kernel-fxtec-pro1x/drivers/crypto/dcp.c
Fabio Estevam ac1ed0c0e1 crypto: dcp - Check the return value from devm_ioremap_resource()
devm_ioremap_resource() may fail, so better check its return value and propagate
it in the case of error.

Signed-off-by: Fabio Estevam <fabio.estevam@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-10-07 14:16:54 +08:00

903 lines
22 KiB
C

/*
* Cryptographic API.
*
* Support for DCP cryptographic accelerator.
*
* Copyright (c) 2013
* Author: Tobias Rauter <tobias.rauter@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* Based on tegra-aes.c, dcp.c (from freescale SDK) and sahara.c
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/mutex.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/crypto.h>
#include <linux/miscdevice.h>
#include <crypto/scatterwalk.h>
#include <crypto/aes.h>
/* IOCTL for DCP OTP Key AES - taken from Freescale's SDK*/
#define DBS_IOCTL_BASE 'd'
#define DBS_ENC _IOW(DBS_IOCTL_BASE, 0x00, uint8_t[16])
#define DBS_DEC _IOW(DBS_IOCTL_BASE, 0x01, uint8_t[16])
/* DCP channel used for AES */
#define USED_CHANNEL 1
/* Ring Buffers' maximum size */
#define DCP_MAX_PKG 20
/* Control Register */
#define DCP_REG_CTRL 0x000
#define DCP_CTRL_SFRST (1<<31)
#define DCP_CTRL_CLKGATE (1<<30)
#define DCP_CTRL_CRYPTO_PRESENT (1<<29)
#define DCP_CTRL_SHA_PRESENT (1<<28)
#define DCP_CTRL_GATHER_RES_WRITE (1<<23)
#define DCP_CTRL_ENABLE_CONTEXT_CACHE (1<<22)
#define DCP_CTRL_ENABLE_CONTEXT_SWITCH (1<<21)
#define DCP_CTRL_CH_IRQ_E_0 0x01
#define DCP_CTRL_CH_IRQ_E_1 0x02
#define DCP_CTRL_CH_IRQ_E_2 0x04
#define DCP_CTRL_CH_IRQ_E_3 0x08
/* Status register */
#define DCP_REG_STAT 0x010
#define DCP_STAT_OTP_KEY_READY (1<<28)
#define DCP_STAT_CUR_CHANNEL(stat) ((stat>>24)&0x0F)
#define DCP_STAT_READY_CHANNEL(stat) ((stat>>16)&0x0F)
#define DCP_STAT_IRQ(stat) (stat&0x0F)
#define DCP_STAT_CHAN_0 (0x01)
#define DCP_STAT_CHAN_1 (0x02)
#define DCP_STAT_CHAN_2 (0x04)
#define DCP_STAT_CHAN_3 (0x08)
/* Channel Control Register */
#define DCP_REG_CHAN_CTRL 0x020
#define DCP_CHAN_CTRL_CH0_IRQ_MERGED (1<<16)
#define DCP_CHAN_CTRL_HIGH_PRIO_0 (0x0100)
#define DCP_CHAN_CTRL_HIGH_PRIO_1 (0x0200)
#define DCP_CHAN_CTRL_HIGH_PRIO_2 (0x0400)
#define DCP_CHAN_CTRL_HIGH_PRIO_3 (0x0800)
#define DCP_CHAN_CTRL_ENABLE_0 (0x01)
#define DCP_CHAN_CTRL_ENABLE_1 (0x02)
#define DCP_CHAN_CTRL_ENABLE_2 (0x04)
#define DCP_CHAN_CTRL_ENABLE_3 (0x08)
/*
* Channel Registers:
* The DCP has 4 channels. Each of this channels
* has 4 registers (command pointer, semaphore, status and options).
