29b0a8250b
The first level machine check handler for etr and stp machine checks may call queue_work() while in nmi context. This may deadlock e.g. if the machine check happened when the interrupted context did hold a lock, that also will be acquired by queue_work(). Therefore split etr and stp machine check handling into first and second level handling. The second level handling will then issue the queue_work() call in process context which avoids the potential deadlock. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
1817 lines
47 KiB
C
1817 lines
47 KiB
C
/*
|
|
* Time of day based timer functions.
|
|
*
|
|
* S390 version
|
|
* Copyright IBM Corp. 1999, 2008
|
|
* Author(s): Hartmut Penner (hp@de.ibm.com),
|
|
* Martin Schwidefsky (schwidefsky@de.ibm.com),
|
|
* Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
|
|
*
|
|
* Derived from "arch/i386/kernel/time.c"
|
|
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
|
|
*/
|
|
|
|
#define KMSG_COMPONENT "time"
|
|
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
|
|
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/param.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/time.h>
|
|
#include <linux/device.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/types.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/timekeeper_internal.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kprobes.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/div64.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/irq_regs.h>
|
|
#include <asm/vtimer.h>
|
|
#include <asm/etr.h>
|
|
#include <asm/cio.h>
|
|
#include "entry.h"
|
|
|
|
/* change this if you have some constant time drift */
|
|
#define USECS_PER_JIFFY ((unsigned long) 1000000/HZ)
|
|
#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
|
|
|
|
u64 sched_clock_base_cc = -1; /* Force to data section. */
|
|
EXPORT_SYMBOL_GPL(sched_clock_base_cc);
|
|
|
|
static DEFINE_PER_CPU(struct clock_event_device, comparators);
|
|
|
|
ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
|
|
EXPORT_SYMBOL(s390_epoch_delta_notifier);
|
|
|
|
/*
|
|
* Scheduler clock - returns current time in nanosec units.
|
|
*/
|
|
unsigned long long notrace sched_clock(void)
|
|
{
|
|
return tod_to_ns(get_tod_clock_monotonic());
|
|
}
|
|
NOKPROBE_SYMBOL(sched_clock);
|
|
|
|
/*
|
|
* Monotonic_clock - returns # of nanoseconds passed since time_init()
|
|
*/
|
|
unsigned long long monotonic_clock(void)
|
|
{
|
|
return sched_clock();
|
|
}
|
|
EXPORT_SYMBOL(monotonic_clock);
|
|
|
|
void tod_to_timeval(__u64 todval, struct timespec64 *xt)
|
|
{
|
|
unsigned long long sec;
|
|
|
|
sec = todval >> 12;
|
|
do_div(sec, 1000000);
|
|
xt->tv_sec = sec;
|
|
todval -= (sec * 1000000) << 12;
|
|
xt->tv_nsec = ((todval * 1000) >> 12);
|
|
}
|
|
EXPORT_SYMBOL(tod_to_timeval);
|
|
|
|
void clock_comparator_work(void)
|
|
{
|
|
struct clock_event_device *cd;
|
|
|
|
S390_lowcore.clock_comparator = -1ULL;
|
|
cd = this_cpu_ptr(&comparators);
|
|
cd->event_handler(cd);
|
|
}
|
|
|
|
/*
|
|
* Fixup the clock comparator.
|
|
*/
|
|
static void fixup_clock_comparator(unsigned long long delta)
|
|
{
|
|
/* If nobody is waiting there's nothing to fix. */
|
|
if (S390_lowcore.clock_comparator == -1ULL)
|
|
return;
|
|
S390_lowcore.clock_comparator += delta;
|
|
set_clock_comparator(S390_lowcore.clock_comparator);
|
|
}
|
|
|
|
static int s390_next_event(unsigned long delta,
|
|
struct clock_event_device *evt)
|
|
{
|
|
S390_lowcore.clock_comparator = get_tod_clock() + delta;
|
|
set_clock_comparator(S390_lowcore.clock_comparator);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set up lowcore and control register of the current cpu to
|
|
* enable TOD clock and clock comparator interrupts.
|
|
*/
|
|
void init_cpu_timer(void)
|
|
{
|
|
struct clock_event_device *cd;
|
|
int cpu;
|
|
|
|
S390_lowcore.clock_comparator = -1ULL;
|
|
set_clock_comparator(S390_lowcore.clock_comparator);
|
|
|
|
cpu = smp_processor_id();
|
|
cd = &per_cpu(comparators, cpu);
|
|
cd->name = "comparator";
|
|
cd->features = CLOCK_EVT_FEAT_ONESHOT;
|
|
cd->mult = 16777;
|
|
cd->shift = 12;
|
|
cd->min_delta_ns = 1;
|
|
cd->max_delta_ns = LONG_MAX;
|
|
cd->rating = 400;
|
|
cd->cpumask = cpumask_of(cpu);
|
|
cd->set_next_event = s390_next_event;
|
|
|
|
clockevents_register_device(cd);
|
|
|
|
/* Enable clock comparator timer interrupt. */
|
|
__ctl_set_bit(0,11);
|
|
|
|
/* Always allow the timing alert external interrupt. */
|
|
__ctl_set_bit(0, 4);
|
|
}
|
|
|
|
static void clock_comparator_interrupt(struct ext_code ext_code,
|
|
unsigned int param32,
|
|
unsigned long param64)
|
|
{
|
|
inc_irq_stat(IRQEXT_CLK);
|
|
if (S390_lowcore.clock_comparator == -1ULL)
|
|
set_clock_comparator(S390_lowcore.clock_comparator);
|
|
}
|
|
|
|
static void etr_timing_alert(struct etr_irq_parm *);
|
|
static void stp_timing_alert(struct stp_irq_parm *);
|
|
|
|
static void timing_alert_interrupt(struct ext_code ext_code,
|
|
unsigned int param32, unsigned long param64)
|
|
{
|
|
inc_irq_stat(IRQEXT_TLA);
|
|
if (param32 & 0x00c40000)
|
|
etr_timing_alert((struct etr_irq_parm *) ¶m32);
|
|
if (param32 & 0x00038000)
|
|
stp_timing_alert((struct stp_irq_parm *) ¶m32);
|
|
}
|
|
|
|
static void etr_reset(void);
|
|
static void stp_reset(void);
|
|
|
|
void read_persistent_clock64(struct timespec64 *ts)
|
|
{
|
|
tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts);
|
|
}
|
|
|
|
void read_boot_clock64(struct timespec64 *ts)
|
|
{
|
|
tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
|
|
}
|
|
|
|
static cycle_t read_tod_clock(struct clocksource *cs)
|
|
{
|
|
return get_tod_clock();
|
|
}
|
|
|
|
static struct clocksource clocksource_tod = {
|
|
.name = "tod",
|
|
.rating = 400,
|
|
.read = read_tod_clock,
|
|
.mask = -1ULL,
|
|
.mult = 1000,
|
|
.shift = 12,
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
struct clocksource * __init clocksource_default_clock(void)
|
|
{
|
|
return &clocksource_tod;
|
|
}
|
|
|
|
void update_vsyscall(struct timekeeper *tk)
|
|
{
|
|
u64 nsecps;
|
|
|
|
if (tk->tkr_mono.clock != &clocksource_tod)
|
|
return;
|
|
|
|
/* Make userspace gettimeofday spin until we're done. */
|
|
++vdso_data->tb_update_count;
|
|
smp_wmb();
|
|
vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
|
|
vdso_data->xtime_clock_sec = tk->xtime_sec;
|
|
vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
|
|
vdso_data->wtom_clock_sec =
|
|
tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
|
|
vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
|
|
+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
|
|
nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
|
|
while (vdso_data->wtom_clock_nsec >= nsecps) {
|
|
vdso_data->wtom_clock_nsec -= nsecps;
|
|
vdso_data->wtom_clock_sec++;
|
|
}
|
|
|
|
vdso_data->xtime_coarse_sec = tk->xtime_sec;
|
|
vdso_data->xtime_coarse_nsec =
|
|
(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
|
|
vdso_data->wtom_coarse_sec =
|
|
vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
|
|
vdso_data->wtom_coarse_nsec =
|
|
vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
|
|
while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
|
|
vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
|
|
vdso_data->wtom_coarse_sec++;
|
|
}
|
|
|
|
vdso_data->tk_mult = tk->tkr_mono.mult;
|
|
vdso_data->tk_shift = tk->tkr_mono.shift;
|
|
smp_wmb();
|
|
++vdso_data->tb_update_count;
|
|
}
|
|
|
|
extern struct timezone sys_tz;
|
|
|
|
void update_vsyscall_tz(void)
|
|
{
|
|
/* Make userspace gettimeofday spin until we're done. */
|
|
++vdso_data->tb_update_count;
|
|
smp_wmb();
|
|
vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
|
|
vdso_data->tz_dsttime = sys_tz.tz_dsttime;
|
|
smp_wmb();
|
|
++vdso_data->tb_update_count;
|
|
}
|
|
|
|
/*
|
|
* Initialize the TOD clock and the CPU timer of
|
|
* the boot cpu.
