kernel-fxtec-pro1x/fs/exofs/ios.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

823 lines
20 KiB
C

/*
* Copyright (C) 2005, 2006
* Avishay Traeger (avishay@gmail.com)
* Copyright (C) 2008, 2009
* Boaz Harrosh <bharrosh@panasas.com>
*
* This file is part of exofs.
*
* exofs is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation. Since it is based on ext2, and the only
* valid version of GPL for the Linux kernel is version 2, the only valid
* version of GPL for exofs is version 2.
*
* exofs is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with exofs; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/slab.h>
#include <scsi/scsi_device.h>
#include <asm/div64.h>
#include "exofs.h"
#define EXOFS_DBGMSG2(M...) do {} while (0)
/* #define EXOFS_DBGMSG2 EXOFS_DBGMSG */
void exofs_make_credential(u8 cred_a[OSD_CAP_LEN], const struct osd_obj_id *obj)
{
osd_sec_init_nosec_doall_caps(cred_a, obj, false, true);
}
int exofs_read_kern(struct osd_dev *od, u8 *cred, struct osd_obj_id *obj,
u64 offset, void *p, unsigned length)
{
struct osd_request *or = osd_start_request(od, GFP_KERNEL);
/* struct osd_sense_info osi = {.key = 0};*/
int ret;
if (unlikely(!or)) {
EXOFS_DBGMSG("%s: osd_start_request failed.\n", __func__);
return -ENOMEM;
}
ret = osd_req_read_kern(or, obj, offset, p, length);
if (unlikely(ret)) {
EXOFS_DBGMSG("%s: osd_req_read_kern failed.\n", __func__);
goto out;
}
ret = osd_finalize_request(or, 0, cred, NULL);
if (unlikely(ret)) {
EXOFS_DBGMSG("Faild to osd_finalize_request() => %d\n", ret);
goto out;
}
ret = osd_execute_request(or);
if (unlikely(ret))
EXOFS_DBGMSG("osd_execute_request() => %d\n", ret);
/* osd_req_decode_sense(or, ret); */
out:
osd_end_request(or);
return ret;
}
int exofs_get_io_state(struct exofs_layout *layout,
struct exofs_io_state **pios)
{
struct exofs_io_state *ios;
/*TODO: Maybe use kmem_cach per sbi of size
* exofs_io_state_size(layout->s_numdevs)
*/
ios = kzalloc(exofs_io_state_size(layout->s_numdevs), GFP_KERNEL);
if (unlikely(!ios)) {
EXOFS_DBGMSG("Faild kzalloc bytes=%d\n",
exofs_io_state_size(layout->s_numdevs));
*pios = NULL;
return -ENOMEM;
}
ios->layout = layout;
ios->obj.partition = layout->s_pid;
*pios = ios;
return 0;
}
void exofs_put_io_state(struct exofs_io_state *ios)
{
if (ios) {
unsigned i;
for (i = 0; i < ios->numdevs; i++) {
struct exofs_per_dev_state *per_dev = &ios->per_dev[i];
if (per_dev->or)
osd_end_request(per_dev->or);
if (per_dev->bio)
bio_put(per_dev->bio);
}
kfree(ios);
}
}
unsigned exofs_layout_od_id(struct exofs_layout *layout,
osd_id obj_no, unsigned layout_index)
{
/* switch (layout->lay_func) {
case LAYOUT_MOVING_WINDOW:
{*/
unsigned dev_mod = obj_no;
return (layout_index + dev_mod * layout->mirrors_p1) %
layout->s_numdevs;
/* }
case LAYOUT_FUNC_IMPLICT:
return layout->devs[layout_index];
}*/
}
static inline struct osd_dev *exofs_ios_od(struct exofs_io_state *ios,
unsigned layout_index)
{
return ios->layout->s_ods[
exofs_layout_od_id(ios->layout, ios->obj.id, layout_index)];
}
static void _sync_done(struct exofs_io_state *ios, void *p)