* The address of register REG of channel CHAN is obtained by
* dcp_chan_reg(REG, CHAN)
*/
#define DCP_REG_CHAN_PTR 0x00000100
#define DCP_REG_CHAN_SEMA 0x00000110
#define DCP_REG_CHAN_STAT 0x00000120
#define DCP_REG_CHAN_OPT 0x00000130
#define DCP_CHAN_STAT_NEXT_CHAIN_IS_0 0x010000
#define DCP_CHAN_STAT_NO_CHAIN 0x020000
#define DCP_CHAN_STAT_CONTEXT_ERROR 0x030000
#define DCP_CHAN_STAT_PAYLOAD_ERROR 0x040000
#define DCP_CHAN_STAT_INVALID_MODE 0x050000
#define DCP_CHAN_STAT_PAGEFAULT 0x40
#define DCP_CHAN_STAT_DST 0x20
#define DCP_CHAN_STAT_SRC 0x10
#define DCP_CHAN_STAT_PACKET 0x08
#define DCP_CHAN_STAT_SETUP 0x04
#define DCP_CHAN_STAT_MISMATCH 0x02
/* hw packet control*/
#define DCP_PKT_PAYLOAD_KEY (1<<11)
#define DCP_PKT_OTP_KEY (1<<10)
#define DCP_PKT_CIPHER_INIT (1<<9)
#define DCP_PKG_CIPHER_ENCRYPT (1<<8)
#define DCP_PKT_CIPHER_ENABLE (1<<5)
#define DCP_PKT_DECR_SEM (1<<1)
#define DCP_PKT_CHAIN (1<<2)
#define DCP_PKT_IRQ 1
#define DCP_PKT_MODE_CBC (1<<4)
#define DCP_PKT_KEYSELECT_OTP (0xFF<<8)
/* cipher flags */
#define DCP_ENC 0x0001
#define DCP_DEC 0x0002
#define DCP_ECB 0x0004
#define DCP_CBC 0x0008
#define DCP_CBC_INIT 0x0010
#define DCP_NEW_KEY 0x0040
#define DCP_OTP_KEY 0x0080
#define DCP_AES 0x1000
/* DCP Flags */
#define DCP_FLAG_BUSY 0x01
#define DCP_FLAG_PRODUCING 0x02
/* clock defines */
#define CLOCK_ON 1
#define CLOCK_OFF 0
struct dcp_dev_req_ctx {
int mode;
};
struct dcp_op {
unsigned int flags;
u8 key[AES_KEYSIZE_128];
int keylen;
struct ablkcipher_request *req;
struct crypto_ablkcipher *fallback;
uint32_t stat;
uint32_t pkt1;
uint32_t pkt2;
struct ablkcipher_walk walk;
};
struct dcp_dev {
struct device *dev;
void __iomem *dcp_regs_base;
int dcp_vmi_irq;
int dcp_irq;
spinlock_t queue_lock;
struct crypto_queue queue;
uint32_t pkt_produced;
uint32_t pkt_consumed;
struct dcp_hw_packet *hw_pkg[DCP_MAX_PKG];
dma_addr_t hw_phys_pkg;
/* [KEY][IV] Both with 16 Bytes */
u8 *payload_base;
dma_addr_t payload_base_dma;
struct tasklet_struct done_task;
struct tasklet_struct queue_task;
struct timer_list watchdog;
unsigned long flags;
struct dcp_op *ctx;
struct miscdevice dcp_bootstream_misc;
};
struct dcp_hw_packet {
uint32_t next;
uint32_t pkt1;
uint32_t pkt2;
uint32_t src;
uint32_t dst;
uint32_t size;
uint32_t payload;
uint32_t stat;
};
static struct dcp_dev *global_dev;
static inline u32 dcp_chan_reg(u32 reg, int chan)
{
return reg + (chan) * 0x40;
}
static inline void dcp_write(struct dcp_dev *dev, u32 data, u32 reg)
{
writel(data, dev->dcp_regs_base + reg);
}
static inline void dcp_set(struct dcp_dev *dev, u32 data, u32 reg)
{
writel(data, dev->dcp_regs_base + (reg | 0x04));
}
static inline void dcp_clear(struct dcp_dev *dev, u32 data, u32 reg)