|
|
*/
|
|
void __init time_init(void)
|
|
{
|
|
/* Reset time synchronization interfaces. */
|
|
etr_reset();
|
|
stp_reset();
|
|
|
|
/* request the clock comparator external interrupt */
|
|
if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
|
|
panic("Couldn't request external interrupt 0x1004");
|
|
|
|
/* request the timing alert external interrupt */
|
|
if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
|
|
panic("Couldn't request external interrupt 0x1406");
|
|
|
|
if (__clocksource_register(&clocksource_tod) != 0)
|
|
panic("Could not register TOD clock source");
|
|
|
|
/* Enable TOD clock interrupts on the boot cpu. */
|
|
init_cpu_timer();
|
|
|
|
/* Enable cpu timer interrupts on the boot cpu. */
|
|
vtime_init();
|
|
}
|
|
|
|
/*
|
|
* The time is "clock". old is what we think the time is.
|
|
* Adjust the value by a multiple of jiffies and add the delta to ntp.
|
|
* "delay" is an approximation how long the synchronization took. If
|
|
* the time correction is positive, then "delay" is subtracted from
|
|
* the time difference and only the remaining part is passed to ntp.
|
|
*/
|
|
static unsigned long long adjust_time(unsigned long long old,
|
|
unsigned long long clock,
|
|
unsigned long long delay)
|
|
{
|
|
unsigned long long delta, ticks;
|
|
struct timex adjust;
|
|
|
|
if (clock > old) {
|
|
/* It is later than we thought. */
|
|
delta = ticks = clock - old;
|
|
delta = ticks = (delta < delay) ? 0 : delta - delay;
|
|
delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
|
|
adjust.offset = ticks * (1000000 / HZ);
|
|
} else {
|
|
/* It is earlier than we thought. */
|
|
delta = ticks = old - clock;
|
|
delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
|
|
delta = -delta;
|
|
adjust.offset = -ticks * (1000000 / HZ);
|
|
}
|
|
sched_clock_base_cc += delta;
|
|
if (adjust.offset != 0) {
|
|
pr_notice("The ETR interface has adjusted the clock "
|
|
"by %li microseconds\n", adjust.offset);
|
|
adjust.modes = ADJ_OFFSET_SINGLESHOT;
|
|
do_adjtimex(&adjust);
|
|
}
|
|
return delta;
|
|
}
|
|
|
|
static DEFINE_PER_CPU(atomic_t, clock_sync_word);
|
|
static DEFINE_MUTEX(clock_sync_mutex);
|
|
static unsigned long clock_sync_flags;
|
|
|
|
#define CLOCK_SYNC_HAS_ETR 0
|
|
#define CLOCK_SYNC_HAS_STP 1
|
|
#define CLOCK_SYNC_ETR 2
|
|
#define CLOCK_SYNC_STP 3
|
|
|
|
/*
|
|
* The synchronous get_clock function. It will write the current clock
|
|
* value to the clock pointer and return 0 if the clock is in sync with
|
|
* the external time source. If the clock mode is local it will return
|
|
* -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
|
|
* reference.
|
|
*/
|
|
int get_sync_clock(unsigned long long *clock)
|
|
{
|
|
atomic_t *sw_ptr;
|
|
unsigned int sw0, sw1;
|
|
|
|
sw_ptr = &get_cpu_var(clock_sync_word);
|
|
sw0 = atomic_read(sw_ptr);
|
|
*clock = get_tod_clock();
|
|
sw1 = atomic_read(sw_ptr);
|
|
put_cpu_var(clock_sync_word);
|
|
if (sw0 == sw1 && (sw0 & 0x80000000U))
|
|
/* Success: time is in sync. */
|
|
return 0;
|
|
if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
|
|
!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
|
|
return -EOPNOTSUPP;
|
|
if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
|
|
!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
|
|
return -EACCES;
|
|
return -EAGAIN;
|
|
}
|
|
EXPORT_SYMBOL(get_sync_clock);
|
|
|
|
/*
|
|
* Make get_sync_clock return -EAGAIN.
|
|
*/
|
|
static void disable_sync_clock(void *dummy)
|
|
{
|
|
atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
|
|
/*
|
|
* Clear the in-sync bit 2^31. All get_sync_clock calls will
|
|
* fail until the sync bit is turned back on. In addition
|
|
* increase the "sequence" counter to avoid the race of an
|
|
* etr event and the complete recovery against get_sync_clock.
|
|
*/
|
|
atomic_andnot(0x80000000, sw_ptr);
|
|
atomic_inc(sw_ptr);
|
|
}
|
|
|
|
/*
|
|
* Make get_sync_clock return 0 again.
|
|
* Needs to be called from a context disabled for preemption.
|
|
*/
|
|
static void enable_sync_clock(void)
|
|
{
|
|
atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
|
|
atomic_or(0x80000000, sw_ptr);
|
|
}
|
|
|
|
/*
|
|
* Function to check if the clock is in sync.
|
|
*/
|
|
static inline int check_sync_clock(void)
|
|
{
|
|
atomic_t *sw_ptr;
|
|
int rc;
|
|
|
|
sw_ptr = &get_cpu_var(clock_sync_word);
|
|
rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
|
|
put_cpu_var(clock_sync_word);
|
|
return rc;
|
|
}
|
|
|
|
/* Single threaded workqueue used for etr and stp sync events */
|
|
static struct workqueue_struct *time_sync_wq;
|
|
|
|
static void __init time_init_wq(void)
|
|
{
|
|
if (time_sync_wq)
|
|
return;
|
|
time_sync_wq = create_singlethread_workqueue("timesync");
|
|
}
|
|
|
|
/*
|
|
* External Time Reference (ETR) code.
