kernel-fxtec-pro1x/arch/tile/kernel/stack.c
Chris Metcalf 93013a0f53 arch/tile: refactor backtracing code
This change is the result of some work to make the backtrace code more
shareable between kernel, libc, and gdb.

For the kernel, some good effects are to eliminate the hacky
"VirtualAddress" typedef in favor of "unsigned long", to eliminate a
bunch of spurious kernel doc comments, to remove the dead "bt_read_memory"
function, and to use "__tilegx__" in #ifdefs instead of "TILE_CHIP".

Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
2011-05-02 13:49:14 -04:00

497 lines
14 KiB
C

/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/kprobes.h>
#include <linux/module.h>
#include <linux/pfn.h>
#include <linux/kallsyms.h>
#include <linux/stacktrace.h>
#include <linux/uaccess.h>
#include <linux/mmzone.h>
#include <asm/backtrace.h>
#include <asm/page.h>
#include <asm/tlbflush.h>
#include <asm/ucontext.h>
#include <asm/sigframe.h>
#include <asm/stack.h>
#include <arch/abi.h>
#include <arch/interrupts.h>
#define KBT_ONGOING 0 /* Backtrace still ongoing */
#define KBT_DONE 1 /* Backtrace cleanly completed */
#define KBT_RUNNING 2 /* Can't run backtrace on a running task */
#define KBT_LOOP 3 /* Backtrace entered a loop */
/* Is address on the specified kernel stack? */
static int in_kernel_stack(struct KBacktraceIterator *kbt, unsigned long sp)
{
ulong kstack_base = (ulong) kbt->task->stack;
if (kstack_base == 0) /* corrupt task pointer; just follow stack... */
return sp >= PAGE_OFFSET && sp < (unsigned long)high_memory;
return sp >= kstack_base && sp < kstack_base + THREAD_SIZE;
}
/* Is address valid for reading? */
static int valid_address(struct KBacktraceIterator *kbt, unsigned long address)
{
HV_PTE *l1_pgtable = kbt->pgtable;
HV_PTE *l2_pgtable;
unsigned long pfn;
HV_PTE pte;
struct page *page;
if (l1_pgtable == NULL)
return 0; /* can't read user space in other tasks */
#ifdef CONFIG_64BIT
/* Find the real l1_pgtable by looking in the l0_pgtable. */
pte = l1_pgtable[HV_L0_INDEX(address)];
if (!hv_pte_get_present(pte))
return 0;
pfn = hv_pte_get_pfn(pte);
if (pte_huge(pte)) {
if (!pfn_valid(pfn)) {
pr_err("L0 huge page has bad pfn %#lx\n", pfn);
return 0;
}
return hv_pte_get_present(pte) && hv_pte_get_readable(pte);
}
page = pfn_to_page(pfn);
BUG_ON(PageHighMem(page)); /* No HIGHMEM on 64-bit. */
l1_pgtable = (HV_PTE *)pfn_to_kaddr(pfn);
#endif
pte = l1_pgtable[HV_L1_INDEX(address)];
if (!hv_pte_get_present(pte))
return 0;
pfn = hv_pte_get_pfn(pte);
if (pte_huge(pte)) {
if (!pfn_valid(pfn)) {
pr_err("huge page has bad pfn %#lx\n", pfn);
return 0;
}
return hv_pte_get_present(pte) && hv_pte_get_readable(pte);
}
page = pfn_to_page(pfn);
if (PageHighMem(page)) {
pr_err("L2 page table not in LOWMEM (%#llx)\n",
HV_PFN_TO_CPA(pfn));
return 0;
}
l2_pgtable = (HV_PTE *)pfn_to_kaddr(pfn);
pte = l2_pgtable[HV_L2_INDEX(address)];
return hv_pte_get_present(pte) && hv_pte_get_readable(pte);
}
/* Callback for backtracer; basically a glorified memcpy */
static bool read_memory_func(void *result, unsigned long address,
unsigned int size, void *vkbt)
{
int retval;
struct KBacktraceIterator *kbt = (struct KBacktraceIterator *)vkbt;
if (__kernel_text_address(address)) {
/* OK to read kernel code. */
} else if (address >= PAGE_OFFSET) {
/* We only tolerate kernel-space reads of this task's stack */
