ec71a07d1c
The chip version constant (0xCC33) was taken from version 0001.0105.2011 of the GPL vendor driver. Note that this driver version also ships a firmware update, but I am unsure if it is required for E-CUT chips to function properly. A nearby spelling error was also corrected. Signed-off-by: Forest Bond <forest.bond@rapidrollout.com> Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2324 lines
69 KiB
C
2324 lines
69 KiB
C
/******************************************************************************
|
|
*
|
|
* Copyright(c) 2009-2012 Realtek Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
|
|
*
|
|
* The full GNU General Public License is included in this distribution in the
|
|
* file called LICENSE.
|
|
*
|
|
* Contact Information:
|
|
* wlanfae <wlanfae@realtek.com>
|
|
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
|
|
* Hsinchu 300, Taiwan.
|
|
*
|
|
* Larry Finger <Larry.Finger@lwfinger.net>
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#include "../wifi.h"
|
|
#include "../efuse.h"
|
|
#include "../base.h"
|
|
#include "../regd.h"
|
|
#include "../cam.h"
|
|
#include "../ps.h"
|
|
#include "../pci.h"
|
|
#include "reg.h"
|
|
#include "def.h"
|
|
#include "phy.h"
|
|
#include "dm.h"
|
|
#include "fw.h"
|
|
#include "led.h"
|
|
#include "sw.h"
|
|
#include "hw.h"
|
|
|
|
u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
u32 value;
|
|
|
|
rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC));
|
|
rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct);
|
|
udelay(10);
|
|
value = rtl_read_dword(rtlpriv, REG_DBI_RDATA);
|
|
return value;
|
|
}
|
|
|
|
void rtl92de_write_dword_dbi(struct ieee80211_hw *hw,
|
|
u16 offset, u32 value, u8 direct)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
|
|
rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000));
|
|
rtl_write_dword(rtlpriv, REG_DBI_WDATA, value);
|
|
rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct);
|
|
}
|
|
|
|
static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
|
|
u8 set_bits, u8 clear_bits)
|
|
{
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
|
|
rtlpci->reg_bcn_ctrl_val |= set_bits;
|
|
rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
|
|
rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
|
|
}
|
|
|
|
static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
u8 tmp1byte;
|
|
|
|
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
|
|
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
|
|
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
|
|
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
|
|
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
|
|
tmp1byte &= ~(BIT(0));
|
|
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
|
|
}
|
|
|
|
static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
u8 tmp1byte;
|
|
|
|
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
|
|
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
|
|
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
|
|
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
|
|
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
|
|
tmp1byte |= BIT(0);
|
|
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
|
|
}
|
|
|
|
static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw)
|
|
{
|
|
_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1));
|
|
}
|
|
|
|
static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw)
|
|
{
|
|
_rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0);
|
|
}
|
|
|
|
void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
|
|
switch (variable) {
|
|
case HW_VAR_RCR:
|
|
*((u32 *) (val)) = rtlpci->receive_config;
|
|
break;
|
|
case HW_VAR_RF_STATE:
|
|
*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
|
|
break;
|
|
case HW_VAR_FWLPS_RF_ON:{
|
|
enum rf_pwrstate rfState;
|
|
u32 val_rcr;
|
|
|
|
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