|
|
*/
|
|
static int etr_port0_online;
|
|
static int etr_port1_online;
|
|
static int etr_steai_available;
|
|
|
|
static int __init early_parse_etr(char *p)
|
|
{
|
|
if (strncmp(p, "off", 3) == 0)
|
|
etr_port0_online = etr_port1_online = 0;
|
|
else if (strncmp(p, "port0", 5) == 0)
|
|
etr_port0_online = 1;
|
|
else if (strncmp(p, "port1", 5) == 0)
|
|
etr_port1_online = 1;
|
|
else if (strncmp(p, "on", 2) == 0)
|
|
etr_port0_online = etr_port1_online = 1;
|
|
return 0;
|
|
}
|
|
early_param("etr", early_parse_etr);
|
|
|
|
enum etr_event {
|
|
ETR_EVENT_PORT0_CHANGE,
|
|
ETR_EVENT_PORT1_CHANGE,
|
|
ETR_EVENT_PORT_ALERT,
|
|
ETR_EVENT_SYNC_CHECK,
|
|
ETR_EVENT_SWITCH_LOCAL,
|
|
ETR_EVENT_UPDATE,
|
|
};
|
|
|
|
/*
|
|
* Valid bit combinations of the eacr register are (x = don't care):
|
|
* e0 e1 dp p0 p1 ea es sl
|
|
* 0 0 x 0 0 0 0 0 initial, disabled state
|
|
* 0 0 x 0 1 1 0 0 port 1 online
|
|
* 0 0 x 1 0 1 0 0 port 0 online
|
|
* 0 0 x 1 1 1 0 0 both ports online
|
|
* 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode
|
|
* 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode
|
|
* 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync
|
|
* 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync
|
|
* 0 1 x 1 1 1 0 0 both ports online, port 1 usable
|
|
* 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync
|
|
* 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync
|
|
* 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode
|
|
* 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode
|
|
* 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync
|
|
* 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync
|
|
* 1 0 x 1 1 1 0 0 both ports online, port 0 usable
|
|
* 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync
|
|
* 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync
|
|
* 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync
|
|
* 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync
|
|
*/
|
|
static struct etr_eacr etr_eacr;
|
|
static u64 etr_tolec; /* time of last eacr update */
|
|
static struct etr_aib etr_port0;
|
|
static int etr_port0_uptodate;
|
|
static struct etr_aib etr_port1;
|
|
static int etr_port1_uptodate;
|
|
static unsigned long etr_events;
|
|
static struct timer_list etr_timer;
|
|
|
|
static void etr_timeout(unsigned long dummy);
|
|
static void etr_work_fn(struct work_struct *work);
|
|
static DEFINE_MUTEX(etr_work_mutex);
|
|
static DECLARE_WORK(etr_work, etr_work_fn);
|
|
|
|
/*
|
|
* Reset ETR attachment.
|
|
*/
|
|
static void etr_reset(void)
|
|
{
|
|
etr_eacr = (struct etr_eacr) {
|
|
.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
|
|
.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
|
|
.es = 0, .sl = 0 };
|
|
if (etr_setr(&etr_eacr) == 0) {
|
|
etr_tolec = get_tod_clock();
|
|
set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
|
|
if (etr_port0_online && etr_port1_online)
|
|
set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
|
|
} else if (etr_port0_online || etr_port1_online) {
|
|
pr_warning("The real or virtual hardware system does "
|
|
"not provide an ETR interface\n");
|
|
etr_port0_online = etr_port1_online = 0;
|
|
}
|
|
}
|
|
|
|
static int __init etr_init(void)
|
|
{
|
|
struct etr_aib aib;
|
|
|
|
if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
|
|
return 0;
|
|
time_init_wq();
|
|
/* Check if this machine has the steai instruction. */
|
|
if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
|
|
etr_steai_available = 1;
|
|
setup_timer(&etr_timer, etr_timeout, 0UL);
|
|
if (etr_port0_online) {
|
|
set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
|
|
queue_work(time_sync_wq, &etr_work);
|
|
}
|
|
if (etr_port1_online) {
|
|
set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
|
|
queue_work(time_sync_wq, &etr_work);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
arch_initcall(etr_init);
|
|
|
|
/*
|
|
* Two sorts of ETR machine checks. The architecture reads:
|
|
* "When a machine-check niterruption occurs and if a switch-to-local or
|
|
* ETR-sync-check interrupt request is pending but disabled, this pending
|
|
* disabled interruption request is indicated and is cleared".
|
|
* Which means that we can get etr_switch_to_local events from the machine
|
|
* check handler although the interruption condition is disabled. Lovely..
|
|
*/
|
|
|
|
/*
|
|
* Switch to local machine check. This is called when the last usable
|
|
* ETR port goes inactive. After switch to local the clock is not in sync.
|
|
*/
|
|
int etr_switch_to_local(void)
|
|
{
|
|
if (!etr_eacr.sl)
|
|
return 0;
|
|
disable_sync_clock(NULL);
|
|
if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
|
|
etr_eacr.es = etr_eacr.sl = 0;
|
|
etr_setr(&etr_eacr);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ETR sync check machine check. This is called when the ETR OTE and the
|
|
* local clock OTE are farther apart than the ETR sync check tolerance.
|
|
* After a ETR sync check the clock is not in sync. The machine check
|
|
* is broadcasted to all cpus at the same time.
|
|
*/
|
|
int etr_sync_check(void)
|
|
{
|
|
if (!etr_eacr.es)
|
|
return 0;
|
|
disable_sync_clock(NULL);
|
|
if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
|
|
etr_eacr.es = 0;
|
|
etr_setr(&etr_eacr);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void etr_queue_work(void)
|
|
{
|
|
queue_work(time_sync_wq, &etr_work);
|
|
}
|
|
|
|
/*
|
|
* ETR timing alert. There are two causes:
|
|
* 1) port state change, check the usability of the port
|
|
* 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
|
|
* sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
|
|
* or ETR-data word 4 (edf4) has changed.
|
|
*/
|
|
static void etr_timing_alert(struct etr_irq_parm *intparm)
|
|
{
|
|
if (intparm->pc0)
|
|
/* ETR port 0 state change. */
|
|
set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
|
|
if (intparm->pc1)
|
|
/* ETR port 1 state change. */
|
|
set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
|
|
if (intparm->eai)
|
|
/*
|
|
* ETR port alert on either port 0, 1 or both.
|
|
* Both ports are not up-to-date now.
|
|
*/
|
|
set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
|
|
queue_work(time_sync_wq, &etr_work);
|
|
}
|
|
|
|
static void etr_timeout(unsigned long dummy)
|
|
{
|
|
set_bit(ETR_EVENT_UPDATE, &etr_events);
|
|
queue_work(time_sync_wq, &etr_work);
|
|
}
|
|
|
|
/*
|
|
* Check if the etr mode is pss.
|
|
*/
|
|
static inline int etr_mode_is_pps(struct etr_eacr eacr)
|
|
{
|
|
return eacr.es && !eacr.sl;
|
|
}
|
|
|
|
/*
|
|
* Check if the etr mode is etr.
|
|
*/
|
|
static inline int etr_mode_is_etr(struct etr_eacr eacr)
|
|
{
|
|
return eacr.es && eacr.sl;
|
|
}
|
|
|
|
/*
|
|
* Check if the port can be used for TOD synchronization.
|
|
* For PPS mode the port has to receive OTEs. For ETR mode
|
|
* the port has to receive OTEs, the ETR stepping bit has to
|
|
* be zero and the validity bits for data frame 1, 2, and 3
|
|
* have to be 1.