if (!in_kernel_stack(kbt, address))
return 0;
} else if (!valid_address(kbt, address)) {
return 0; /* invalid user-space address */
}
pagefault_disable();
retval = __copy_from_user_inatomic(result,
(void __user __force *)address,
size);
pagefault_enable();
return (retval == 0);
}
/* Return a pt_regs pointer for a valid fault handler frame */
static struct pt_regs *valid_fault_handler(struct KBacktraceIterator* kbt)
{
const char *fault = NULL; /* happy compiler */
char fault_buf[64];
unsigned long sp = kbt->it.sp;
struct pt_regs *p;
if (!in_kernel_stack(kbt, sp))
return NULL;
if (!in_kernel_stack(kbt, sp + C_ABI_SAVE_AREA_SIZE + PTREGS_SIZE-1))
return NULL;
p = (struct pt_regs *)(sp + C_ABI_SAVE_AREA_SIZE);
if (p->faultnum == INT_SWINT_1 || p->faultnum == INT_SWINT_1_SIGRETURN)
fault = "syscall";
else {
if (kbt->verbose) { /* else we aren't going to use it */
snprintf(fault_buf, sizeof(fault_buf),
"interrupt %ld", p->faultnum);
fault = fault_buf;
}
}
if (EX1_PL(p->ex1) == KERNEL_PL &&
__kernel_text_address(p->pc) &&
in_kernel_stack(kbt, p->sp) &&
p->sp >= sp) {
if (kbt->verbose)
pr_err(" <%s while in kernel mode>\n", fault);
} else if (EX1_PL(p->ex1) == USER_PL &&
p->pc < PAGE_OFFSET &&
p->sp < PAGE_OFFSET) {
if (kbt->verbose)
pr_err(" <%s while in user mode>\n", fault);
} else if (kbt->verbose) {
pr_err(" (odd fault: pc %#lx, sp %#lx, ex1 %#lx?)\n",
p->pc, p->sp, p->ex1);
p = NULL;
}
if (!kbt->profile || (INT_MASK(p->faultnum) & QUEUED_INTERRUPTS) == 0)
return p;
return NULL;
}
/* Is the pc pointing to a sigreturn trampoline? */
static int is_sigreturn(unsigned long pc)
{
return (pc == VDSO_BASE);
}
/* Return a pt_regs pointer for a valid signal handler frame */
static struct pt_regs *valid_sigframe(struct KBacktraceIterator* kbt)
{
BacktraceIterator *b = &kbt->it;
if (b->pc == VDSO_BASE) {
struct rt_sigframe *frame;
unsigned long sigframe_top =
b->sp + sizeof(struct rt_sigframe) - 1;
if (!valid_address(kbt, b->sp) ||
!valid_address(kbt, sigframe_top)) {
if (kbt->verbose)
pr_err(" (odd signal: sp %#lx?)\n",
(unsigned long)(b->sp));
return NULL;
}
frame = (struct rt_sigframe *)b->sp;
if (kbt->verbose) {
pr_err(" <received signal %d>\n",
frame->info.si_signo);
}
return (struct pt_regs *)&frame->uc.uc_mcontext;
}
return NULL;
}
static int KBacktraceIterator_is_sigreturn(struct KBacktraceIterator *kbt)
{
return is_sigreturn(kbt->it.pc);
}
static int KBacktraceIterator_restart(struct KBacktraceIterator *kbt)
{
struct pt_regs *p;
p = valid_fault_handler(kbt);
if (p == NULL)
p = valid_sigframe(kbt);
if (p == NULL)
return 0;
backtrace_init(&kbt->it, read_memory_func, kbt,
p->pc, p->lr, p->sp, p->regs[52]);
kbt->new_context = 1;
return 1;
}
/* Find a frame that isn't a sigreturn, if there is one. */
static int KBacktraceIterator_next_item_inclusive(
struct KBacktraceIterator *kbt)
{
for (;;) {
do {
if (!KBacktraceIterator_is_sigreturn(kbt))
return KBT_ONGOING;
} while (backtrace_next(&kbt->it));
if (!KBacktraceIterator_restart(kbt))
return KBT_DONE;
}
}
/*
* If the current sp is on a page different than what we recorded
* as the top-of-kernel-stack last time we context switched, we have
* probably blown the stack, and nothing is going to work out well.
* If we can at least get out a warning, that may help the debug,
* though we probably won't be able to backtrace into the code that
* actually did the recursive damage.