{
struct completion *waiting = p;
complete(waiting);
}
static void _last_io(struct kref *kref)
{
struct exofs_io_state *ios = container_of(
kref, struct exofs_io_state, kref);
ios->done(ios, ios->private);
}
static void _done_io(struct osd_request *or, void *p)
{
struct exofs_io_state *ios = p;
kref_put(&ios->kref, _last_io);
}
static int exofs_io_execute(struct exofs_io_state *ios)
{
DECLARE_COMPLETION_ONSTACK(wait);
bool sync = (ios->done == NULL);
int i, ret;
if (sync) {
ios->done = _sync_done;
ios->private = &wait;
}
for (i = 0; i < ios->numdevs; i++) {
struct osd_request *or = ios->per_dev[i].or;
if (unlikely(!or))
continue;
ret = osd_finalize_request(or, 0, ios->cred, NULL);
if (unlikely(ret)) {
EXOFS_DBGMSG("Faild to osd_finalize_request() => %d\n",
ret);
return ret;
}
}
kref_init(&ios->kref);
for (i = 0; i < ios->numdevs; i++) {
struct osd_request *or = ios->per_dev[i].or;
if (unlikely(!or))
continue;
kref_get(&ios->kref);
osd_execute_request_async(or, _done_io, ios);
}
kref_put(&ios->kref, _last_io);
ret = 0;
if (sync) {
wait_for_completion(&wait);
ret = exofs_check_io(ios, NULL);
}
return ret;
}
static void _clear_bio(struct bio *bio)
{
struct bio_vec *bv;
unsigned i;
__bio_for_each_segment(bv, bio, i, 0) {
unsigned this_count = bv->bv_len;
if (likely(PAGE_SIZE == this_count))
clear_highpage(bv->bv_page);
else
zero_user(bv->bv_page, bv->bv_offset, this_count);
}
}
int exofs_check_io(struct exofs_io_state *ios, u64 *resid)
{
enum osd_err_priority acumulated_osd_err = 0;
int acumulated_lin_err = 0;
int i;
for (i = 0; i < ios->numdevs; i++) {
struct osd_sense_info osi;
struct osd_request *or = ios->per_dev[i].or;
int ret;
if (unlikely(!or))
continue;
ret = osd_req_decode_sense(or, &osi);
if (likely(!ret))
continue;
if (OSD_ERR_PRI_CLEAR_PAGES == osi.osd_err_pri) {
/* start read offset passed endof file */
_clear_bio(ios->per_dev[i].bio);
EXOFS_DBGMSG("start read offset passed end of file "
"offset=0x%llx, length=0x%llx\n",
_LLU(ios->per_dev[i].offset),
_LLU(ios->per_dev[i].length));
continue; /* we recovered */
}
if (osi.osd_err_pri >= acumulated_osd_err) {
acumulated_osd_err = osi.osd_err_pri;
acumulated_lin_err = ret;
}
}
/* TODO: raid specific residual calculations */
if (resid) {
if (likely(!acumulated_lin_err))
*resid = 0;
else
*resid = ios->length;
}
return acumulated_lin_err;
}
/*
* L - logical offset into the file
*
* U - The number of bytes in a stripe within a group
*
* U = stripe_unit * group_width
*
* T - The number of bytes striped within a group of component objects
* (before advancing to the next group)
*
* T = stripe_unit * group_width * group_depth
*
* S - The number of bytes striped across all component objects
* before the pattern repeats
*
* S = stripe_unit * group_width * group_depth * group_count
*
* M - The "major" (i.e., across all components) stripe number
*
* M = L / S
*
* G - Counts the groups from the beginning of the major stripe
*
* G = (L - (M * S)) / T [or (L % S) / T]
*
* H - The byte offset within the group
*