{
writel(data, dev->dcp_regs_base + (reg | 0x08));
}
static inline void dcp_toggle(struct dcp_dev *dev, u32 data, u32 reg)
{
writel(data, dev->dcp_regs_base + (reg | 0x0C));
}
static inline unsigned int dcp_read(struct dcp_dev *dev, u32 reg)
{
return readl(dev->dcp_regs_base + reg);
}
static void dcp_dma_unmap(struct dcp_dev *dev, struct dcp_hw_packet *pkt)
{
dma_unmap_page(dev->dev, pkt->src, pkt->size, DMA_TO_DEVICE);
dma_unmap_page(dev->dev, pkt->dst, pkt->size, DMA_FROM_DEVICE);
dev_dbg(dev->dev, "unmap packet %x", (unsigned int) pkt);
}
static int dcp_dma_map(struct dcp_dev *dev,
struct ablkcipher_walk *walk, struct dcp_hw_packet *pkt)
{
dev_dbg(dev->dev, "map packet %x", (unsigned int) pkt);
/* align to length = 16 */
pkt->size = walk->nbytes - (walk->nbytes % 16);
pkt->src = dma_map_page(dev->dev, walk->src.page, walk->src.offset,
pkt->size, DMA_TO_DEVICE);
if (pkt->src == 0) {
dev_err(dev->dev, "Unable to map src");
return -ENOMEM;
}
pkt->dst = dma_map_page(dev->dev, walk->dst.page, walk->dst.offset,
pkt->size, DMA_FROM_DEVICE);
if (pkt->dst == 0) {
dev_err(dev->dev, "Unable to map dst");
dma_unmap_page(dev->dev, pkt->src, pkt->size, DMA_TO_DEVICE);
return -ENOMEM;
}
return 0;
}
static void dcp_op_one(struct dcp_dev *dev, struct dcp_hw_packet *pkt,
uint8_t last)
{
struct dcp_op *ctx = dev->ctx;
pkt->pkt1 = ctx->pkt1;
pkt->pkt2 = ctx->pkt2;
pkt->payload = (u32) dev->payload_base_dma;
pkt->stat = 0;
if (ctx->flags & DCP_CBC_INIT) {
pkt->pkt1 |= DCP_PKT_CIPHER_INIT;
ctx->flags &= ~DCP_CBC_INIT;
}
mod_timer(&dev->watchdog, jiffies + msecs_to_jiffies(500));
pkt->pkt1 |= DCP_PKT_IRQ;
if (!last)
pkt->pkt1 |= DCP_PKT_CHAIN;
dev->pkt_produced++;
dcp_write(dev, 1,
dcp_chan_reg(DCP_REG_CHAN_SEMA, USED_CHANNEL));
}
static void dcp_op_proceed(struct dcp_dev *dev)
{
struct dcp_op *ctx = dev->ctx;
struct dcp_hw_packet *pkt;
while (ctx->walk.nbytes) {
int err = 0;
pkt = dev->hw_pkg[dev->pkt_produced % DCP_MAX_PKG];
err = dcp_dma_map(dev, &ctx->walk, pkt);
if (err) {
dev->ctx->stat |= err;
/* start timer to wait for already set up calls */
mod_timer(&dev->watchdog,
jiffies + msecs_to_jiffies(500));
break;
}
err = ctx->walk.nbytes - pkt->size;
ablkcipher_walk_done(dev->ctx->req, &dev->ctx->walk, err);
dcp_op_one(dev, pkt, ctx->walk.nbytes == 0);
/* we have to wait if no space is left in buffer */
if (dev->pkt_produced - dev->pkt_consumed == DCP_MAX_PKG)
break;
}
clear_bit(DCP_FLAG_PRODUCING, &dev->flags);
}
static void dcp_op_start(struct dcp_dev *dev, uint8_t use_walk)
{
struct dcp_op *ctx = dev->ctx;
if (ctx->flags & DCP_NEW_KEY) {
memcpy(dev->payload_base, ctx->key, ctx->keylen);
ctx->flags &= ~DCP_NEW_KEY;
}
ctx->pkt1 = 0;
ctx->pkt1 |= DCP_PKT_CIPHER_ENABLE;