|
|
*/
|
|
static int etr_port_valid(struct etr_aib *aib, int port)
|
|
{
|
|
unsigned int psc;
|
|
|
|
/* Check that this port is receiving OTEs. */
|
|
if (aib->tsp == 0)
|
|
return 0;
|
|
|
|
psc = port ? aib->esw.psc1 : aib->esw.psc0;
|
|
if (psc == etr_lpsc_pps_mode)
|
|
return 1;
|
|
if (psc == etr_lpsc_operational_step)
|
|
return !aib->esw.y && aib->slsw.v1 &&
|
|
aib->slsw.v2 && aib->slsw.v3;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if two ports are on the same network.
|
|
*/
|
|
static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
|
|
{
|
|
// FIXME: any other fields we have to compare?
|
|
return aib1->edf1.net_id == aib2->edf1.net_id;
|
|
}
|
|
|
|
/*
|
|
* Wrapper for etr_stei that converts physical port states
|
|
* to logical port states to be consistent with the output
|
|
* of stetr (see etr_psc vs. etr_lpsc).
|
|
*/
|
|
static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
|
|
{
|
|
BUG_ON(etr_steai(aib, func) != 0);
|
|
/* Convert port state to logical port state. */
|
|
if (aib->esw.psc0 == 1)
|
|
aib->esw.psc0 = 2;
|
|
else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
|
|
aib->esw.psc0 = 1;
|
|
if (aib->esw.psc1 == 1)
|
|
aib->esw.psc1 = 2;
|
|
else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
|
|
aib->esw.psc1 = 1;
|
|
}
|
|
|
|
/*
|
|
* Check if the aib a2 is still connected to the same attachment as
|
|
* aib a1, the etv values differ by one and a2 is valid.
|
|
*/
|
|
static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
|
|
{
|
|
int state_a1, state_a2;
|
|
|
|
/* Paranoia check: e0/e1 should better be the same. */
|
|
if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
|
|
a1->esw.eacr.e1 != a2->esw.eacr.e1)
|
|
return 0;
|
|
|
|
/* Still connected to the same etr ? */
|
|
state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
|
|
state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
|
|
if (state_a1 == etr_lpsc_operational_step) {
|
|
if (state_a2 != etr_lpsc_operational_step ||
|
|
a1->edf1.net_id != a2->edf1.net_id ||
|
|
a1->edf1.etr_id != a2->edf1.etr_id ||
|
|
a1->edf1.etr_pn != a2->edf1.etr_pn)
|
|
return 0;
|
|
} else if (state_a2 != etr_lpsc_pps_mode)
|
|
return 0;
|
|
|
|
/* The ETV value of a2 needs to be ETV of a1 + 1. */
|
|
if (a1->edf2.etv + 1 != a2->edf2.etv)
|
|
return 0;
|
|
|
|
if (!etr_port_valid(a2, p))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
struct clock_sync_data {
|
|
atomic_t cpus;
|
|
int in_sync;
|
|
unsigned long long fixup_cc;
|
|
int etr_port;
|
|
struct etr_aib *etr_aib;
|
|
};
|
|
|
|
static void clock_sync_cpu(struct clock_sync_data *sync)
|
|
{
|
|
atomic_dec(&sync->cpus);
|
|
enable_sync_clock();
|
|
/*
|
|
* This looks like a busy wait loop but it isn't. etr_sync_cpus
|
|
* is called on all other cpus while the TOD clocks is stopped.
|
|
* __udelay will stop the cpu on an enabled wait psw until the
|
|
* TOD is running again.
|
|
*/
|
|
while (sync->in_sync == 0) {
|
|
__udelay(1);
|
|
/*
|
|
* A different cpu changes *in_sync. Therefore use
|
|
* barrier() to force memory access.
|
|
*/
|
|
barrier();
|
|
}
|
|
if (sync->in_sync != 1)
|
|
/* Didn't work. Clear per-cpu in sync bit again. */
|
|
disable_sync_clock(NULL);
|
|
/*
|
|
* This round of TOD syncing is done. Set the clock comparator
|
|
* to the next tick and let the processor continue.
|
|
*/
|
|
fixup_clock_comparator(sync->fixup_cc);
|
|
}
|
|
|
|
/*
|
|
* Sync the TOD clock using the port referred to by aibp. This port
|
|
* has to be enabled and the other port has to be disabled. The
|
|
* last eacr update has to be more than 1.6 seconds in the past.
|
|
*/
|
|
static int etr_sync_clock(void *data)
|
|
{
|
|
static int first;
|
|
unsigned long long clock, old_clock, clock_delta, delay, delta;
|
|
struct clock_sync_data *etr_sync;
|
|
struct etr_aib *sync_port, *aib;
|
|
int port;
|
|
int rc;
|
|
|
|
etr_sync = data;
|
|
|
|
if (xchg(&first, 1) == 1) {
|
|
/* Slave */
|
|
clock_sync_cpu(etr_sync);
|
|
return 0;
|
|
}
|
|
|
|
/* Wait until all other cpus entered the sync function. */
|
|
while (atomic_read(&etr_sync->cpus) != 0)
|
|
cpu_relax();
|
|
|
|
port = etr_sync->etr_port;
|
|
aib = etr_sync->etr_aib;
|
|
sync_port = (port == 0) ? &etr_port0 : &etr_port1;
|
|
enable_sync_clock();
|
|
|
|
/* Set clock to next OTE. */
|
|
__ctl_set_bit(14, 21);
|
|
__ctl_set_bit(0, 29);
|
|
clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
|
|
old_clock = get_tod_clock();
|
|
if (set_tod_clock(clock) == 0) {
|
|
__udelay(1); /* Wait for the clock to start. */
|
|
__ctl_clear_bit(0, 29);
|
|
__ctl_clear_bit(14, 21);
|
|
etr_stetr(aib);
|
|
/* Adjust Linux timing variables. */
|
|
delay = (unsigned long long)
|
|
(aib->edf2.etv - sync_port->edf2.etv) << 32;
|
|
delta = adjust_time(old_clock, clock, delay);
|
|
clock_delta = clock - old_clock;
|
|
atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0,
|
|
&clock_delta);
|
|
etr_sync->fixup_cc = delta;
|
|
fixup_clock_comparator(delta);
|
|
/* Verify that the clock is properly set. */
|
|
if (!etr_aib_follows(sync_port, aib, port)) {
|
|
/* Didn't work. */
|
|
disable_sync_clock(NULL);
|
|
etr_sync->in_sync = -EAGAIN;
|
|
rc = -EAGAIN;
|
|
} else {
|
|
etr_sync->in_sync = 1;
|
|
rc = 0;
|
|
}
|
|
} else {
|
|
/* Could not set the clock ?!? */
|
|
__ctl_clear_bit(0, 29);
|
|
__ctl_clear_bit(14, 21);
|
|
disable_sync_clock(NULL);
|
|
etr_sync->in_sync = -EAGAIN;
|
|
rc = -EAGAIN;
|
|
}
|
|
xchg(&first, 0);
|
|
return rc;
|
|
}
|
|
|
|
static int etr_sync_clock_stop(struct etr_aib *aib, int port)
|
|
{
|
|
struct clock_sync_data etr_sync;
|
|
struct etr_aib *sync_port;
|
|
int follows;
|
|
int rc;
|
|
|
|
/* Check if the current aib is adjacent to the sync port aib. */
|
|
sync_port = (port == 0) ? &etr_port0 : &etr_port1;
|
|
follows = etr_aib_follows(sync_port, aib, port);
|
|
memcpy(sync_port, aib, sizeof(*aib));
|
|
if (!follows)
|
|
return -EAGAIN;
|
|
memset(&etr_sync, 0, sizeof(etr_sync));
|
|
etr_sync.etr_aib = aib;
|
|
etr_sync.etr_port = port;
|
|
get_online_cpus();
|
|
atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
|
|
rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
|
|
put_online_cpus();
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Handle the immediate effects of the different events.
