kernel-fxtec-pro1x/arch/i386/mm/init.c
Gerd Hoffmann 9a0b5817ad [PATCH] x86: SMP alternatives
Implement SMP alternatives, i.e.  switching at runtime between different
code versions for UP and SMP.  The code can patch both SMP->UP and UP->SMP.
The UP->SMP case is useful for CPU hotplug.

With CONFIG_CPU_HOTPLUG enabled the code switches to UP at boot time and
when the number of CPUs goes down to 1, and switches to SMP when the number
of CPUs goes up to 2.

Without CONFIG_CPU_HOTPLUG or on non-SMP-capable systems the code is
patched once at boot time (if needed) and the tables are released
afterwards.

The changes in detail:

  * The current alternatives bits are moved to a separate file,
    the SMP alternatives code is added there.

  * The patch adds some new elf sections to the kernel:
    .smp_altinstructions
	like .altinstructions, also contains a list
	of alt_instr structs.
    .smp_altinstr_replacement
	like .altinstr_replacement, but also has some space to
	save original instruction before replaving it.
    .smp_locks
	list of pointers to lock prefixes which can be nop'ed
	out on UP.
    The first two are used to replace more complex instruction
    sequences such as spinlocks and semaphores.  It would be possible
    to deal with the lock prefixes with that as well, but by handling
    them as special case the table sizes become much smaller.

 * The sections are page-aligned and padded up to page size, so they
   can be free if they are not needed.

 * Splitted the code to release init pages to a separate function and
   use it to release the elf sections if they are unused.

Signed-off-by: Gerd Hoffmann <kraxel@suse.de>
Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23 07:38:04 -08:00

