7c2a6c62c0
The Altix subarch does not provide node information via ACPI. Instead hooks are used to fixup pci structures. This patch determines the nodes for Altix PCI busses. Remote Bridges: --------------- Altix supports remote I/O nodes without memory or processors but with bridges. The TIOCA type of bridge is an AGP bridge and the PROM provides information about the closest node. That information will be returned by pcibus_to_node. The TIOCP remote bridge type is a PCI bridge but the PROM does not provide a closest node id. pcibus_to_node will return -1 for devices on those bridges meaning that device control structures may be allocated on any node. Safeguard: ---------- Should the fixups result in invalid node information for a pci controller then a warning will be printed and pcibus_to_node will return -1. This patch also fixes the "FIXME" in sn_dma_alloc_coherent. This means that dma_alloc_coherent will now use alloc_pages_node to allocate memory local to the node that the PCI device is connected to. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
379 lines
9.7 KiB
C
379 lines
9.7 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2000,2002-2005 Silicon Graphics, Inc. All rights reserved.
|
|
*
|
|
* Routines for PCI DMA mapping. See Documentation/DMA-API.txt for
|
|
* a description of how these routines should be used.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/sn/pcibr_provider.h>
|
|
#include <asm/sn/pcibus_provider_defs.h>
|
|
#include <asm/sn/pcidev.h>
|
|
#include <asm/sn/sn_sal.h>
|
|
|
|
#define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
|
|
#define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG))
|
|
|
|
/**
|
|
* sn_dma_supported - test a DMA mask
|
|
* @dev: device to test
|
|
* @mask: DMA mask to test
|
|
*
|
|
* Return whether the given PCI device DMA address mask can be supported
|
|
* properly. For example, if your device can only drive the low 24-bits
|
|
* during PCI bus mastering, then you would pass 0x00ffffff as the mask to
|
|
* this function. Of course, SN only supports devices that have 32 or more
|
|
* address bits when using the PMU.
|
|
*/
|
|
int sn_dma_supported(struct device *dev, u64 mask)
|
|
{
|
|
BUG_ON(dev->bus != &pci_bus_type);
|
|
|
|
if (mask < 0x7fffffff)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(sn_dma_supported);
|
|
|
|
/**
|
|
* sn_dma_set_mask - set the DMA mask
|
|
* @dev: device to set
|
|
* @dma_mask: new mask
|
|
*
|
|
* Set @dev's DMA mask if the hw supports it.
|
|
*/
|
|
int sn_dma_set_mask(struct device *dev, u64 dma_mask)
|
|
{
|
|
BUG_ON(dev->bus != &pci_bus_type);
|
|
|
|
if (!sn_dma_supported(dev, dma_mask))
|
|
return 0;
|
|
|
|
*dev->dma_mask = dma_mask;
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(sn_dma_set_mask);
|
|
|
|
/**
|
|
* sn_dma_alloc_coherent - allocate memory for coherent DMA
|
|
* @dev: device to allocate for
|
|
* @size: size of the region
|
|
* @dma_handle: DMA (bus) address
|
|
* @flags: memory allocation flags
|
|
*
|
|
* dma_alloc_coherent() returns a pointer to a memory region suitable for
|
|
* coherent DMA traffic to/from a PCI device. On SN platforms, this means
|
|
* that @dma_handle will have the %PCIIO_DMA_CMD flag set.
|
|
*
|
|
* This interface is usually used for "command" streams (e.g. the command
|
|
* queue for a SCSI controller). See Documentation/DMA-API.txt for
|
|
* more information.
|
|
*/
|
|
void *sn_dma_alloc_coherent(struct device *dev, size_t size,
|
|
dma_addr_t * dma_handle, int flags)
|
|
{
|
|
void *cpuaddr;
|
|
unsigned long phys_addr;
|
|
int node;
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev);
|
|
|
|
BUG_ON(dev->bus != &pci_bus_type);
|
|
|
|
/*
|
|
* Allocate the memory.
|
|
*/
|
|
node = pcibus_to_node(pdev->bus);
|
|
if (likely(node >=0)) {
|
|
struct page *p = alloc_pages_node(node, GFP_ATOMIC, get_order(size));
|
|
|
|
if (likely(p))
|
|
cpuaddr = page_address(p);
|
|
else
|
|
return NULL;
|
|
} else
|
|
cpuaddr = (void *)__get_free_pages(GFP_ATOMIC, get_order(size));
|
|
|
|
if (unlikely(!cpuaddr))
|
|
return NULL;
|
|
|
|
memset(cpuaddr, 0x0, size);
|
|
|
|
/* physical addr. of the memory we just got */
|
|
phys_addr = __pa(cpuaddr);
|
|
|
|
/*
|
|
* 64 bit address translations should never fail.