|
|
* The port change event is used for online/offline changes.
|
|
*/
|
|
static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
|
|
{
|
|
if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
|
|
eacr.es = 0;
|
|
if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
|
|
eacr.es = eacr.sl = 0;
|
|
if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
|
|
etr_port0_uptodate = etr_port1_uptodate = 0;
|
|
|
|
if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
|
|
if (eacr.e0)
|
|
/*
|
|
* Port change of an enabled port. We have to
|
|
* assume that this can have caused an stepping
|
|
* port switch.
|
|
*/
|
|
etr_tolec = get_tod_clock();
|
|
eacr.p0 = etr_port0_online;
|
|
if (!eacr.p0)
|
|
eacr.e0 = 0;
|
|
etr_port0_uptodate = 0;
|
|
}
|
|
if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
|
|
if (eacr.e1)
|
|
/*
|
|
* Port change of an enabled port. We have to
|
|
* assume that this can have caused an stepping
|
|
* port switch.
|
|
*/
|
|
etr_tolec = get_tod_clock();
|
|
eacr.p1 = etr_port1_online;
|
|
if (!eacr.p1)
|
|
eacr.e1 = 0;
|
|
etr_port1_uptodate = 0;
|
|
}
|
|
clear_bit(ETR_EVENT_UPDATE, &etr_events);
|
|
return eacr;
|
|
}
|
|
|
|
/*
|
|
* Set up a timer that expires after the etr_tolec + 1.6 seconds if
|
|
* one of the ports needs an update.
|
|
*/
|
|
static void etr_set_tolec_timeout(unsigned long long now)
|
|
{
|
|
unsigned long micros;
|
|
|
|
if ((!etr_eacr.p0 || etr_port0_uptodate) &&
|
|
(!etr_eacr.p1 || etr_port1_uptodate))
|
|
return;
|
|
micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
|
|
micros = (micros > 1600000) ? 0 : 1600000 - micros;
|
|
mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
|
|
}
|
|
|
|
/*
|
|
* Set up a time that expires after 1/2 second.
|
|
*/
|
|
static void etr_set_sync_timeout(void)
|
|
{
|
|
mod_timer(&etr_timer, jiffies + HZ/2);
|
|
}
|
|
|
|
/*
|
|
* Update the aib information for one or both ports.
|
|
*/
|
|
static struct etr_eacr etr_handle_update(struct etr_aib *aib,
|
|
struct etr_eacr eacr)
|
|
{
|
|
/* With both ports disabled the aib information is useless. */
|
|
if (!eacr.e0 && !eacr.e1)
|
|
return eacr;
|
|
|
|
/* Update port0 or port1 with aib stored in etr_work_fn. */
|
|
if (aib->esw.q == 0) {
|
|
/* Information for port 0 stored. */
|
|
if (eacr.p0 && !etr_port0_uptodate) {
|
|
etr_port0 = *aib;
|
|
if (etr_port0_online)
|
|
etr_port0_uptodate = 1;
|
|
}
|
|
} else {
|
|
/* Information for port 1 stored. */
|
|
if (eacr.p1 && !etr_port1_uptodate) {
|
|
etr_port1 = *aib;
|
|
if (etr_port0_online)
|
|
etr_port1_uptodate = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do not try to get the alternate port aib if the clock
|
|
* is not in sync yet.
|
|
*/
|
|
if (!eacr.es || !check_sync_clock())
|
|
return eacr;
|
|
|
|
/*
|
|
* If steai is available we can get the information about
|
|
* the other port immediately. If only stetr is available the
|
|
* data-port bit toggle has to be used.
|
|
*/
|
|
if (etr_steai_available) {
|
|
if (eacr.p0 && !etr_port0_uptodate) {
|
|
etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
|
|
etr_port0_uptodate = 1;
|
|
}
|
|
if (eacr.p1 && !etr_port1_uptodate) {
|
|
etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
|
|
etr_port1_uptodate = 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* One port was updated above, if the other
|
|
* port is not uptodate toggle dp bit.
|
|
*/
|
|
if ((eacr.p0 && !etr_port0_uptodate) ||
|
|
(eacr.p1 && !etr_port1_uptodate))
|
|
eacr.dp ^= 1;
|
|
else
|
|
eacr.dp = 0;
|
|
}
|
|
return eacr;
|
|
}
|
|
|
|
/*
|
|
* Write new etr control register if it differs from the current one.
|
|
* Return 1 if etr_tolec has been updated as well.
|
|
*/
|
|
static void etr_update_eacr(struct etr_eacr eacr)
|
|
{
|
|
int dp_changed;
|
|
|
|
if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
|
|
/* No change, return. */
|
|
return;
|
|
/*
|
|
* The disable of an active port of the change of the data port
|
|
* bit can/will cause a change in the data port.
|
|
*/
|
|
dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
|
|
(etr_eacr.dp ^ eacr.dp) != 0;
|
|
etr_eacr = eacr;
|
|
etr_setr(&etr_eacr);
|
|
if (dp_changed)
|
|
etr_tolec = get_tod_clock();
|
|
}
|
|
|
|
/*
|
|
* ETR work. In this function you'll find the main logic. In
|
|
* particular this is the only function that calls etr_update_eacr(),
|
|
* it "controls" the etr control register.
|
|
*/
|
|
static void etr_work_fn(struct work_struct *work)
|
|
{
|
|
unsigned long long now;
|
|
struct etr_eacr eacr;
|
|
struct etr_aib aib;
|
|
int sync_port;
|
|
|
|
/* prevent multiple execution. */
|
|
mutex_lock(&etr_work_mutex);
|
|
|
|
/* Create working copy of etr_eacr. */
|
|
eacr = etr_eacr;
|
|
|
|
/* Check for the different events and their immediate effects. */
|
|
eacr = etr_handle_events(eacr);
|
|
|
|
/* Check if ETR is supposed to be active. */
|
|
eacr.ea = eacr.p0 || eacr.p1;
|
|
if (!eacr.ea) {
|
|
/* Both ports offline. Reset everything. */
|
|
eacr.dp = eacr.es = eacr.sl = 0;
|
|
on_each_cpu(disable_sync_clock, NULL, 1);
|
|
del_timer_sync(&etr_timer);
|
|
etr_update_eacr(eacr);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Store aib to get the current ETR status word. */
|
|
BUG_ON(etr_stetr(&aib) != 0);
|
|
etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */
|
|
now = get_tod_clock();
|
|
|
|
/*
|
|
* Update the port information if the last stepping port change
|
|
* or data port change is older than 1.6 seconds.
|
|
*/
|
|
if (now >= etr_tolec + (1600000 << 12))
|
|
eacr = etr_handle_update(&aib, eacr);
|
|
|
|
/*
|
|
* Select ports to enable. The preferred synchronization mode is PPS.
|
|
* If a port can be enabled depends on a number of things:
|
|
* 1) The port needs to be online and uptodate. A port is not
|
|
* disabled just because it is not uptodate, but it is only
|
|
* enabled if it is uptodate.
