are_66mhz;
|
|
u16 status;
|
|
|
|
if (pbm->is_66mhz_capable == 0) {
|
|
all_are_66mhz = 0;
|
|
goto out;
|
|
}
|
|
|
|
all_are_66mhz = 1;
|
|
list_for_each_entry(pdev, &pbus->devices, bus_list) {
|
|
pci_read_config_word(pdev, PCI_STATUS, &status);
|
|
if (!(status & PCI_STATUS_66MHZ)) {
|
|
all_are_66mhz = 0;
|
|
break;
|
|
}
|
|
}
|
|
out:
|
|
pbm->all_devs_66mhz = all_are_66mhz;
|
|
|
|
printk("PCI%d(PBM%c): Bus running at %dMHz\n",
|
|
pbm->parent->index,
|
|
(pbm == &pbm->parent->pbm_A) ? 'A' : 'B',
|
|
(all_are_66mhz ? 66 : 33));
|
|
}
|
|
|
|
void pci_setup_busmastering(struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *dev;
|
|
struct pci_bus *bus;
|
|
int is_66mhz;
|
|
|
|
is_66mhz = pbm->is_66mhz_capable && pbm->all_devs_66mhz;
|
|
|
|
list_for_each_entry(dev, &pbus->devices, bus_list)
|
|
pdev_setup_busmastering(dev, is_66mhz);
|
|
|
|
list_for_each_entry(bus, &pbus->children, node)
|
|
pci_setup_busmastering(pbm, bus);
|
|
}
|
|
|
|
void pci_register_legacy_regions(struct resource *io_res,
|
|
struct resource *mem_res)
|
|
{
|
|
struct resource *p;
|
|
|
|
/* VGA Video RAM. */
|
|
p = kmalloc(sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return;
|
|
|
|
memset(p, 0, sizeof(*p));
|
|
p->name = "Video RAM area";
|
|
p->start = mem_res->start + 0xa0000UL;
|
|
p->end = p->start + 0x1ffffUL;
|
|
p->flags = IORESOURCE_BUSY;
|
|
request_resource(mem_res, p);
|
|
|
|
p = kmalloc(sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return;
|
|
|
|
memset(p, 0, sizeof(*p));
|
|
p->name = "System ROM";
|
|
p->start = mem_res->start + 0xf0000UL;
|
|
p->end = p->start + 0xffffUL;
|
|
p->flags = IORESOURCE_BUSY;
|
|
request_resource(mem_res, p);
|
|
|
|
p = kmalloc(sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return;
|
|
|
|
memset(p, 0, sizeof(*p));
|
|
p->name = "Video ROM";
|
|
p->start = mem_res->start + 0xc0000UL;
|
|
p->end = p->start + 0x7fffUL;
|
|
p->flags = IORESOURCE_BUSY;
|
|
request_resource(mem_res, p);
|
|
}
|
|
|
|
/* Generic helper routines for PCI error reporting. */
|
|
void pci_scan_for_target_abort(struct pci_controller_info *p,
|
|
struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *pdev;
|
|
struct pci_bus *bus;
|
|
|
|
list_for_each_entry(pdev, &pbus->devices, bus_list) {
|
|
u16 status, error_bits;
|
|
|
|
pci_read_config_word(pdev, PCI_STATUS, &status);
|
|
error_bits =
|
|
(status & (PCI_STATUS_SIG_TARGET_ABORT |
|
|
PCI_STATUS_REC_TARGET_ABORT));
|
|
if (error_bits) {
|
|
pci_write_config_word(pdev, PCI_STATUS, error_bits);
|
|
printk("PCI%d(PBM%c): Device [%s] saw Target Abort [%016x]\n",
|
|
p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'),
|
|
pci_name(pdev), status);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(bus, &pbus->children, node)
|
|
pci_scan_for_target_abort(p, pbm, bus);
|
|
}
|
|
|
|
void pci_scan_for_master_abort(struct pci_controller_info *p,
|
|
struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *pdev;
|
|
struct pci_bus *bus;
|
|
|
|
list_for_each_entry(pdev, &pbus->devices, bus_list) {
|
|
u16 status, error_bits;
|
|
|
|
pci_read_config_word(pdev, PCI_STATUS, &status);
|
|
error_bits =
|
|
(status & (PCI_STATUS_REC_MASTER_ABORT));
|
|
if (error_bits) {
|
|
pci_write_config_word(pdev, PCI_STATUS, error_bits);
|
|
printk("PCI%d(PBM%c): Device [%s] received Master Abort [%016x]\n",
|
|
p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'),
|
|
pci_name(pdev), status);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(bus, &pbus->children, node)
|
|
pci_scan_for_master_abort(p, pbm, bus);
|
|
}
|
|
|
|
void pci_scan_for_parity_error(struct pci_controller_info *p,
|
|
struct pci_pbm_info *pbm,
|
|
struct pci_bus *pbus)
|
|
{
|
|
struct pci_dev *pdev;
|
|
struct pci_bus *bus;
|
|
|
|
list_for_each_entry(pdev, &pbus->devices, bus_list) {
|
|
u16 status, error_bits;
|
|
|
|
pci_read_config_word(pdev, PCI_STATUS, &status);
|
|
error_bits =
|
|
(status & (PCI_STATUS_PARITY |
|
|
PCI_STATUS_DETECTED_PARITY));
|
|
if (error_bits) {
|
|
pci_write_config_word(pdev, PCI_STATUS, error_bits);
|
|
printk("PCI%d(PBM%c): Device [%s] saw Parity Error [%016x]\n",
|
|
p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'),
|
|
pci_name(pdev), status);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(bus, &pbus->children, node)
|
|
pci_scan_for_parity_error(p, pbm, bus);
|
|
}
|