773 lines
18 KiB
C

/*
* linux/arch/i386/mm/init.c
*
* Copyright (C) 1995 Linus Torvalds
*
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/efi.h>
#include <linux/memory_hotplug.h>
#include <linux/initrd.h>
#include <asm/processor.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/dma.h>
#include <asm/fixmap.h>
#include <asm/e820.h>
#include <asm/apic.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
unsigned int __VMALLOC_RESERVE = 128 << 20;
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
unsigned long highstart_pfn, highend_pfn;
static int noinline do_test_wp_bit(void);
/*
* Creates a middle page table and puts a pointer to it in the
* given global directory entry. This only returns the gd entry
* in non-PAE compilation mode, since the middle layer is folded.
*/
static pmd_t * __init one_md_table_init(pgd_t *pgd)
{
pud_t *pud;
pmd_t *pmd_table;
#ifdef CONFIG_X86_PAE
pmd_table = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);
set_pgd(pgd, __pgd(__pa(pmd_table) | _PAGE_PRESENT));
pud = pud_offset(pgd, 0);
if (pmd_table != pmd_offset(pud, 0))
BUG();
#else
pud = pud_offset(pgd, 0);
pmd_table = pmd_offset(pud, 0);
#endif
return pmd_table;
}
/*
* Create a page table and place a pointer to it in a middle page
* directory entry.
*/
static pte_t * __init one_page_table_init(pmd_t *pmd)
{
if (pmd_none(*pmd)) {
pte_t *page_table = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
set_pmd(pmd, __pmd(__pa(page_table) | _PAGE_TABLE));
if (page_table != pte_offset_kernel(pmd, 0))
BUG();
return page_table;
}
return pte_offset_kernel(pmd, 0);
}
/*
* This function initializes a certain range of kernel virtual memory
* with new bootmem page tables, everywhere page tables are missing in
* the given range.
*/
/*
* NOTE: The pagetables are allocated contiguous on the physical space
* so we can cache the place of the first one and move around without
* checking the pgd every time.
*/
static void __init page_table_range_init (unsigned long start, unsigned long end, pgd_t *pgd_base)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
int pgd_idx, pmd_idx;
unsigned long vaddr;
vaddr = start;
pgd_idx = pgd_index(vaddr);
pmd_idx = pmd_index(vaddr);
pgd = pgd_base + pgd_idx;
for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
if (pgd_none(*pgd))
one_md_table_init(pgd);
pud = pud_offset(pgd, vaddr);
pmd = pmd_offset(pud, vaddr);
for (; (pmd_idx < PTRS_PER_PMD) && (vaddr != end); pmd++, pmd_idx++) {
if (pmd_none(*pmd))
one_page_table_init(pmd);
vaddr += PMD_SIZE;
}
pmd_idx = 0;
}
}
static inline int is_kernel_text(unsigned long addr)
{
if (addr >= PAGE_OFFSET && addr <= (unsigned long)__init_end)
return 1;
return 0;
}
/*
* This maps the physical memory to kernel virtual address space, a total
* of max_low_pfn pages, by creating page tables starting from address
* PAGE_OFFSET.
*/
static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
{
unsigned long pfn;
pgd_t *pgd;
pmd_t *pmd;
pte_t *pte;
int pgd_idx, pmd_idx, pte_ofs;
pgd_idx = pgd_index(PAGE_OFFSET);
pgd = pgd_base + pgd_idx;
pfn = 0;
for (; pgd_idx < PTRS_PER_PGD; pgd++, pgd_idx++) {
pmd = one_md_table_init(pgd);
if (pfn >= max_low_pfn)
continue;
for (pmd_idx = 0; pmd_idx < PTRS_PER_PMD && pfn < max_low_pfn; pmd++, pmd_idx++) {
unsigned int address = pfn * PAGE_SIZE + PAGE_OFFSET;
/* Map with big pages if possible, otherwise create normal page tables. */
if (cpu_has_pse) {
unsigned int address2 = (pfn + PTRS_PER_PTE - 1) * PAGE_SIZE + PAGE_OFFSET + PAGE_SIZE-1;
if (is_kernel_text(address) || is_kernel_text(address2))
set_pmd(pmd, pfn_pmd(pfn, PAGE_KERNEL_LARGE_EXEC));
else
set_pmd(pmd, pfn_pmd(pfn, PAGE_KERNEL_LARGE));
pfn += PTRS_PER_PTE;
} else {
pte = one_page_table_init(pmd);
for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE && pfn < max_low_pfn; pte++, pfn++, pte_ofs++) {
if (is_kernel_text(address))
set_pte(pte, pfn_pte(pfn, PAGE_KERNEL_EXEC));
else
set_pte(pte, pfn_pte(pfn, PAGE_KERNEL));
}
}
}
}
}
static inline int page_kills_ppro(unsigned long pagenr)
{
if (pagenr >= 0x70000 && pagenr <= 0x7003F)
return 1;
return 0;
}
extern int is_available_memory(efi_memory_desc_t *);
int page_is_ram(unsigned long pagenr)