* H = (L - (M * S)) % T [or (L % S) % T]
*
* N - The "minor" (i.e., across the group) stripe number
*
* N = H / U
*
* C - The component index coresponding to L
*
* C = (H - (N * U)) / stripe_unit + G * group_width
* [or (L % U) / stripe_unit + G * group_width]
*
* O - The component offset coresponding to L
*
* O = L % stripe_unit + N * stripe_unit + M * group_depth * stripe_unit
*/
struct _striping_info {
u64 obj_offset;
u64 group_length;
u64 total_group_length;
u64 Major;
unsigned dev;
unsigned unit_off;
};
static void _calc_stripe_info(struct exofs_io_state *ios, u64 file_offset,
struct _striping_info *si)
{
u32 stripe_unit = ios->layout->stripe_unit;
u32 group_width = ios->layout->group_width;
u64 group_depth = ios->layout->group_depth;
u32 U = stripe_unit * group_width;
u64 T = U * group_depth;
u64 S = T * ios->layout->group_count;
u64 M = div64_u64(file_offset, S);
/*
G = (L - (M * S)) / T
H = (L - (M * S)) % T
*/
u64 LmodS = file_offset - M * S;
u32 G = div64_u64(LmodS, T);
u64 H = LmodS - G * T;
u32 N = div_u64(H, U);
/* "H - (N * U)" is just "H % U" so it's bound to u32 */
si->dev = (u32)(H - (N * U)) / stripe_unit + G * group_width;
si->dev *= ios->layout->mirrors_p1;
div_u64_rem(file_offset, stripe_unit, &si->unit_off);
si->obj_offset = si->unit_off + (N * stripe_unit) +
(M * group_depth * stripe_unit);
si->group_length = T - H;
si->total_group_length = T;
si->Major = M;
}
static int _add_stripe_unit(struct exofs_io_state *ios, unsigned *cur_pg,
unsigned pgbase, struct exofs_per_dev_state *per_dev,
int cur_len)
{
unsigned pg = *cur_pg;
struct request_queue *q =
osd_request_queue(exofs_ios_od(ios, per_dev->dev));
per_dev->length += cur_len;
if (per_dev->bio == NULL) {
unsigned pages_in_stripe = ios->layout->group_width *
(ios->layout->stripe_unit / PAGE_SIZE);
unsigned bio_size = (ios->nr_pages + pages_in_stripe) /
ios->layout->group_width;
per_dev->bio = bio_kmalloc(GFP_KERNEL, bio_size);
if (unlikely(!per_dev->bio)) {
EXOFS_DBGMSG("Faild to allocate BIO size=%u\n",
bio_size);
return -ENOMEM;
}
}
while (cur_len > 0) {
unsigned pglen = min_t(unsigned, PAGE_SIZE - pgbase, cur_len);
unsigned added_len;
BUG_ON(ios->nr_pages <= pg);
cur_len -= pglen;
added_len = bio_add_pc_page(q, per_dev->bio, ios->pages[pg],
pglen, pgbase);
if (unlikely(pglen != added_len))
return -ENOMEM;
pgbase = 0;
++pg;
}
BUG_ON(cur_len);
*cur_pg = pg;
return 0;
}
static int _prepare_one_group(struct exofs_io_state *ios, u64 length,
struct _striping_info *si, unsigned first_comp)
{
unsigned stripe_unit = ios->layout->stripe_unit;
unsigned mirrors_p1 = ios->layout->mirrors_p1;
unsigned devs_in_group = ios->layout->group_width * mirrors_p1;
unsigned dev = si->dev;
unsigned first_dev = dev - (dev % devs_in_group);
unsigned comp = first_comp + (dev - first_dev);
unsigned max_comp = ios->numdevs ? ios->numdevs - mirrors_p1 : 0;
unsigned cur_pg = ios->pages_consumed;
int ret = 0;
while (length) {
struct exofs_per_dev_state *per_dev = &ios->per_dev[comp];
unsigned cur_len, page_off = 0;
if (!per_dev->length) {
per_dev->dev = dev;