|
|
* 2) The port needs to have the same mode (pps / etr).
|
|
* 3) The port needs to be usable -> etr_port_valid() == 1
|
|
* 4) To enable the second port the clock needs to be in sync.
|
|
* 5) If both ports are useable and are ETR ports, the network id
|
|
* has to be the same.
|
|
* The eacr.sl bit is used to indicate etr mode vs. pps mode.
|
|
*/
|
|
if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
|
|
eacr.sl = 0;
|
|
eacr.e0 = 1;
|
|
if (!etr_mode_is_pps(etr_eacr))
|
|
eacr.es = 0;
|
|
if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
|
|
eacr.e1 = 0;
|
|
// FIXME: uptodate checks ?
|
|
else if (etr_port0_uptodate && etr_port1_uptodate)
|
|
eacr.e1 = 1;
|
|
sync_port = (etr_port0_uptodate &&
|
|
etr_port_valid(&etr_port0, 0)) ? 0 : -1;
|
|
} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
|
|
eacr.sl = 0;
|
|
eacr.e0 = 0;
|
|
eacr.e1 = 1;
|
|
if (!etr_mode_is_pps(etr_eacr))
|
|
eacr.es = 0;
|
|
sync_port = (etr_port1_uptodate &&
|
|
etr_port_valid(&etr_port1, 1)) ? 1 : -1;
|
|
} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
|
|
eacr.sl = 1;
|
|
eacr.e0 = 1;
|
|
if (!etr_mode_is_etr(etr_eacr))
|
|
eacr.es = 0;
|
|
if (!eacr.es || !eacr.p1 ||
|
|
aib.esw.psc1 != etr_lpsc_operational_alt)
|
|
eacr.e1 = 0;
|
|
else if (etr_port0_uptodate && etr_port1_uptodate &&
|
|
etr_compare_network(&etr_port0, &etr_port1))
|
|
eacr.e1 = 1;
|
|
sync_port = (etr_port0_uptodate &&
|
|
etr_port_valid(&etr_port0, 0)) ? 0 : -1;
|
|
} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
|
|
eacr.sl = 1;
|
|
eacr.e0 = 0;
|
|
eacr.e1 = 1;
|
|
if (!etr_mode_is_etr(etr_eacr))
|
|
eacr.es = 0;
|
|
sync_port = (etr_port1_uptodate &&
|
|
etr_port_valid(&etr_port1, 1)) ? 1 : -1;
|
|
} else {
|
|
/* Both ports not usable. */
|
|
eacr.es = eacr.sl = 0;
|
|
sync_port = -1;
|
|
}
|
|
|
|
/*
|
|
* If the clock is in sync just update the eacr and return.
|
|
* If there is no valid sync port wait for a port update.
|
|
*/
|
|
if ((eacr.es && check_sync_clock()) || sync_port < 0) {
|
|
etr_update_eacr(eacr);
|
|
etr_set_tolec_timeout(now);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Prepare control register for clock syncing
|
|
* (reset data port bit, set sync check control.
|
|
*/
|
|
eacr.dp = 0;
|
|
eacr.es = 1;
|
|
|
|
/*
|
|
* Update eacr and try to synchronize the clock. If the update
|
|
* of eacr caused a stepping port switch (or if we have to
|
|
* assume that a stepping port switch has occurred) or the
|
|
* clock syncing failed, reset the sync check control bit
|
|
* and set up a timer to try again after 0.5 seconds
|
|
*/
|
|
etr_update_eacr(eacr);
|
|
if (now < etr_tolec + (1600000 << 12) ||
|
|
etr_sync_clock_stop(&aib, sync_port) != 0) {
|
|
/* Sync failed. Try again in 1/2 second. */
|
|
eacr.es = 0;
|
|
etr_update_eacr(eacr);
|
|
etr_set_sync_timeout();
|
|
} else
|
|
etr_set_tolec_timeout(now);
|
|
out_unlock:
|
|
mutex_unlock(&etr_work_mutex);
|
|
}
|
|
|
|
/*
|
|
* Sysfs interface functions
|
|
*/
|
|
static struct bus_type etr_subsys = {
|
|
.name = "etr",
|
|
.dev_name = "etr",
|
|
};
|
|
|
|
static struct device etr_port0_dev = {
|
|
.id = 0,
|
|
.bus = &etr_subsys,
|
|
};
|
|
|
|
static struct device etr_port1_dev = {
|
|
.id = 1,
|
|
.bus = &etr_subsys,
|
|
};
|
|
|
|
/*
|
|
* ETR subsys attributes
|
|
*/
|
|
static ssize_t etr_stepping_port_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%i\n", etr_port0.esw.p);
|
|
}
|
|
|
|
static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
|
|
|
|
static ssize_t etr_stepping_mode_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
char *mode_str;
|
|
|
|
if (etr_mode_is_pps(etr_eacr))
|
|
mode_str = "pps";
|
|
else if (etr_mode_is_etr(etr_eacr))
|
|
mode_str = "etr";
|
|
else
|
|
mode_str = "local";
|
|
return sprintf(buf, "%s\n", mode_str);
|
|
}
|
|
|
|
static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
|
|
|
|
/*
|
|
* ETR port attributes
|
|
*/
|
|
static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
|
|
{
|
|
if (dev == &etr_port0_dev)
|
|
return etr_port0_online ? &etr_port0 : NULL;
|
|
else
|
|
return etr_port1_online ? &etr_port1 : NULL;
|
|
}
|
|
|
|
static ssize_t etr_online_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
unsigned int online;
|
|
|
|
online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
|
|
return sprintf(buf, "%i\n", online);
|
|
}
|
|
|
|
static ssize_t etr_online_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int value;
|
|
|
|
value = simple_strtoul(buf, NULL, 0);
|
|
if (value != 0 && value != 1)
|
|
return -EINVAL;
|
|
if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
|
|
return -EOPNOTSUPP;
|
|
mutex_lock(&clock_sync_mutex);
|
|
if (dev == &etr_port0_dev) {
|
|
if (etr_port0_online == value)
|
|
goto out; /* Nothing to do. */
|
|
etr_port0_online = value;
|
|
if (etr_port0_online && etr_port1_online)
|
|
set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
|
|
else
|
|
clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
|
|
set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
|
|
queue_work(time_sync_wq, &etr_work);
|
|
} else {
|
|
if (etr_port1_online == value)
|
|
goto out; /* Nothing to do. */
|
|
etr_port1_online = value;
|
|
if (etr_port0_online && etr_port1_online)
|
|
set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
|
|
else
|
|
clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
|
|
set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
|
|
queue_work(time_sync_wq, &etr_work);
|
|
}
|
|
out:
|
|
mutex_unlock(&clock_sync_mutex);
|
|
return count;
|
|
}
|
|
|
|
static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
|
|
|
|
static ssize_t etr_stepping_control_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
|
|
etr_eacr.e0 : etr_eacr.e1);
|
|
}
|
|
|
|
static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
|
|
|
|
static ssize_t etr_mode_code_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
if (!etr_port0_online && !etr_port1_online)
|
|
/* Status word is not uptodate if both ports are offline. */
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
|
|
etr_port0.esw.psc0 : etr_port0.esw.psc1);
|
|
}
|
|
|
|
static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
|
|
|
|
static ssize_t etr_untuned_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct etr_aib *aib = etr_aib_from_dev(dev);
|
|
|
|
if (!aib || !aib->slsw.v1)
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", aib->edf1.u);
|
|
}
|
|
|
|
static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
|
|