ctx->pkt1 |= DCP_PKT_DECR_SEM;
if (ctx->flags & DCP_OTP_KEY)
ctx->pkt1 |= DCP_PKT_OTP_KEY;
else
ctx->pkt1 |= DCP_PKT_PAYLOAD_KEY;
if (ctx->flags & DCP_ENC)
ctx->pkt1 |= DCP_PKG_CIPHER_ENCRYPT;
ctx->pkt2 = 0;
if (ctx->flags & DCP_CBC)
ctx->pkt2 |= DCP_PKT_MODE_CBC;
dev->pkt_produced = 0;
dev->pkt_consumed = 0;
ctx->stat = 0;
dcp_clear(dev, -1, dcp_chan_reg(DCP_REG_CHAN_STAT, USED_CHANNEL));
dcp_write(dev, (u32) dev->hw_phys_pkg,
dcp_chan_reg(DCP_REG_CHAN_PTR, USED_CHANNEL));
set_bit(DCP_FLAG_PRODUCING, &dev->flags);
if (use_walk) {
ablkcipher_walk_init(&ctx->walk, ctx->req->dst,
ctx->req->src, ctx->req->nbytes);
ablkcipher_walk_phys(ctx->req, &ctx->walk);
dcp_op_proceed(dev);
} else {
dcp_op_one(dev, dev->hw_pkg[0], 1);
clear_bit(DCP_FLAG_PRODUCING, &dev->flags);
}
}
static void dcp_done_task(unsigned long data)
{
struct dcp_dev *dev = (struct dcp_dev *)data;
struct dcp_hw_packet *last_packet;
int fin;
fin = 0;
for (last_packet = dev->hw_pkg[(dev->pkt_consumed) % DCP_MAX_PKG];
last_packet->stat == 1;
last_packet =
dev->hw_pkg[++(dev->pkt_consumed) % DCP_MAX_PKG]) {
dcp_dma_unmap(dev, last_packet);
last_packet->stat = 0;
fin++;
}
/* the last call of this function already consumed this IRQ's packet */
if (fin == 0)
return;
dev_dbg(dev->dev,
"Packet(s) done with status %x; finished: %d, produced:%d, complete consumed: %d",
dev->ctx->stat, fin, dev->pkt_produced, dev->pkt_consumed);
last_packet = dev->hw_pkg[(dev->pkt_consumed - 1) % DCP_MAX_PKG];
if (!dev->ctx->stat && last_packet->pkt1 & DCP_PKT_CHAIN) {
if (!test_and_set_bit(DCP_FLAG_PRODUCING, &dev->flags))
dcp_op_proceed(dev);
return;
}
while (unlikely(dev->pkt_consumed < dev->pkt_produced)) {
dcp_dma_unmap(dev,
dev->hw_pkg[dev->pkt_consumed++ % DCP_MAX_PKG]);
}
if (dev->ctx->flags & DCP_OTP_KEY) {
/* we used the miscdevice, no walk to finish */
clear_bit(DCP_FLAG_BUSY, &dev->flags);
return;
}
ablkcipher_walk_complete(&dev->ctx->walk);
dev->ctx->req->base.complete(&dev->ctx->req->base,
dev->ctx->stat);
dev->ctx->req = NULL;
/* in case there are other requests in the queue */
tasklet_schedule(&dev->queue_task);
}
static void dcp_watchdog(unsigned long data)
{
struct dcp_dev *dev = (struct dcp_dev *)data;
dev->ctx->stat |= dcp_read(dev,
dcp_chan_reg(DCP_REG_CHAN_STAT, USED_CHANNEL));
dev_err(dev->dev, "Timeout, Channel status: %x", dev->ctx->stat);
if (!dev->ctx->stat)
dev->ctx->stat = -ETIMEDOUT;
dcp_done_task(data);
}
static irqreturn_t dcp_common_irq(int irq, void *context)
{
u32 msk;
struct dcp_dev *dev = (struct dcp_dev *) context;
del_timer(&dev->watchdog);
msk = DCP_STAT_IRQ(dcp_read(dev, DCP_REG_STAT));
dcp_clear(dev, msk, DCP_REG_STAT);
if (msk == 0)
return IRQ_NONE;
dev->ctx->stat |= dcp_read(dev,