if (dev < si->dev) {
per_dev->offset = si->obj_offset + stripe_unit -
si->unit_off;
cur_len = stripe_unit;
} else if (dev == si->dev) {
per_dev->offset = si->obj_offset;
cur_len = stripe_unit - si->unit_off;
page_off = si->unit_off & ~PAGE_MASK;
BUG_ON(page_off && (page_off != ios->pgbase));
} else { /* dev > si->dev */
per_dev->offset = si->obj_offset - si->unit_off;
cur_len = stripe_unit;
}
if (max_comp < comp)
max_comp = comp;
dev += mirrors_p1;
dev = (dev % devs_in_group) + first_dev;
} else {
cur_len = stripe_unit;
}
if (cur_len >= length)
cur_len = length;
ret = _add_stripe_unit(ios, &cur_pg, page_off , per_dev,
cur_len);
if (unlikely(ret))
goto out;
comp += mirrors_p1;
comp = (comp % devs_in_group) + first_comp;
length -= cur_len;
}
out:
ios->numdevs = max_comp + mirrors_p1;
ios->pages_consumed = cur_pg;
return ret;
}
static int _prepare_for_striping(struct exofs_io_state *ios)
{
u64 length = ios->length;
struct _striping_info si;
unsigned devs_in_group = ios->layout->group_width *
ios->layout->mirrors_p1;
unsigned first_comp = 0;
int ret = 0;
_calc_stripe_info(ios, ios->offset, &si);
if (!ios->pages) {
if (ios->kern_buff) {
struct exofs_per_dev_state *per_dev = &ios->per_dev[0];
per_dev->offset = si.obj_offset;
per_dev->dev = si.dev;
/* no cross device without page array */
BUG_ON((ios->layout->group_width > 1) &&
(si.unit_off + ios->length >
ios->layout->stripe_unit));
}
ios->numdevs = ios->layout->mirrors_p1;
return 0;
}
while (length) {
if (length < si.group_length)
si.group_length = length;
ret = _prepare_one_group(ios, si.group_length, &si, first_comp);
if (unlikely(ret))
goto out;
length -= si.group_length;
si.group_length = si.total_group_length;
si.unit_off = 0;
++si.Major;
si.obj_offset = si.Major * ios->layout->stripe_unit *
ios->layout->group_depth;
si.dev = (si.dev - (si.dev % devs_in_group)) + devs_in_group;
si.dev %= ios->layout->s_numdevs;
first_comp += devs_in_group;
first_comp %= ios->layout->s_numdevs;
}
out:
return ret;
}
int exofs_sbi_create(struct exofs_io_state *ios)
{
int i, ret;
for (i = 0; i < ios->layout->s_numdevs; i++) {
struct osd_request *or;
or = osd_start_request(exofs_ios_od(ios, i), GFP_KERNEL);
if (unlikely(!or)) {
EXOFS_ERR("%s: osd_start_request failed\n", __func__);
ret = -ENOMEM;
goto out;
}
ios->per_dev[i].or = or;
ios->numdevs++;
osd_req_create_object(or, &ios->obj);
}
ret = exofs_io_execute(ios);
out:
return ret;
}
int exofs_sbi_remove(struct exofs_io_state *ios)
{
int i, ret;
for (i = 0; i < ios->layout->s_numdevs; i++) {
struct osd_request *or;
or = osd_start_request(exofs_ios_od(ios, i), GFP_KERNEL);
if (unlikely(!or)) {
EXOFS_ERR("%s: osd_start_request failed\n", __func__);
ret = -ENOMEM;
goto out;
}
ios->per_dev[i].or = or;
ios->numdevs++;
osd_req_remove_object(or, &ios->obj);
}
ret = exofs_io_execute(ios);
out:
return ret;
}
static int _sbi_write_mirror(struct exofs_io_state *ios, int cur_comp)
{
struct exofs_per_dev_state *master_dev = &ios->per_dev[cur_comp];
unsigned dev = ios->per_dev[cur_comp].dev;