{
int i;
unsigned long addr, end;
if (efi_enabled) {
efi_memory_desc_t *md;
void *p;
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
md = p;
if (!is_available_memory(md))
continue;
addr = (md->phys_addr+PAGE_SIZE-1) >> PAGE_SHIFT;
end = (md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >> PAGE_SHIFT;
if ((pagenr >= addr) && (pagenr < end))
return 1;
}
return 0;
}
for (i = 0; i < e820.nr_map; i++) {
if (e820.map[i].type != E820_RAM) /* not usable memory */
continue;
/*
* !!!FIXME!!! Some BIOSen report areas as RAM that
* are not. Notably the 640->1Mb area. We need a sanity
* check here.
*/
addr = (e820.map[i].addr+PAGE_SIZE-1) >> PAGE_SHIFT;
end = (e820.map[i].addr+e820.map[i].size) >> PAGE_SHIFT;
if ((pagenr >= addr) && (pagenr < end))
return 1;
}
return 0;
}
#ifdef CONFIG_HIGHMEM
pte_t *kmap_pte;
pgprot_t kmap_prot;
#define kmap_get_fixmap_pte(vaddr) \
pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr), vaddr), (vaddr)), (vaddr))
static void __init kmap_init(void)
{
unsigned long kmap_vstart;
/* cache the first kmap pte */
kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN);
kmap_pte = kmap_get_fixmap_pte(kmap_vstart);
kmap_prot = PAGE_KERNEL;
}
static void __init permanent_kmaps_init(pgd_t *pgd_base)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
unsigned long vaddr;
vaddr = PKMAP_BASE;
page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
pgd = swapper_pg_dir + pgd_index(vaddr);
pud = pud_offset(pgd, vaddr);
pmd = pmd_offset(pud, vaddr);
pte = pte_offset_kernel(pmd, vaddr);
pkmap_page_table = pte;
}
static void __meminit free_new_highpage(struct page *page)
{
init_page_count(page);
__free_page(page);
totalhigh_pages++;
}
void __init add_one_highpage_init(struct page *page, int pfn, int bad_ppro)
{
if (page_is_ram(pfn) && !(bad_ppro && page_kills_ppro(pfn))) {
ClearPageReserved(page);
free_new_highpage(page);
} else
SetPageReserved(page);
}
static int add_one_highpage_hotplug(struct page *page, unsigned long pfn)
{
free_new_highpage(page);
totalram_pages++;
#ifdef CONFIG_FLATMEM
max_mapnr = max(pfn, max_mapnr);
#endif
num_physpages++;
return 0;
}
/*
* Not currently handling the NUMA case.
* Assuming single node and all memory that
* has been added dynamically that would be
* onlined here is in HIGHMEM
*/
void online_page(struct page *page)
{
ClearPageReserved(page);
add_one_highpage_hotplug(page, page_to_pfn(page));
}
#ifdef CONFIG_NUMA
extern void set_highmem_pages_init(int);
#else
static void __init set_highmem_pages_init(int bad_ppro)
{
int pfn;
for (pfn = highstart_pfn; pfn < highend_pfn; pfn++)
add_one_highpage_init(pfn_to_page(pfn), pfn, bad_ppro);
totalram_pages += totalhigh_pages;
}
#endif /* CONFIG_FLATMEM */
#else
#define kmap_init() do { } while (0)
#define permanent_kmaps_init(pgd_base) do { } while (0)
#define set_highmem_pages_init(bad_ppro) do { } while (0)
#endif /* CONFIG_HIGHMEM */
unsigned long long __PAGE_KERNEL = _PAGE_KERNEL;
EXPORT_SYMBOL(__PAGE_KERNEL);
unsigned long long __PAGE_KERNEL_EXEC = _PAGE_KERNEL_EXEC;
#ifdef CONFIG_NUMA
extern void __init remap_numa_kva(void);
#else
#define remap_numa_kva() do {} while (0)
#endif
static void __init pagetable_init (void)
{
unsigned long vaddr;
pgd_t *pgd_base = swapper_pg_dir;
#ifdef CONFIG_X86_PAE
int i;
/* Init entries of the first-level page table to the zero page */
for (i = 0; i < PTRS_PER_PGD; i++)
set_pgd(pgd_base + i, __pgd(__pa(empty_zero_page) | _PAGE_PRESENT));
#endif
/* Enable PSE if available */
if (cpu_has_pse) {
set_in_cr4(X86_CR4_PSE);
}
/* Enable PGE if available */
if (cpu_has_pge) {
set_in_cr4(X86_CR4_PGE);
__PAGE_KERNEL |= _PAGE_GLOBAL;
__PAGE_KERNEL_EXEC |= _PAGE_GLOBAL;
}
kernel_physical_mapping_init(pgd_base);
remap_numa_kva();
/*
* Fixed mappings, only the page table structure has to be
* created - mappings will be set by set_fixmap():
*/
vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
page_table_range_init(vaddr, 0, pgd_base);
permanent_kmaps_init(pgd_base);
#ifdef CONFIG_X86_PAE
/*
* Add low memory identity-mappings - SMP needs it when
* starting up on an AP from real-mode. In the non-PAE
* case we already have these mappings through head.S.