dcp_chan_reg(DCP_REG_CHAN_STAT, USED_CHANNEL));
if (msk & DCP_STAT_CHAN_1)
tasklet_schedule(&dev->done_task);
return IRQ_HANDLED;
}
static irqreturn_t dcp_vmi_irq(int irq, void *context)
{
return dcp_common_irq(irq, context);
}
static irqreturn_t dcp_irq(int irq, void *context)
{
return dcp_common_irq(irq, context);
}
static void dcp_crypt(struct dcp_dev *dev, struct dcp_op *ctx)
{
dev->ctx = ctx;
if ((ctx->flags & DCP_CBC) && ctx->req->info) {
ctx->flags |= DCP_CBC_INIT;
memcpy(dev->payload_base + AES_KEYSIZE_128,
ctx->req->info, AES_KEYSIZE_128);
}
dcp_op_start(dev, 1);
}
static void dcp_queue_task(unsigned long data)
{
struct dcp_dev *dev = (struct dcp_dev *) data;
struct crypto_async_request *async_req, *backlog;
struct crypto_ablkcipher *tfm;
struct dcp_op *ctx;
struct dcp_dev_req_ctx *rctx;
struct ablkcipher_request *req;
unsigned long flags;
spin_lock_irqsave(&dev->queue_lock, flags);
backlog = crypto_get_backlog(&dev->queue);
async_req = crypto_dequeue_request(&dev->queue);
spin_unlock_irqrestore(&dev->queue_lock, flags);
if (!async_req)
goto ret_nothing_done;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
req = ablkcipher_request_cast(async_req);
tfm = crypto_ablkcipher_reqtfm(req);
rctx = ablkcipher_request_ctx(req);
ctx = crypto_ablkcipher_ctx(tfm);
if (!req->src || !req->dst)
goto ret_nothing_done;
ctx->flags |= rctx->mode;
ctx->req = req;
dcp_crypt(dev, ctx);
return;
ret_nothing_done:
clear_bit(DCP_FLAG_BUSY, &dev->flags);
}
static int dcp_cra_init(struct crypto_tfm *tfm)
{
const char *name = tfm->__crt_alg->cra_name;
struct dcp_op *ctx = crypto_tfm_ctx(tfm);
tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_dev_req_ctx);
ctx->fallback = crypto_alloc_ablkcipher(name, 0,
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback)) {
dev_err(global_dev->dev, "Error allocating fallback algo %s\n",
name);
return PTR_ERR(ctx->fallback);
}
return 0;
}
static void dcp_cra_exit(struct crypto_tfm *tfm)
{
struct dcp_op *ctx = crypto_tfm_ctx(tfm);
if (ctx->fallback)
crypto_free_ablkcipher(ctx->fallback);
ctx->fallback = NULL;
}
/* async interface */
static int dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int len)
{
struct dcp_op *ctx = crypto_ablkcipher_ctx(tfm);
unsigned int ret = 0;
ctx->keylen = len;
ctx->flags = 0;
if (len == AES_KEYSIZE_128) {
if (memcmp(ctx->key, key, AES_KEYSIZE_128)) {
memcpy(ctx->key, key, len);
ctx->flags |= DCP_NEW_KEY;
}
return 0;
}
ctx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
ctx->fallback->base.crt_flags |=
(tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
ret = crypto_ablkcipher_setkey(ctx->fallback, key, len);
if (ret) {
struct crypto_tfm *tfm_aux = crypto_ablkcipher_tfm(tfm);