unsigned last_comp = cur_comp + ios->layout->mirrors_p1;
int ret = 0;
if (ios->pages && !master_dev->length)
return 0; /* Just an empty slot */
for (; cur_comp < last_comp; ++cur_comp, ++dev) {
struct exofs_per_dev_state *per_dev = &ios->per_dev[cur_comp];
struct osd_request *or;
or = osd_start_request(exofs_ios_od(ios, dev), GFP_KERNEL);
if (unlikely(!or)) {
EXOFS_ERR("%s: osd_start_request failed\n", __func__);
ret = -ENOMEM;
goto out;
}
per_dev->or = or;
per_dev->offset = master_dev->offset;
if (ios->pages) {
struct bio *bio;
if (per_dev != master_dev) {
bio = bio_kmalloc(GFP_KERNEL,
master_dev->bio->bi_max_vecs);
if (unlikely(!bio)) {
EXOFS_DBGMSG(
"Faild to allocate BIO size=%u\n",
master_dev->bio->bi_max_vecs);
ret = -ENOMEM;
goto out;
}
__bio_clone(bio, master_dev->bio);
bio->bi_bdev = NULL;
bio->bi_next = NULL;
per_dev->length = master_dev->length;
per_dev->bio = bio;
per_dev->dev = dev;
} else {
bio = master_dev->bio;
/* FIXME: bio_set_dir() */
bio->bi_rw |= (1 << BIO_RW);
}
osd_req_write(or, &ios->obj, per_dev->offset, bio,
per_dev->length);
EXOFS_DBGMSG("write(0x%llx) offset=0x%llx "
"length=0x%llx dev=%d\n",
_LLU(ios->obj.id), _LLU(per_dev->offset),
_LLU(per_dev->length), dev);
} else if (ios->kern_buff) {
ret = osd_req_write_kern(or, &ios->obj, per_dev->offset,
ios->kern_buff, ios->length);
if (unlikely(ret))
goto out;
EXOFS_DBGMSG2("write_kern(0x%llx) offset=0x%llx "
"length=0x%llx dev=%d\n",
_LLU(ios->obj.id), _LLU(per_dev->offset),
_LLU(ios->length), dev);
} else {
osd_req_set_attributes(or, &ios->obj);
EXOFS_DBGMSG2("obj(0x%llx) set_attributes=%d dev=%d\n",
_LLU(ios->obj.id), ios->out_attr_len, dev);
}
if (ios->out_attr)
osd_req_add_set_attr_list(or, ios->out_attr,
ios->out_attr_len);
if (ios->in_attr)
osd_req_add_get_attr_list(or, ios->in_attr,
ios->in_attr_len);
}
out:
return ret;
}
int exofs_sbi_write(struct exofs_io_state *ios)
{
int i;
int ret;
ret = _prepare_for_striping(ios);
if (unlikely(ret))
return ret;
for (i = 0; i < ios->numdevs; i += ios->layout->mirrors_p1) {
ret = _sbi_write_mirror(ios, i);
if (unlikely(ret))
return ret;
}
ret = exofs_io_execute(ios);
return ret;
}
static int _sbi_read_mirror(struct exofs_io_state *ios, unsigned cur_comp)
{
struct osd_request *or;
struct exofs_per_dev_state *per_dev = &ios->per_dev[cur_comp];
unsigned first_dev = (unsigned)ios->obj.id;
if (ios->pages && !per_dev->length)
return 0; /* Just an empty slot */
first_dev = per_dev->dev + first_dev % ios->layout->mirrors_p1;
or = osd_start_request(exofs_ios_od(ios, first_dev), GFP_KERNEL);
if (unlikely(!or)) {
EXOFS_ERR("%s: osd_start_request failed\n", __func__);
return -ENOMEM;
}
per_dev->or = or;
if (ios->pages) {
osd_req_read(or, &ios->obj, per_dev->offset,
per_dev->bio, per_dev->length);
EXOFS_DBGMSG("read(0x%llx) offset=0x%llx length=0x%llx"
" dev=%d\n", _LLU(ios->obj.id),
_LLU(per_dev->offset), _LLU(per_dev->length),
first_dev);
} else if (ios->kern_buff) {
int ret = osd_req_read_kern(or, &ios->obj, per_dev->offset,
ios->kern_buff, ios->length);
EXOFS_DBGMSG2("read_kern(0x%llx) offset=0x%llx "