* All user-space mappings are explicitly cleared after
* SMP startup.
*/
set_pgd(&pgd_base[0], pgd_base[USER_PTRS_PER_PGD]);
#endif
}
#ifdef CONFIG_SOFTWARE_SUSPEND
/*
* Swap suspend & friends need this for resume because things like the intel-agp
* driver might have split up a kernel 4MB mapping.
*/
char __nosavedata swsusp_pg_dir[PAGE_SIZE]
__attribute__ ((aligned (PAGE_SIZE)));
static inline void save_pg_dir(void)
{
memcpy(swsusp_pg_dir, swapper_pg_dir, PAGE_SIZE);
}
#else
static inline void save_pg_dir(void)
{
}
#endif
void zap_low_mappings (void)
{
int i;
save_pg_dir();
/*
* Zap initial low-memory mappings.
*
* Note that "pgd_clear()" doesn't do it for
* us, because pgd_clear() is a no-op on i386.
*/
for (i = 0; i < USER_PTRS_PER_PGD; i++)
#ifdef CONFIG_X86_PAE
set_pgd(swapper_pg_dir+i, __pgd(1 + __pa(empty_zero_page)));
#else
set_pgd(swapper_pg_dir+i, __pgd(0));
#endif
flush_tlb_all();
}
static int disable_nx __initdata = 0;
u64 __supported_pte_mask __read_mostly = ~_PAGE_NX;
/*
* noexec = on|off
*
* Control non executable mappings.
*
* on Enable
* off Disable
*/
void __init noexec_setup(const char *str)
{
if (!strncmp(str, "on",2) && cpu_has_nx) {
__supported_pte_mask |= _PAGE_NX;
disable_nx = 0;
} else if (!strncmp(str,"off",3)) {
disable_nx = 1;
__supported_pte_mask &= ~_PAGE_NX;
}
}
int nx_enabled = 0;
#ifdef CONFIG_X86_PAE
static void __init set_nx(void)
{
unsigned int v[4], l, h;
if (cpu_has_pae && (cpuid_eax(0x80000000) > 0x80000001)) {
cpuid(0x80000001, &v[0], &v[1], &v[2], &v[3]);
if ((v[3] & (1 << 20)) && !disable_nx) {
rdmsr(MSR_EFER, l, h);
l |= EFER_NX;
wrmsr(MSR_EFER, l, h);
nx_enabled = 1;
__supported_pte_mask |= _PAGE_NX;
}
}
}
/*
* Enables/disables executability of a given kernel page and
* returns the previous setting.
*/
int __init set_kernel_exec(unsigned long vaddr, int enable)
{
pte_t *pte;
int ret = 1;
if (!nx_enabled)
goto out;
pte = lookup_address(vaddr);
BUG_ON(!pte);
if (!pte_exec_kernel(*pte))
ret = 0;
if (enable)
pte->pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
else
pte->pte_high |= 1 << (_PAGE_BIT_NX - 32);
__flush_tlb_all();
out:
return ret;
}
#endif
/*
* paging_init() sets up the page tables - note that the first 8MB are
* already mapped by head.S.
*
* This routines also unmaps the page at virtual kernel address 0, so
* that we can trap those pesky NULL-reference errors in the kernel.
*/
void __init paging_init(void)
{
#ifdef CONFIG_X86_PAE
set_nx();
if (nx_enabled)
printk("NX (Execute Disable) protection: active\n");
#endif
pagetable_init();
load_cr3(swapper_pg_dir);
#ifdef CONFIG_X86_PAE
/*
* We will bail out later - printk doesn't work right now so
* the user would just see a hanging kernel.
*/
if (cpu_has_pae)
set_in_cr4(X86_CR4_PAE);
#endif
__flush_tlb_all();
kmap_init();
}
/*
* Test if the WP bit works in supervisor mode. It isn't supported on 386's
* and also on some strange 486's (NexGen etc.). All 586+'s are OK. This
* used to involve black magic jumps to work around some nasty CPU bugs,
* but fortunately the switch to using exceptions got rid of all that.
*/
static void __init test_wp_bit(void)
{
printk("Checking if this processor honours the WP bit even in supervisor mode... ");
/* Any page-aligned address will do, the test is non-destructive */
__set_fixmap(FIX_WP_TEST, __pa(&swapper_pg_dir), PAGE_READONLY);
boot_cpu_data.wp_works_ok = do_test_wp_bit();
clear_fixmap(FIX_WP_TEST);
if (!boot_cpu_data.wp_works_ok) {
printk("No.\n");
#ifdef CONFIG_X86_WP_WORKS_OK
panic("This kernel doesn't support CPU's with broken WP. Recompile it for a 386!");
#endif
} else {
printk("Ok.\n");
}
}
static void __init set_max_mapnr_init(void)
{
#ifdef CONFIG_HIGHMEM
num_physpages = highend_pfn;
#else
num_physpages = max_low_pfn;
#endif
#ifdef CONFIG_FLATMEM
max_mapnr = num_physpages;
#endif
}
static struct kcore_list kcore_mem, kcore_vmalloc;
void __init mem_init(void)
{
extern int ppro_with_ram_bug(void);
int codesize, reservedpages, datasize, initsize;
int tmp;
int bad_ppro;
#ifdef CONFIG_FLATMEM
if (!mem_map)
BUG();
#endif
bad_ppro = ppro_with_ram_bug();
#ifdef CONFIG_HIGHMEM
/* check that fixmap and pkmap do not overlap */
if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) {