tfm_aux->crt_flags &= ~CRYPTO_TFM_RES_MASK;
tfm_aux->crt_flags |=
(ctx->fallback->base.crt_flags & CRYPTO_TFM_RES_MASK);
}
return ret;
}
static int dcp_aes_cbc_crypt(struct ablkcipher_request *req, int mode)
{
struct dcp_dev_req_ctx *rctx = ablkcipher_request_ctx(req);
struct dcp_dev *dev = global_dev;
unsigned long flags;
int err = 0;
if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE))
return -EINVAL;
rctx->mode = mode;
spin_lock_irqsave(&dev->queue_lock, flags);
err = ablkcipher_enqueue_request(&dev->queue, req);
spin_unlock_irqrestore(&dev->queue_lock, flags);
flags = test_and_set_bit(DCP_FLAG_BUSY, &dev->flags);
if (!(flags & DCP_FLAG_BUSY))
tasklet_schedule(&dev->queue_task);
return err;
}
static int dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
{
struct crypto_tfm *tfm =
crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
struct dcp_op *ctx = crypto_ablkcipher_ctx(
crypto_ablkcipher_reqtfm(req));
if (unlikely(ctx->keylen != AES_KEYSIZE_128)) {
int err = 0;
ablkcipher_request_set_tfm(req, ctx->fallback);
err = crypto_ablkcipher_encrypt(req);
ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm));
return err;
}
return dcp_aes_cbc_crypt(req, DCP_AES | DCP_ENC | DCP_CBC);
}
static int dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
{
struct crypto_tfm *tfm =
crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
struct dcp_op *ctx = crypto_ablkcipher_ctx(
crypto_ablkcipher_reqtfm(req));
if (unlikely(ctx->keylen != AES_KEYSIZE_128)) {
int err = 0;
ablkcipher_request_set_tfm(req, ctx->fallback);
err = crypto_ablkcipher_decrypt(req);
ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm));
return err;
}
return dcp_aes_cbc_crypt(req, DCP_AES | DCP_DEC | DCP_CBC);
}
static struct crypto_alg algs[] = {
{
.cra_name = "cbc(aes)",
.cra_driver_name = "dcp-cbc-aes",
.cra_alignmask = 3,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_KEYSIZE_128,
.cra_type = &crypto_ablkcipher_type,
.cra_priority = 300,
.cra_u.ablkcipher = {
.min_keysize = AES_KEYSIZE_128,
.max_keysize = AES_KEYSIZE_128,
.setkey = dcp_aes_setkey,
.encrypt = dcp_aes_cbc_encrypt,
.decrypt = dcp_aes_cbc_decrypt,
.ivsize = AES_KEYSIZE_128,
}
},
};
/* DCP bootstream verification interface: uses OTP key for crypto */
static int dcp_bootstream_open(struct inode *inode, struct file *file)
{
file->private_data = container_of((file->private_data),
struct dcp_dev, dcp_bootstream_misc);
return 0;
}
static long dcp_bootstream_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
struct dcp_dev *dev = (struct dcp_dev *) file->private_data;
void __user *argp = (void __user *)arg;
int ret;
if (dev == NULL)
return -EBADF;
if (cmd != DBS_ENC && cmd != DBS_DEC)
return -EINVAL;