*/
static void validate_stack(struct pt_regs *regs)
{
int cpu = smp_processor_id();
unsigned long ksp0 = get_current_ksp0();
unsigned long ksp0_base = ksp0 - THREAD_SIZE;
unsigned long sp = stack_pointer;
if (EX1_PL(regs->ex1) == KERNEL_PL && regs->sp >= ksp0) {
pr_err("WARNING: cpu %d: kernel stack page %#lx underrun!\n"
" sp %#lx (%#lx in caller), caller pc %#lx, lr %#lx\n",
cpu, ksp0_base, sp, regs->sp, regs->pc, regs->lr);
}
else if (sp < ksp0_base + sizeof(struct thread_info)) {
pr_err("WARNING: cpu %d: kernel stack page %#lx overrun!\n"
" sp %#lx (%#lx in caller), caller pc %#lx, lr %#lx\n",
cpu, ksp0_base, sp, regs->sp, regs->pc, regs->lr);
}
}
void KBacktraceIterator_init(struct KBacktraceIterator *kbt,
struct task_struct *t, struct pt_regs *regs)
{
unsigned long pc, lr, sp, r52;
int is_current;
/*
* Set up callback information. We grab the kernel stack base
* so we will allow reads of that address range, and if we're
* asking about the current process we grab the page table
* so we can check user accesses before trying to read them.
* We flush the TLB to avoid any weird skew issues.
*/
is_current = (t == NULL);
kbt->is_current = is_current;
if (is_current)
t = validate_current();
kbt->task = t;
kbt->pgtable = NULL;
kbt->verbose = 0; /* override in caller if desired */
kbt->profile = 0; /* override in caller if desired */
kbt->end = KBT_ONGOING;
kbt->new_context = 0;
if (is_current) {
HV_PhysAddr pgdir_pa = hv_inquire_context().page_table;
if (pgdir_pa == (unsigned long)swapper_pg_dir - PAGE_OFFSET) {
/*
* Not just an optimization: this also allows
* this to work at all before va/pa mappings
* are set up.
*/
kbt->pgtable = swapper_pg_dir;
} else {
struct page *page = pfn_to_page(PFN_DOWN(pgdir_pa));
if (!PageHighMem(page))
kbt->pgtable = __va(pgdir_pa);
else
pr_err("page table not in LOWMEM"
" (%#llx)\n", pgdir_pa);
}
local_flush_tlb_all();
validate_stack(regs);
}
if (regs == NULL) {
if (is_current || t->state == TASK_RUNNING) {
/* Can't do this; we need registers */
kbt->end = KBT_RUNNING;
return;
}
pc = get_switch_to_pc();
lr = t->thread.pc;
sp = t->thread.ksp;
r52 = 0;
} else {
pc = regs->pc;
lr = regs->lr;
sp = regs->sp;
r52 = regs->regs[52];
}
backtrace_init(&kbt->it, read_memory_func, kbt, pc, lr, sp, r52);
kbt->end = KBacktraceIterator_next_item_inclusive(kbt);
}
EXPORT_SYMBOL(KBacktraceIterator_init);
int KBacktraceIterator_end(struct KBacktraceIterator *kbt)
{
return kbt->end != KBT_ONGOING;
}
EXPORT_SYMBOL(KBacktraceIterator_end);
void KBacktraceIterator_next(struct KBacktraceIterator *kbt)
{
unsigned long old_pc = kbt->it.pc, old_sp = kbt->it.sp;
kbt->new_context = 0;
if (!backtrace_next(&kbt->it) && !KBacktraceIterator_restart(kbt)) {
kbt->end = KBT_DONE;
return;
}
kbt->end = KBacktraceIterator_next_item_inclusive(kbt);
if (old_pc == kbt->it.pc && old_sp == kbt->it.sp) {
/* Trapped in a loop; give up. */
kbt->end = KBT_LOOP;
}
}
EXPORT_SYMBOL(KBacktraceIterator_next);
/*
* This method wraps the backtracer's more generic support.
* It is only invoked from the architecture-specific code; show_stack()
* and dump_stack() (in entry.S) are architecture-independent entry points.
*/
void tile_show_stack(struct KBacktraceIterator *kbt, int headers)
{
int i;
if (headers) {
/*
* Add a blank line since if we are called from panic(),
* then bust_spinlocks() spit out a space in front of us
* and it will mess up our KERN_ERR.