|
|
static ssize_t etr_network_id_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct etr_aib *aib = etr_aib_from_dev(dev);
|
|
|
|
if (!aib || !aib->slsw.v1)
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", aib->edf1.net_id);
|
|
}
|
|
|
|
static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
|
|
|
|
static ssize_t etr_id_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct etr_aib *aib = etr_aib_from_dev(dev);
|
|
|
|
if (!aib || !aib->slsw.v1)
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", aib->edf1.etr_id);
|
|
}
|
|
|
|
static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
|
|
|
|
static ssize_t etr_port_number_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct etr_aib *aib = etr_aib_from_dev(dev);
|
|
|
|
if (!aib || !aib->slsw.v1)
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", aib->edf1.etr_pn);
|
|
}
|
|
|
|
static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
|
|
|
|
static ssize_t etr_coupled_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct etr_aib *aib = etr_aib_from_dev(dev);
|
|
|
|
if (!aib || !aib->slsw.v3)
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", aib->edf3.c);
|
|
}
|
|
|
|
static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
|
|
|
|
static ssize_t etr_local_time_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct etr_aib *aib = etr_aib_from_dev(dev);
|
|
|
|
if (!aib || !aib->slsw.v3)
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", aib->edf3.blto);
|
|
}
|
|
|
|
static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
|
|
|
|
static ssize_t etr_utc_offset_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct etr_aib *aib = etr_aib_from_dev(dev);
|
|
|
|
if (!aib || !aib->slsw.v3)
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", aib->edf3.buo);
|
|
}
|
|
|
|
static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
|
|
|
|
static struct device_attribute *etr_port_attributes[] = {
|
|
&dev_attr_online,
|
|
&dev_attr_stepping_control,
|
|
&dev_attr_state_code,
|
|
&dev_attr_untuned,
|
|
&dev_attr_network,
|
|
&dev_attr_id,
|
|
&dev_attr_port,
|
|
&dev_attr_coupled,
|
|
&dev_attr_local_time,
|
|
&dev_attr_utc_offset,
|
|
NULL
|
|
};
|
|
|
|
static int __init etr_register_port(struct device *dev)
|
|
{
|
|
struct device_attribute **attr;
|
|
int rc;
|
|
|
|
rc = device_register(dev);
|
|
if (rc)
|
|
goto out;
|
|
for (attr = etr_port_attributes; *attr; attr++) {
|
|
rc = device_create_file(dev, *attr);
|
|
if (rc)
|
|
goto out_unreg;
|
|
}
|
|
return 0;
|
|
out_unreg:
|
|
for (; attr >= etr_port_attributes; attr--)
|
|
device_remove_file(dev, *attr);
|
|
device_unregister(dev);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
static void __init etr_unregister_port(struct device *dev)
|
|
{
|
|
struct device_attribute **attr;
|
|
|
|
for (attr = etr_port_attributes; *attr; attr++)
|
|
device_remove_file(dev, *attr);
|
|
device_unregister(dev);
|
|
}
|
|
|
|
static int __init etr_init_sysfs(void)
|
|
{
|
|
int rc;
|
|
|
|
rc = subsys_system_register(&etr_subsys, NULL);
|
|
if (rc)
|
|
goto out;
|
|
rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
|
|
if (rc)
|
|
goto out_unreg_subsys;
|
|
rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
|
|
if (rc)
|
|
goto out_remove_stepping_port;
|
|
rc = etr_register_port(&etr_port0_dev);
|
|
if (rc)
|
|
goto out_remove_stepping_mode;
|
|
rc = etr_register_port(&etr_port1_dev);
|
|
if (rc)
|
|
goto out_remove_port0;
|
|
return 0;
|
|
|
|
out_remove_port0:
|
|
etr_unregister_port(&etr_port0_dev);
|
|
out_remove_stepping_mode:
|
|
device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
|
|
out_remove_stepping_port:
|
|
device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
|
|
out_unreg_subsys:
|
|
bus_unregister(&etr_subsys);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
device_initcall(etr_init_sysfs);
|
|
|
|
/*
|
|
* Server Time Protocol (STP) code.
|
|
*/
|
|
static int stp_online;
|
|
static struct stp_sstpi stp_info;
|
|
static void *stp_page;
|
|
|
|
static void stp_work_fn(struct work_struct *work);
|
|
static DEFINE_MUTEX(stp_work_mutex);
|
|
static DECLARE_WORK(stp_work, stp_work_fn);
|
|
static struct timer_list stp_timer;
|
|
|
|
static int __init early_parse_stp(char *p)
|
|
{
|
|
if (strncmp(p, "off", 3) == 0)
|
|
stp_online = 0;
|
|
else if (strncmp(p, "on", 2) == 0)
|
|
stp_online = 1;
|
|
return 0;
|
|
}
|
|
early_param("stp", early_parse_stp);
|
|
|
|
/*
|
|
* Reset STP attachment.
|
|
*/
|
|
static void __init stp_reset(void)
|
|
{
|
|
int rc;
|
|
|
|
stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
|
|
rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
|
|
if (rc == 0)
|
|
set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
|
|
else if (stp_online) {
|
|
pr_warning("The real or virtual hardware system does "
|
|
"not provide an STP interface\n");
|
|
free_page((unsigned long) stp_page);
|
|
stp_page = NULL;
|
|
stp_online = 0;
|
|
}
|
|
}
|
|
|
|
static void stp_timeout(unsigned long dummy)
|
|
{
|
|
queue_work(time_sync_wq, &stp_work);
|
|
}
|
|
|
|
static int __init stp_init(void)
|
|
{
|
|
if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
|
|
return 0;
|
|
setup_timer(&stp_timer, stp_timeout, 0UL);
|
|
time_init_wq();
|
|
if (!stp_online)
|
|
return 0;
|
|
queue_work(time_sync_wq, &stp_work);
|
|
return 0;
|
|
}
|
|
|
|
arch_initcall(stp_init);
|
|
|
|
/*
|
|
* STP timing alert. There are three causes:
|
|
* 1) timing status change
|
|
* 2) link availability change
|
|
* 3) time control parameter change
|
|
* In all three cases we are only interested in the clock source state.
|
|
* If a STP clock source is now available use it.
|
|
*/
|
|
static void stp_timing_alert(struct stp_irq_parm *intparm)
|
|
{
|
|
if (intparm->tsc || intparm->lac || intparm->tcpc)
|
|
queue_work(time_sync_wq, &stp_work);
|
|
}
|
|
|
|
/*
|
|
* STP sync check machine check. This is called when the timing state
|
|
* changes from the synchronized state to the unsynchronized state.
|
|
* After a STP sync check the clock is not in sync. The machine check
|
|
* is broadcasted to all cpus at the same time.
|
|
*/
|
|
int stp_sync_check(void)
|
|
{
|
|
disable_sync_clock(NULL);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* STP island condition machine check. This is called when an attached
|
|
* server attempts to communicate over an STP link and the servers
|
|
* have matching CTN ids and have a valid stratum-1 configuration
|
|
* but the configurations do not match.