printk(KERN_ERR "fixmap and kmap areas overlap - this will crash\n");
printk(KERN_ERR "pkstart: %lxh pkend: %lxh fixstart %lxh\n",
PKMAP_BASE, PKMAP_BASE+LAST_PKMAP*PAGE_SIZE, FIXADDR_START);
BUG();
}
#endif
set_max_mapnr_init();
#ifdef CONFIG_HIGHMEM
high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
#else
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
#endif
/* this will put all low memory onto the freelists */
totalram_pages += free_all_bootmem();
reservedpages = 0;
for (tmp = 0; tmp < max_low_pfn; tmp++)
/*
* Only count reserved RAM pages
*/
if (page_is_ram(tmp) && PageReserved(pfn_to_page(tmp)))
reservedpages++;
set_highmem_pages_init(bad_ppro);
codesize = (unsigned long) &_etext - (unsigned long) &_text;
datasize = (unsigned long) &_edata - (unsigned long) &_etext;
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
VMALLOC_END-VMALLOC_START);
printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT-10),
codesize >> 10,
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
initsize >> 10,
(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
);
#ifdef CONFIG_X86_PAE
if (!cpu_has_pae)
panic("cannot execute a PAE-enabled kernel on a PAE-less CPU!");
#endif
if (boot_cpu_data.wp_works_ok < 0)
test_wp_bit();
/*
* Subtle. SMP is doing it's boot stuff late (because it has to
* fork idle threads) - but it also needs low mappings for the
* protected-mode entry to work. We zap these entries only after
* the WP-bit has been tested.
*/
#ifndef CONFIG_SMP
zap_low_mappings();
#endif
}
/*
* this is for the non-NUMA, single node SMP system case.
* Specifically, in the case of x86, we will always add
* memory to the highmem for now.
*/
#ifndef CONFIG_NEED_MULTIPLE_NODES
int add_memory(u64 start, u64 size)
{
struct pglist_data *pgdata = &contig_page_data;
struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
return __add_pages(zone, start_pfn, nr_pages);
}
int remove_memory(u64 start, u64 size)
{
return -EINVAL;
}
#endif
kmem_cache_t *pgd_cache;
kmem_cache_t *pmd_cache;
void __init pgtable_cache_init(void)
{
if (PTRS_PER_PMD > 1) {
pmd_cache = kmem_cache_create("pmd",
PTRS_PER_PMD*sizeof(pmd_t),
PTRS_PER_PMD*sizeof(pmd_t),
0,
pmd_ctor,
NULL);
if (!pmd_cache)
panic("pgtable_cache_init(): cannot create pmd cache");
}
pgd_cache = kmem_cache_create("pgd",
PTRS_PER_PGD*sizeof(pgd_t),
PTRS_PER_PGD*sizeof(pgd_t),
0,
pgd_ctor,
PTRS_PER_PMD == 1 ? pgd_dtor : NULL);
if (!pgd_cache)
panic("pgtable_cache_init(): Cannot create pgd cache");
}
/*
* This function cannot be __init, since exceptions don't work in that
* section. Put this after the callers, so that it cannot be inlined.
*/
static int noinline do_test_wp_bit(void)
{
char tmp_reg;
int flag;
__asm__ __volatile__(
" movb %0,%1 \n"
"1: movb %1,%0 \n"
" xorl %2,%2 \n"
"2: \n"
".section __ex_table,\"a\"\n"
" .align 4 \n"
" .long 1b,2b \n"
".previous \n"
:"=m" (*(char *)fix_to_virt(FIX_WP_TEST)),
"=q" (tmp_reg),
"=r" (flag)
:"2" (1)
:"memory");
return flag;
}
#ifdef CONFIG_DEBUG_RODATA
extern char __start_rodata, __end_rodata;
void mark_rodata_ro(void)
{
unsigned long addr = (unsigned long)&__start_rodata;
for (; addr < (unsigned long)&__end_rodata; addr += PAGE_SIZE)
change_page_attr(virt_to_page(addr), 1, PAGE_KERNEL_RO);
printk ("Write protecting the kernel read-only data: %luk\n",
(unsigned long)(&__end_rodata - &__start_rodata) >> 10);
/*
* change_page_attr() requires a global_flush_tlb() call after it.
* We do this after the printk so that if something went wrong in the
* change, the printk gets out at least to give a better debug hint
* of who is the culprit.
*/
global_flush_tlb();
}
#endif
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
unsigned long addr;
for (addr = begin; addr < end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
memset((void *)addr, 0xcc, PAGE_SIZE);
free_page(addr);
totalram_pages++;
}
printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
}
void free_initmem(void)
{
free_init_pages("unused kernel memory",
(unsigned long)(&__init_begin),
(unsigned long)(&__init_end));
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
free_init_pages("initrd memory", start, end);
}
#endif