|
|
(u8 *) (&rfState));
|
|
if (rfState == ERFOFF) {
|
|
*((bool *) (val)) = true;
|
|
} else {
|
|
val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
|
|
val_rcr &= 0x00070000;
|
|
if (val_rcr)
|
|
*((bool *) (val)) = false;
|
|
else
|
|
*((bool *) (val)) = true;
|
|
}
|
|
break;
|
|
}
|
|
case HW_VAR_FW_PSMODE_STATUS:
|
|
*((bool *) (val)) = ppsc->fw_current_inpsmode;
|
|
break;
|
|
case HW_VAR_CORRECT_TSF:{
|
|
u64 tsf;
|
|
u32 *ptsf_low = (u32 *)&tsf;
|
|
u32 *ptsf_high = ((u32 *)&tsf) + 1;
|
|
|
|
*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
|
|
*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
|
|
*((u64 *) (val)) = tsf;
|
|
break;
|
|
}
|
|
case HW_VAR_INT_MIGRATION:
|
|
*((bool *)(val)) = rtlpriv->dm.interrupt_migration;
|
|
break;
|
|
case HW_VAR_INT_AC:
|
|
*((bool *)(val)) = rtlpriv->dm.disable_tx_int;
|
|
break;
|
|
default:
|
|
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
|
|
"switch case not processed\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
|
|
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
|
|
u8 idx;
|
|
|
|
switch (variable) {
|
|
case HW_VAR_ETHER_ADDR:
|
|
for (idx = 0; idx < ETH_ALEN; idx++) {
|
|
rtl_write_byte(rtlpriv, (REG_MACID + idx),
|
|
val[idx]);
|
|
}
|
|
break;
|
|
case HW_VAR_BASIC_RATE: {
|
|
u16 rate_cfg = ((u16 *) val)[0];
|
|
u8 rate_index = 0;
|
|
|
|
rate_cfg = rate_cfg & 0x15f;
|
|
if (mac->vendor == PEER_CISCO &&
|
|
((rate_cfg & 0x150) == 0))
|
|
rate_cfg |= 0x01;
|
|
rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
|
|
rtl_write_byte(rtlpriv, REG_RRSR + 1,
|
|
(rate_cfg >> 8) & 0xff);
|
|
while (rate_cfg > 0x1) {
|
|
rate_cfg = (rate_cfg >> 1);
|
|
rate_index++;
|
|
}
|
|
if (rtlhal->fw_version > 0xe)
|
|
rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
|
|
rate_index);
|
|
break;
|
|
}
|
|
case HW_VAR_BSSID:
|
|
for (idx = 0; idx < ETH_ALEN; idx++) {
|
|
rtl_write_byte(rtlpriv, (REG_BSSID + idx),
|
|
val[idx]);
|
|
}
|
|
break;
|
|
case HW_VAR_SIFS:
|
|
rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
|
|
rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
|
|
rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
|
|
rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
|
|
if (!mac->ht_enable)
|
|
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
|
|
0x0e0e);
|
|
else
|
|
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
|
|
*((u16 *) val));
|
|
break;
|
|
case HW_VAR_SLOT_TIME: {
|
|
u8 e_aci;
|
|
|
|
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
|
|
"HW_VAR_SLOT_TIME %x\n", val[0]);
|
|
rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
|
|
for (e_aci = 0; e_aci < AC_MAX; e_aci++)
|
|
rtlpriv->cfg->ops->set_hw_reg(hw,
|
|
HW_VAR_AC_PARAM,
|
|
(u8 *) (&e_aci));
|
|
break;
|
|
}
|
|
case HW_VAR_ACK_PREAMBLE: {
|
|
u8 reg_tmp;
|
|
u8 short_preamble = (bool) (*(u8 *) val);
|
|
|
|
reg_tmp = (mac->cur_40_prime_sc) << 5;
|
|
if (short_preamble)
|
|
reg_tmp |= 0x80;
|
|
rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
|
|
break;
|
|
}
|
|
case HW_VAR_AMPDU_MIN_SPACE: {
|
|
u8 min_spacing_to_set;
|
|
u8 sec_min_space;
|
|
|
|
min_spacing_to_set = *((u8 *) val);
|
|
if (min_spacing_to_set <= 7) {
|
|
sec_min_space = 0;
|
|
if (min_spacing_to_set < sec_min_space)
|
|
min_spacing_to_set = sec_min_space;
|
|
mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
|
|
min_spacing_to_set);
|
|
*val = min_spacing_to_set;
|
|
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
|
|
"Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
|
|
mac->min_space_cfg);
|
|
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
|
|
mac->min_space_cfg);
|
|
}
|
|
break;
|
|
}
|
|
case HW_VAR_SHORTGI_DENSITY: {
|
|
u8 density_to_set;
|
|
|
|
density_to_set = *((u8 *) val);
|
|
mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
|
|
mac->min_space_cfg |= (density_to_set << 3);
|
|