if (copy_from_user(dev->payload_base, argp, 16))
return -EFAULT;
if (test_and_set_bit(DCP_FLAG_BUSY, &dev->flags))
return -EAGAIN;
dev->ctx = kzalloc(sizeof(struct dcp_op), GFP_KERNEL);
if (!dev->ctx) {
dev_err(dev->dev,
"cannot allocate context for OTP crypto");
clear_bit(DCP_FLAG_BUSY, &dev->flags);
return -ENOMEM;
}
dev->ctx->flags = DCP_AES | DCP_ECB | DCP_OTP_KEY | DCP_CBC_INIT;
dev->ctx->flags |= (cmd == DBS_ENC) ? DCP_ENC : DCP_DEC;
dev->hw_pkg[0]->src = dev->payload_base_dma;
dev->hw_pkg[0]->dst = dev->payload_base_dma;
dev->hw_pkg[0]->size = 16;
dcp_op_start(dev, 0);
while (test_bit(DCP_FLAG_BUSY, &dev->flags))
cpu_relax();
ret = dev->ctx->stat;
if (!ret && copy_to_user(argp, dev->payload_base, 16))
ret = -EFAULT;
kfree(dev->ctx);
return ret;
}
static const struct file_operations dcp_bootstream_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = dcp_bootstream_ioctl,
.open = dcp_bootstream_open,
};
static int dcp_probe(struct platform_device *pdev)
{
struct dcp_dev *dev = NULL;
struct resource *r;
int i, ret, j;
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
global_dev = dev;
dev->dev = &pdev->dev;
platform_set_drvdata(pdev, dev);
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dev->dcp_regs_base = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(dev->dcp_regs_base))
return PTR_ERR(dev->dcp_regs_base);
dcp_set(dev, DCP_CTRL_SFRST, DCP_REG_CTRL);
udelay(10);
dcp_clear(dev, DCP_CTRL_SFRST | DCP_CTRL_CLKGATE, DCP_REG_CTRL);
dcp_write(dev, DCP_CTRL_GATHER_RES_WRITE |
DCP_CTRL_ENABLE_CONTEXT_CACHE | DCP_CTRL_CH_IRQ_E_1,
DCP_REG_CTRL);
dcp_write(dev, DCP_CHAN_CTRL_ENABLE_1, DCP_REG_CHAN_CTRL);
for (i = 0; i < 4; i++)
dcp_clear(dev, -1, dcp_chan_reg(DCP_REG_CHAN_STAT, i));
dcp_clear(dev, -1, DCP_REG_STAT);
r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!r) {
dev_err(&pdev->dev, "can't get IRQ resource (0)\n");
return -EIO;
}
dev->dcp_vmi_irq = r->start;
ret = devm_request_irq(&pdev->dev, dev->dcp_vmi_irq, dcp_vmi_irq, 0,
"dcp", dev);
if (ret != 0) {
dev_err(&pdev->dev, "can't request_irq (0)\n");
return -EIO;
}
r = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
if (!r) {
dev_err(&pdev->dev, "can't get IRQ resource (1)\n");
return -EIO;
}
dev->dcp_irq = r->start;
ret = devm_request_irq(&pdev->dev, dev->dcp_irq, dcp_irq, 0, "dcp",
dev);
if (ret != 0) {
dev_err(&pdev->dev, "can't request_irq (1)\n");
return -EIO;
}
dev->hw_pkg[0] = dma_alloc_coherent(&pdev->dev,
DCP_MAX_PKG * sizeof(struct dcp_hw_packet),
&dev->hw_phys_pkg,
GFP_KERNEL);
if (!dev->hw_pkg[0]) {
dev_err(&pdev->dev, "Could not allocate hw descriptors\n");
return -ENOMEM;
}
for (i = 1; i < DCP_MAX_PKG; i++) {
dev->hw_pkg[i - 1]->next = dev->hw_phys_pkg