|
|
* 32 bit translations can fail if there are insufficient mapping
|
|
* resources.
|
|
*/
|
|
|
|
*dma_handle = provider->dma_map_consistent(pdev, phys_addr, size);
|
|
if (!*dma_handle) {
|
|
printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__);
|
|
free_pages((unsigned long)cpuaddr, get_order(size));
|
|
return NULL;
|
|
}
|
|
|
|
return cpuaddr;
|
|
}
|
|
EXPORT_SYMBOL(sn_dma_alloc_coherent);
|
|
|
|
/**
|
|
* sn_pci_free_coherent - free memory associated with coherent DMAable region
|
|
* @dev: device to free for
|
|
* @size: size to free
|
|
* @cpu_addr: kernel virtual address to free
|
|
* @dma_handle: DMA address associated with this region
|
|
*
|
|
* Frees the memory allocated by dma_alloc_coherent(), potentially unmapping
|
|
* any associated IOMMU mappings.
|
|
*/
|
|
void sn_dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t dma_handle)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev);
|
|
|
|
BUG_ON(dev->bus != &pci_bus_type);
|
|
|
|
provider->dma_unmap(pdev, dma_handle, 0);
|
|
free_pages((unsigned long)cpu_addr, get_order(size));
|
|
}
|
|
EXPORT_SYMBOL(sn_dma_free_coherent);
|
|
|
|
/**
|
|
* sn_dma_map_single - map a single page for DMA
|
|
* @dev: device to map for
|
|
* @cpu_addr: kernel virtual address of the region to map
|
|
* @size: size of the region
|
|
* @direction: DMA direction
|
|
*
|
|
* Map the region pointed to by @cpu_addr for DMA and return the
|
|
* DMA address.
|
|
*
|
|
* We map this to the one step pcibr_dmamap_trans interface rather than
|
|
* the two step pcibr_dmamap_alloc/pcibr_dmamap_addr because we have
|
|
* no way of saving the dmamap handle from the alloc to later free
|
|
* (which is pretty much unacceptable).
|
|
*
|
|
* TODO: simplify our interface;
|
|
* figure out how to save dmamap handle so can use two step.
|
|
*/
|
|
dma_addr_t sn_dma_map_single(struct device *dev, void *cpu_addr, size_t size,
|
|
int direction)
|
|
{
|
|
dma_addr_t dma_addr;
|
|
unsigned long phys_addr;
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev);
|
|
|
|
BUG_ON(dev->bus != &pci_bus_type);
|
|
|
|
phys_addr = __pa(cpu_addr);
|
|
dma_addr = provider->dma_map(pdev, phys_addr, size);
|
|
if (!dma_addr) {
|
|
printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__);
|
|
return 0;
|
|
}
|
|
return dma_addr;
|
|
}
|
|
EXPORT_SYMBOL(sn_dma_map_single);
|
|
|
|
/**
|
|
* sn_dma_unmap_single - unamp a DMA mapped page
|
|
* @dev: device to sync
|
|
* @dma_addr: DMA address to sync
|
|
* @size: size of region
|
|
* @direction: DMA direction
|
|
*
|
|
* This routine is supposed to sync the DMA region specified
|
|
* by @dma_handle into the coherence domain. On SN, we're always cache
|
|
* coherent, so we just need to free any ATEs associated with this mapping.
|
|
*/
|
|
void sn_dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
|
|
int direction)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev);
|
|
|
|
BUG_ON(dev->bus != &pci_bus_type);
|
|
|
|
provider->dma_unmap(pdev, dma_addr, direction);
|
|
}
|
|
EXPORT_SYMBOL(sn_dma_unmap_single);
|
|
|
|
/**
|
|
* sn_dma_unmap_sg - unmap a DMA scatterlist
|
|
* @dev: device to unmap
|
|
* @sg: scatterlist to unmap
|
|
* @nhwentries: number of scatterlist entries
|
|
* @direction: DMA direction
|
|
*
|
|
* Unmap a set of streaming mode DMA translations.
|
|
*/
|
|
void sn_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
|
|
int nhwentries, int direction)
|
|
{
|
|
int i;
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev);
|
|
|
|
BUG_ON(dev->bus != &pci_bus_type);
|
|
|
|
for (i = 0; i < nhwentries; i++, sg++) {
|
|
provider->dma_unmap(pdev, sg->dma_address, direction);
|
|
sg->dma_address = (dma_addr_t) NULL;
|
|
sg->dma_length = 0;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(sn_dma_unmap_sg);
|
|
|
|
/**
|
|
* sn_dma_map_sg - map a scatterlist for DMA
|
|
* @dev: device to map for
|
|
* @sg: scatterlist to map
|
|
* @nhwentries: number of entries
|
|
* @direction: direction of the DMA transaction
|
|
*
|
|
* Maps each entry of @sg for DMA.