"length=0x%llx dev=%d ret=>%d\n",
_LLU(ios->obj.id), _LLU(per_dev->offset),
_LLU(ios->length), first_dev, ret);
if (unlikely(ret))
return ret;
} else {
osd_req_get_attributes(or, &ios->obj);
EXOFS_DBGMSG2("obj(0x%llx) get_attributes=%d dev=%d\n",
_LLU(ios->obj.id), ios->in_attr_len, first_dev);
}
if (ios->out_attr)
osd_req_add_set_attr_list(or, ios->out_attr, ios->out_attr_len);
if (ios->in_attr)
osd_req_add_get_attr_list(or, ios->in_attr, ios->in_attr_len);
return 0;
}
int exofs_sbi_read(struct exofs_io_state *ios)
{
int i;
int ret;
ret = _prepare_for_striping(ios);
if (unlikely(ret))
return ret;
for (i = 0; i < ios->numdevs; i += ios->layout->mirrors_p1) {
ret = _sbi_read_mirror(ios, i);
if (unlikely(ret))
return ret;
}
ret = exofs_io_execute(ios);
return ret;
}
int extract_attr_from_ios(struct exofs_io_state *ios, struct osd_attr *attr)
{
struct osd_attr cur_attr = {.attr_page = 0}; /* start with zeros */
void *iter = NULL;
int nelem;
do {
nelem = 1;
osd_req_decode_get_attr_list(ios->per_dev[0].or,
&cur_attr, &nelem, &iter);
if ((cur_attr.attr_page == attr->attr_page) &&
(cur_attr.attr_id == attr->attr_id)) {
attr->len = cur_attr.len;
attr->val_ptr = cur_attr.val_ptr;
return 0;
}
} while (iter);
return -EIO;
}
static int _truncate_mirrors(struct exofs_io_state *ios, unsigned cur_comp,
struct osd_attr *attr)
{
int last_comp = cur_comp + ios->layout->mirrors_p1;
for (; cur_comp < last_comp; ++cur_comp) {
struct exofs_per_dev_state *per_dev = &ios->per_dev[cur_comp];
struct osd_request *or;
or = osd_start_request(exofs_ios_od(ios, cur_comp), GFP_KERNEL);
if (unlikely(!or)) {
EXOFS_ERR("%s: osd_start_request failed\n", __func__);
return -ENOMEM;
}
per_dev->or = or;
osd_req_set_attributes(or, &ios->obj);
osd_req_add_set_attr_list(or, attr, 1);
}
return 0;
}
int exofs_oi_truncate(struct exofs_i_info *oi, u64 size)
{
struct exofs_sb_info *sbi = oi->vfs_inode.i_sb->s_fs_info;
struct exofs_io_state *ios;
struct exofs_trunc_attr {
struct osd_attr attr;
__be64 newsize;
} *size_attrs;
struct _striping_info si;
int i, ret;
ret = exofs_get_io_state(&sbi->layout, &ios);
if (unlikely(ret))
return ret;
size_attrs = kcalloc(ios->layout->group_width, sizeof(*size_attrs),
GFP_KERNEL);
if (unlikely(!size_attrs)) {
ret = -ENOMEM;
goto out;
}
ios->obj.id = exofs_oi_objno(oi);
ios->cred = oi->i_cred;
ios->numdevs = ios->layout->s_numdevs;
_calc_stripe_info(ios, size, &si);
for (i = 0; i < ios->layout->group_width; ++i) {
struct exofs_trunc_attr *size_attr = &size_attrs[i];
u64 obj_size;
if (i < si.dev)
obj_size = si.obj_offset +
ios->layout->stripe_unit - si.unit_off;
else if (i == si.dev)
obj_size = si.obj_offset;
else /* i > si.dev */
obj_size = si.obj_offset - si.unit_off;
size_attr->newsize = cpu_to_be64(obj_size);
size_attr->attr = g_attr_logical_length;
size_attr->attr.val_ptr = &size_attr->newsize;
ret = _truncate_mirrors(ios, i * ios->layout->mirrors_p1,
&size_attr->attr);
if (unlikely(ret))
goto out;
}
ret = exofs_io_execute(ios);
out:
kfree(size_attrs);
exofs_put_io_state(ios);
return ret;
}