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
|
|
"Set HW_VAR_SHORTGI_DENSITY: %#x\n",
|
|
mac->min_space_cfg);
|
|
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
|
|
mac->min_space_cfg);
|
|
break;
|
|
}
|
|
case HW_VAR_AMPDU_FACTOR: {
|
|
u8 factor_toset;
|
|
u32 regtoSet;
|
|
u8 *ptmp_byte = NULL;
|
|
u8 index;
|
|
|
|
if (rtlhal->macphymode == DUALMAC_DUALPHY)
|
|
regtoSet = 0xb9726641;
|
|
else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
|
|
regtoSet = 0x66626641;
|
|
else
|
|
regtoSet = 0xb972a841;
|
|
factor_toset = *((u8 *) val);
|
|
if (factor_toset <= 3) {
|
|
factor_toset = (1 << (factor_toset + 2));
|
|
if (factor_toset > 0xf)
|
|
factor_toset = 0xf;
|
|
for (index = 0; index < 4; index++) {
|
|
ptmp_byte = (u8 *) (®toSet) + index;
|
|
if ((*ptmp_byte & 0xf0) >
|
|
(factor_toset << 4))
|
|
*ptmp_byte = (*ptmp_byte & 0x0f)
|
|
| (factor_toset << 4);
|
|
if ((*ptmp_byte & 0x0f) > factor_toset)
|
|
*ptmp_byte = (*ptmp_byte & 0xf0)
|
|
| (factor_toset);
|
|
}
|
|
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoSet);
|
|
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
|
|
"Set HW_VAR_AMPDU_FACTOR: %#x\n",
|
|
factor_toset);
|
|
}
|
|
break;
|
|
}
|
|
case HW_VAR_AC_PARAM: {
|
|
u8 e_aci = *((u8 *) val);
|
|
rtl92d_dm_init_edca_turbo(hw);
|
|
if (rtlpci->acm_method != eAcmWay2_SW)
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
|
|
(u8 *) (&e_aci));
|
|
break;
|
|
}
|
|
case HW_VAR_ACM_CTRL: {
|
|
u8 e_aci = *((u8 *) val);
|
|
union aci_aifsn *p_aci_aifsn =
|
|
(union aci_aifsn *)(&(mac->ac[0].aifs));
|
|
u8 acm = p_aci_aifsn->f.acm;
|
|
u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
|
|
|
|
acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
|
|
if (acm) {
|
|
switch (e_aci) {
|
|
case AC0_BE:
|
|
acm_ctrl |= ACMHW_BEQEN;
|
|
break;
|
|
case AC2_VI:
|
|
acm_ctrl |= ACMHW_VIQEN;
|
|
break;
|
|
case AC3_VO:
|
|
acm_ctrl |= ACMHW_VOQEN;
|
|
break;
|
|
default:
|
|
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
|
|
"HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
|
|
acm);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (e_aci) {
|
|
case AC0_BE:
|
|
acm_ctrl &= (~ACMHW_BEQEN);
|
|
break;
|
|
case AC2_VI:
|
|
acm_ctrl &= (~ACMHW_VIQEN);
|
|
break;
|
|
case AC3_VO:
|
|
acm_ctrl &= (~ACMHW_VOQEN);
|
|
break;
|
|
default:
|
|
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
|
|
"switch case not processed\n");
|
|
break;
|
|
}
|
|
}
|
|
RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
|
|
"SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
|
|
acm_ctrl);
|
|
rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
|
|
break;
|
|
}
|
|
case HW_VAR_RCR:
|
|
rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
|
|
rtlpci->receive_config = ((u32 *) (val))[0];
|
|
break;
|
|
case HW_VAR_RETRY_LIMIT: {
|
|
u8 retry_limit = ((u8 *) (val))[0];
|
|
|
|
rtl_write_word(rtlpriv, REG_RL,
|
|
retry_limit << RETRY_LIMIT_SHORT_SHIFT |
|
|
retry_limit << RETRY_LIMIT_LONG_SHIFT);
|
|
break;
|
|
}
|
|
case HW_VAR_DUAL_TSF_RST:
|
|
rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
|
|
break;
|
|
case HW_VAR_EFUSE_BYTES:
|
|
rtlefuse->efuse_usedbytes = *((u16 *) val);
|
|
break;
|
|
case HW_VAR_EFUSE_USAGE:
|
|
rtlefuse->efuse_usedpercentage = *((u8 *) val);
|
|
break;
|
|
case HW_VAR_IO_CMD:
|
|
rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val));
|
|
break;
|
|
case HW_VAR_WPA_CONFIG:
|
|
rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *) val));
|
|
break;
|
|
case HW_VAR_SET_RPWM:
|
|
rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (u8 *) (val));
|
|
break;
|
|
case HW_VAR_H2C_FW_PWRMODE:
|
|
break;
|
|
case HW_VAR_FW_PSMODE_STATUS:
|
|
ppsc->fw_current_inpsmode = *((bool *) val);
|
|
break;
|
|
case HW_VAR_H2C_FW_JOINBSSRPT: {
|
|
u8 mstatus = (*(u8 *) val);
|
|
u8 tmp_regcr, tmp_reg422;
|
|
bool recover = false;
|
|
|
|
if (mstatus == RT_MEDIA_CONNECT) {