|
|
*/
|
|
int sn_dma_map_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
|
|
int direction)
|
|
{
|
|
unsigned long phys_addr;
|
|
struct scatterlist *saved_sg = sg;
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev);
|
|
int i;
|
|
|
|
BUG_ON(dev->bus != &pci_bus_type);
|
|
|
|
/*
|
|
* Setup a DMA address for each entry in the scatterlist.
|
|
*/
|
|
for (i = 0; i < nhwentries; i++, sg++) {
|
|
phys_addr = SG_ENT_PHYS_ADDRESS(sg);
|
|
sg->dma_address = provider->dma_map(pdev,
|
|
phys_addr, sg->length);
|
|
|
|
if (!sg->dma_address) {
|
|
printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__);
|
|
|
|
/*
|
|
* Free any successfully allocated entries.
|
|
*/
|
|
if (i > 0)
|
|
sn_dma_unmap_sg(dev, saved_sg, i, direction);
|
|
return 0;
|
|
}
|
|
|
|
sg->dma_length = sg->length;
|
|
}
|
|
|
|
return nhwentries;
|
|
}
|
|
EXPORT_SYMBOL(sn_dma_map_sg);
|
|
|
|
void sn_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
|
|
size_t size, int direction)
|
|
{
|
|
BUG_ON(dev->bus != &pci_bus_type);
|
|
}
|
|
EXPORT_SYMBOL(sn_dma_sync_single_for_cpu);
|
|
|
|
void sn_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
|
|
size_t size, int direction)
|
|
{
|
|
BUG_ON(dev->bus != &pci_bus_type);
|
|
}
|
|
EXPORT_SYMBOL(sn_dma_sync_single_for_device);
|
|
|
|
void sn_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
|
|
int nelems, int direction)
|
|
{
|
|
BUG_ON(dev->bus != &pci_bus_type);
|
|
}
|
|
EXPORT_SYMBOL(sn_dma_sync_sg_for_cpu);
|
|
|
|
void sn_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
|
|
int nelems, int direction)
|
|
{
|
|
BUG_ON(dev->bus != &pci_bus_type);
|
|
}
|
|
EXPORT_SYMBOL(sn_dma_sync_sg_for_device);
|
|
|
|
int sn_dma_mapping_error(dma_addr_t dma_addr)
|
|
{
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(sn_dma_mapping_error);
|
|
|
|
char *sn_pci_get_legacy_mem(struct pci_bus *bus)
|
|
{
|
|
if (!SN_PCIBUS_BUSSOFT(bus))
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
return (char *)(SN_PCIBUS_BUSSOFT(bus)->bs_legacy_mem | __IA64_UNCACHED_OFFSET);
|
|
}
|
|
|
|
int sn_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
|
|
{
|
|
unsigned long addr;
|
|
int ret;
|
|
|
|
if (!SN_PCIBUS_BUSSOFT(bus))
|
|
return -ENODEV;
|
|
|
|
addr = SN_PCIBUS_BUSSOFT(bus)->bs_legacy_io | __IA64_UNCACHED_OFFSET;
|
|
addr += port;
|
|
|
|
ret = ia64_sn_probe_mem(addr, (long)size, (void *)val);
|
|
|
|
if (ret == 2)
|
|
return -EINVAL;
|
|
|
|
if (ret == 1)
|
|
*val = -1;
|
|
|
|
return size;
|
|
}
|
|
|
|
int sn_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
|
|
{
|
|
int ret = size;
|
|
unsigned long paddr;
|
|
unsigned long *addr;
|
|
|
|
if (!SN_PCIBUS_BUSSOFT(bus)) {
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
/* Put the phys addr in uncached space */
|
|
paddr = SN_PCIBUS_BUSSOFT(bus)->bs_legacy_io | __IA64_UNCACHED_OFFSET;
|
|
paddr += port;
|
|
addr = (unsigned long *)paddr;
|
|
|
|
switch (size) {
|
|
case 1:
|
|
*(volatile u8 *)(addr) = (u8)(val);
|
|
break;
|
|
case 2:
|
|
*(volatile u16 *)(addr) = (u16)(val);
|
|
break;
|
|
case 4:
|
|
*(volatile u32 *)(addr) = (u32)(val);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|