|
|
*/
|
|
int stp_island_check(void)
|
|
{
|
|
disable_sync_clock(NULL);
|
|
return 1;
|
|
}
|
|
|
|
void stp_queue_work(void)
|
|
{
|
|
queue_work(time_sync_wq, &stp_work);
|
|
}
|
|
|
|
static int stp_sync_clock(void *data)
|
|
{
|
|
static int first;
|
|
unsigned long long old_clock, delta, new_clock, clock_delta;
|
|
struct clock_sync_data *stp_sync;
|
|
int rc;
|
|
|
|
stp_sync = data;
|
|
|
|
if (xchg(&first, 1) == 1) {
|
|
/* Slave */
|
|
clock_sync_cpu(stp_sync);
|
|
return 0;
|
|
}
|
|
|
|
/* Wait until all other cpus entered the sync function. */
|
|
while (atomic_read(&stp_sync->cpus) != 0)
|
|
cpu_relax();
|
|
|
|
enable_sync_clock();
|
|
|
|
rc = 0;
|
|
if (stp_info.todoff[0] || stp_info.todoff[1] ||
|
|
stp_info.todoff[2] || stp_info.todoff[3] ||
|
|
stp_info.tmd != 2) {
|
|
old_clock = get_tod_clock();
|
|
rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
|
|
if (rc == 0) {
|
|
new_clock = get_tod_clock();
|
|
delta = adjust_time(old_clock, new_clock, 0);
|
|
clock_delta = new_clock - old_clock;
|
|
atomic_notifier_call_chain(&s390_epoch_delta_notifier,
|
|
0, &clock_delta);
|
|
fixup_clock_comparator(delta);
|
|
rc = chsc_sstpi(stp_page, &stp_info,
|
|
sizeof(struct stp_sstpi));
|
|
if (rc == 0 && stp_info.tmd != 2)
|
|
rc = -EAGAIN;
|
|
}
|
|
}
|
|
if (rc) {
|
|
disable_sync_clock(NULL);
|
|
stp_sync->in_sync = -EAGAIN;
|
|
} else
|
|
stp_sync->in_sync = 1;
|
|
xchg(&first, 0);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* STP work. Check for the STP state and take over the clock
|
|
* synchronization if the STP clock source is usable.
|
|
*/
|
|
static void stp_work_fn(struct work_struct *work)
|
|
{
|
|
struct clock_sync_data stp_sync;
|
|
int rc;
|
|
|
|
/* prevent multiple execution. */
|
|
mutex_lock(&stp_work_mutex);
|
|
|
|
if (!stp_online) {
|
|
chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
|
|
del_timer_sync(&stp_timer);
|
|
goto out_unlock;
|
|
}
|
|
|
|
rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
|
|
if (rc)
|
|
goto out_unlock;
|
|
|
|
rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
|
|
if (rc || stp_info.c == 0)
|
|
goto out_unlock;
|
|
|
|
/* Skip synchronization if the clock is already in sync. */
|
|
if (check_sync_clock())
|
|
goto out_unlock;
|
|
|
|
memset(&stp_sync, 0, sizeof(stp_sync));
|
|
get_online_cpus();
|
|
atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
|
|
stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
|
|
put_online_cpus();
|
|
|
|
if (!check_sync_clock())
|
|
/*
|
|
* There is a usable clock but the synchonization failed.
|
|
* Retry after a second.
|
|
*/
|
|
mod_timer(&stp_timer, jiffies + HZ);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&stp_work_mutex);
|
|
}
|
|
|
|
/*
|
|
* STP subsys sysfs interface functions
|
|
*/
|
|
static struct bus_type stp_subsys = {
|
|
.name = "stp",
|
|
.dev_name = "stp",
|
|
};
|
|
|
|
static ssize_t stp_ctn_id_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
if (!stp_online)
|
|
return -ENODATA;
|
|
return sprintf(buf, "%016llx\n",
|
|
*(unsigned long long *) stp_info.ctnid);
|
|
}
|
|
|
|
static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
|
|
|
|
static ssize_t stp_ctn_type_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
if (!stp_online)
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", stp_info.ctn);
|
|
}
|
|
|
|
static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
|
|
|
|
static ssize_t stp_dst_offset_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
if (!stp_online || !(stp_info.vbits & 0x2000))
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
|
|
}
|
|
|
|
static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
|
|
|
|
static ssize_t stp_leap_seconds_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
if (!stp_online || !(stp_info.vbits & 0x8000))
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
|
|
}
|
|
|
|
static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
|
|
|
|
static ssize_t stp_stratum_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
if (!stp_online)
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
|
|
}
|
|
|
|
static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
|
|
|
|
static ssize_t stp_time_offset_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
if (!stp_online || !(stp_info.vbits & 0x0800))
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", (int) stp_info.tto);
|
|
}
|
|
|
|
static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
|
|
|
|
static ssize_t stp_time_zone_offset_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
if (!stp_online || !(stp_info.vbits & 0x4000))
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
|
|
}
|
|
|
|
static DEVICE_ATTR(time_zone_offset, 0400,
|
|
stp_time_zone_offset_show, NULL);
|
|
|
|
static ssize_t stp_timing_mode_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
if (!stp_online)
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", stp_info.tmd);
|
|
}
|
|
|
|
static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
|
|
|
|
static ssize_t stp_timing_state_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
if (!stp_online)
|
|
return -ENODATA;
|
|
return sprintf(buf, "%i\n", stp_info.tst);
|
|
}
|
|
|
|
static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
|
|
|
|
static ssize_t stp_online_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%i\n", stp_online);
|
|
}
|
|
|
|
static ssize_t stp_online_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int value;
|
|
|
|
value = simple_strtoul(buf, NULL, 0);
|
|
if (value != 0 && value != 1)
|
|
return -EINVAL;
|
|
if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
|
|
return -EOPNOTSUPP;
|
|
mutex_lock(&clock_sync_mutex);
|
|
stp_online = value;
|
|
if (stp_online)
|
|
set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
|
|
else
|
|
clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
|
|
queue_work(time_sync_wq, &stp_work);
|
|
mutex_unlock(&clock_sync_mutex);
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Can't use DEVICE_ATTR because the attribute should be named
|
|
* stp/online but dev_attr_online already exists in this file ..
|
|
*/
|
|
static struct device_attribute dev_attr_stp_online = {
|
|
.attr = { .name = "online", .mode = 0600 },
|
|
.show = stp_online_show,
|
|
.store = stp_online_store,
|
|
};
|
|
|
|
static struct device_attribute *stp_attributes[] = {
|
|
&dev_attr_ctn_id,
|
|
&dev_attr_ctn_type,
|
|
&dev_attr_dst_offset,
|
|
&dev_attr_leap_seconds,
|
|
&dev_attr_stp_online,
|
|
&dev_attr_stratum,
|
|
&dev_attr_time_offset,
|
|
&dev_attr_time_zone_offset,
|
|
&dev_attr_timing_mode,
|
|
&dev_attr_timing_state,
|
|
NULL
|
|
};
|
|
|
|
static int __init stp_init_sysfs(void)
|
|
{
|
|
struct device_attribute **attr;
|
|
int rc;
|
|
|
|
rc = subsys_system_register(&stp_subsys, NULL);
|
|
if (rc)
|
|
goto out;
|
|
for (attr = stp_attributes; *attr; attr++) {
|
|
rc = device_create_file(stp_subsys.dev_root, *attr);
|
|
if (rc)
|
|
goto out_unreg;
|
|
}
|
|
return 0;
|
|
out_unreg:
|
|
for (; attr >= stp_attributes; attr--)
|
|
device_remove_file(stp_subsys.dev_root, *attr);
|
|
bus_unregister(&stp_subsys);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
device_initcall(stp_init_sysfs);
|