*/
pr_err("\n");
pr_err("Starting stack dump of tid %d, pid %d (%s)"
" on cpu %d at cycle %lld\n",
kbt->task->pid, kbt->task->tgid, kbt->task->comm,
smp_processor_id(), get_cycles());
}
kbt->verbose = 1;
i = 0;
for (; !KBacktraceIterator_end(kbt); KBacktraceIterator_next(kbt)) {
char *modname;
const char *name;
unsigned long address = kbt->it.pc;
unsigned long offset, size;
char namebuf[KSYM_NAME_LEN+100];
if (address >= PAGE_OFFSET)
name = kallsyms_lookup(address, &size, &offset,
&modname, namebuf);
else
name = NULL;
if (!name)
namebuf[0] = '\0';
else {
size_t namelen = strlen(namebuf);
size_t remaining = (sizeof(namebuf) - 1) - namelen;
char *p = namebuf + namelen;
int rc = snprintf(p, remaining, "+%#lx/%#lx ",
offset, size);
if (modname && rc < remaining)
snprintf(p + rc, remaining - rc,
"[%s] ", modname);
namebuf[sizeof(namebuf)-1] = '\0';
}
pr_err(" frame %d: 0x%lx %s(sp 0x%lx)\n",
i++, address, namebuf, (unsigned long)(kbt->it.sp));
if (i >= 100) {
pr_err("Stack dump truncated"
" (%d frames)\n", i);
break;
}
}
if (kbt->end == KBT_LOOP)
pr_err("Stack dump stopped; next frame identical to this one\n");
if (headers)
pr_err("Stack dump complete\n");
}
EXPORT_SYMBOL(tile_show_stack);
/* This is called from show_regs() and _dump_stack() */
void dump_stack_regs(struct pt_regs *regs)
{
struct KBacktraceIterator kbt;
KBacktraceIterator_init(&kbt, NULL, regs);
tile_show_stack(&kbt, 1);
}
EXPORT_SYMBOL(dump_stack_regs);
static struct pt_regs *regs_to_pt_regs(struct pt_regs *regs,
ulong pc, ulong lr, ulong sp, ulong r52)
{
memset(regs, 0, sizeof(struct pt_regs));
regs->pc = pc;
regs->lr = lr;
regs->sp = sp;
regs->regs[52] = r52;
return regs;
}
/* This is called from dump_stack() and just converts to pt_regs */
void _dump_stack(int dummy, ulong pc, ulong lr, ulong sp, ulong r52)
{
struct pt_regs regs;
dump_stack_regs(regs_to_pt_regs(&regs, pc, lr, sp, r52));
}
/* This is called from KBacktraceIterator_init_current() */
void _KBacktraceIterator_init_current(struct KBacktraceIterator *kbt, ulong pc,
ulong lr, ulong sp, ulong r52)
{
struct pt_regs regs;
KBacktraceIterator_init(kbt, NULL,
regs_to_pt_regs(&regs, pc, lr, sp, r52));
}
/* This is called only from kernel/sched.c, with esp == NULL */
void show_stack(struct task_struct *task, unsigned long *esp)
{
struct KBacktraceIterator kbt;
if (task == NULL || task == current)
KBacktraceIterator_init_current(&kbt);
else
KBacktraceIterator_init(&kbt, task, NULL);
tile_show_stack(&kbt, 0);
}
#ifdef CONFIG_STACKTRACE
/* Support generic Linux stack API too */
void save_stack_trace_tsk(struct task_struct *task, struct stack_trace *trace)
{
struct KBacktraceIterator kbt;
int skip = trace->skip;
int i = 0;
if (task == NULL || task == current)
KBacktraceIterator_init_current(&kbt);
else
KBacktraceIterator_init(&kbt, task, NULL);
for (; !KBacktraceIterator_end(&kbt); KBacktraceIterator_next(&kbt)) {
if (skip) {
--skip;
continue;
}
if (i >= trace->max_entries || kbt.it.pc < PAGE_OFFSET)
break;
trace->entries[i++] = kbt.it.pc;
}
trace->nr_entries = i;
}
EXPORT_SYMBOL(save_stack_trace_tsk);
void save_stack_trace(struct stack_trace *trace)
{
save_stack_trace_tsk(NULL, trace);
}
#endif
/* In entry.S */
EXPORT_SYMBOL(KBacktraceIterator_init_current);