+ i * sizeof(struct dcp_hw_packet);
dev->hw_pkg[i] = dev->hw_pkg[i - 1] + 1;
}
dev->hw_pkg[i - 1]->next = dev->hw_phys_pkg;
dev->payload_base = dma_alloc_coherent(&pdev->dev, 2 * AES_KEYSIZE_128,
&dev->payload_base_dma, GFP_KERNEL);
if (!dev->payload_base) {
dev_err(&pdev->dev, "Could not allocate memory for key\n");
ret = -ENOMEM;
goto err_free_hw_packet;
}
tasklet_init(&dev->queue_task, dcp_queue_task,
(unsigned long) dev);
tasklet_init(&dev->done_task, dcp_done_task,
(unsigned long) dev);
spin_lock_init(&dev->queue_lock);
crypto_init_queue(&dev->queue, 10);
init_timer(&dev->watchdog);
dev->watchdog.function = &dcp_watchdog;
dev->watchdog.data = (unsigned long)dev;
dev->dcp_bootstream_misc.minor = MISC_DYNAMIC_MINOR,
dev->dcp_bootstream_misc.name = "dcpboot",
dev->dcp_bootstream_misc.fops = &dcp_bootstream_fops,
ret = misc_register(&dev->dcp_bootstream_misc);
if (ret != 0) {
dev_err(dev->dev, "Unable to register misc device\n");
goto err_free_key_iv;
}
for (i = 0; i < ARRAY_SIZE(algs); i++) {
algs[i].cra_priority = 300;
algs[i].cra_ctxsize = sizeof(struct dcp_op);
algs[i].cra_module = THIS_MODULE;
algs[i].cra_init = dcp_cra_init;
algs[i].cra_exit = dcp_cra_exit;
if (crypto_register_alg(&algs[i])) {
dev_err(&pdev->dev, "register algorithm failed\n");
ret = -ENOMEM;
goto err_unregister;
}
}
dev_notice(&pdev->dev, "DCP crypto enabled.!\n");
return 0;
err_unregister:
for (j = 0; j < i; j++)
crypto_unregister_alg(&algs[j]);
err_free_key_iv:
tasklet_kill(&dev->done_task);
tasklet_kill(&dev->queue_task);
dma_free_coherent(&pdev->dev, 2 * AES_KEYSIZE_128, dev->payload_base,
dev->payload_base_dma);
err_free_hw_packet:
dma_free_coherent(&pdev->dev, DCP_MAX_PKG *
sizeof(struct dcp_hw_packet), dev->hw_pkg[0],
dev->hw_phys_pkg);
return ret;
}
static int dcp_remove(struct platform_device *pdev)
{
struct dcp_dev *dev;
int j;
dev = platform_get_drvdata(pdev);
misc_deregister(&dev->dcp_bootstream_misc);
for (j = 0; j < ARRAY_SIZE(algs); j++)
crypto_unregister_alg(&algs[j]);
tasklet_kill(&dev->done_task);
tasklet_kill(&dev->queue_task);
dma_free_coherent(&pdev->dev, 2 * AES_KEYSIZE_128, dev->payload_base,
dev->payload_base_dma);
dma_free_coherent(&pdev->dev,
DCP_MAX_PKG * sizeof(struct dcp_hw_packet),
dev->hw_pkg[0], dev->hw_phys_pkg);
return 0;
}
static struct of_device_id fs_dcp_of_match[] = {
{ .compatible = "fsl-dcp"},
{},
};
static struct platform_driver fs_dcp_driver = {
.probe = dcp_probe,
.remove = dcp_remove,
.driver = {
.name = "fsl-dcp",
.owner = THIS_MODULE,
.of_match_table = fs_dcp_of_match
}
};
module_platform_driver(fs_dcp_driver);
MODULE_AUTHOR("Tobias Rauter <tobias.rauter@gmail.com>");
MODULE_DESCRIPTION("Freescale DCP Crypto Driver");
MODULE_LICENSE("GPL");