|
|
rtlpriv->cfg->ops->set_hw_reg(hw,
|
|
HW_VAR_AID, NULL);
|
|
tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
|
|
rtl_write_byte(rtlpriv, REG_CR + 1,
|
|
(tmp_regcr | BIT(0)));
|
|
_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
|
|
_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
|
|
tmp_reg422 = rtl_read_byte(rtlpriv,
|
|
REG_FWHW_TXQ_CTRL + 2);
|
|
if (tmp_reg422 & BIT(6))
|
|
recover = true;
|
|
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
|
|
tmp_reg422 & (~BIT(6)));
|
|
rtl92d_set_fw_rsvdpagepkt(hw, 0);
|
|
_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
|
|
_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
|
|
if (recover)
|
|
rtl_write_byte(rtlpriv,
|
|
REG_FWHW_TXQ_CTRL + 2,
|
|
tmp_reg422);
|
|
rtl_write_byte(rtlpriv, REG_CR + 1,
|
|
(tmp_regcr & ~(BIT(0))));
|
|
}
|
|
rtl92d_set_fw_joinbss_report_cmd(hw, (*(u8 *) val));
|
|
break;
|
|
}
|
|
case HW_VAR_AID: {
|
|
u16 u2btmp;
|
|
u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
|
|
u2btmp &= 0xC000;
|
|
rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
|
|
mac->assoc_id));
|
|
break;
|
|
}
|
|
case HW_VAR_CORRECT_TSF: {
|
|
u8 btype_ibss = ((u8 *) (val))[0];
|
|
|
|
if (btype_ibss)
|
|
_rtl92de_stop_tx_beacon(hw);
|
|
_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
|
|
rtl_write_dword(rtlpriv, REG_TSFTR,
|
|
(u32) (mac->tsf & 0xffffffff));
|
|
rtl_write_dword(rtlpriv, REG_TSFTR + 4,
|
|
(u32) ((mac->tsf >> 32) & 0xffffffff));
|
|
_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
|
|
if (btype_ibss)
|
|
_rtl92de_resume_tx_beacon(hw);
|
|
|
|
break;
|
|
}
|
|
case HW_VAR_INT_MIGRATION: {
|
|
bool int_migration = *(bool *) (val);
|
|
|
|
if (int_migration) {
|
|
/* Set interrupt migration timer and
|
|
* corresponding Tx/Rx counter.
|
|
* timer 25ns*0xfa0=100us for 0xf packets.
|
|
* 0x306:Rx, 0x307:Tx */
|
|
rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0);
|
|
rtlpriv->dm.interrupt_migration = int_migration;
|
|
} else {
|
|
/* Reset all interrupt migration settings. */
|
|
rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
|
|
rtlpriv->dm.interrupt_migration = int_migration;
|
|
}
|
|
break;
|
|
}
|
|
case HW_VAR_INT_AC: {
|
|
bool disable_ac_int = *((bool *) val);
|
|
|
|
/* Disable four ACs interrupts. */
|
|
if (disable_ac_int) {
|
|
/* Disable VO, VI, BE and BK four AC interrupts
|
|
* to gain more efficient CPU utilization.
|
|
* When extremely highly Rx OK occurs,
|
|
* we will disable Tx interrupts.
|
|
*/
|
|
rtlpriv->cfg->ops->update_interrupt_mask(hw, 0,
|
|
RT_AC_INT_MASKS);
|
|
rtlpriv->dm.disable_tx_int = disable_ac_int;
|
|
/* Enable four ACs interrupts. */
|
|
} else {
|
|
rtlpriv->cfg->ops->update_interrupt_mask(hw,
|
|
RT_AC_INT_MASKS, 0);
|
|
rtlpriv->dm.disable_tx_int = disable_ac_int;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
|
|
"switch case not processed\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
bool status = true;
|
|
long count = 0;
|
|
u32 value = _LLT_INIT_ADDR(address) |
|
|
_LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
|
|
|
|
rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
|
|
do {
|
|
value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
|
|
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
|
|
break;
|
|
if (count > POLLING_LLT_THRESHOLD) {
|
|
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
|
|
"Failed to polling write LLT done at address %d!\n",
|
|
address);
|
|
status = false;
|
|
break;
|
|
}
|
|
} while (++count);
|
|
return status;
|
|
}
|
|
|
|
static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
unsigned short i;
|
|
u8 txpktbuf_bndy;
|
|
u8 maxPage;
|
|
bool status;
|
|
u32 value32; /* High+low page number */
|
|
u8 value8; /* normal page number */
|
|
|
|
if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
|
|
maxPage = 255;
|
|
txpktbuf_bndy = 246;
|
|
value8 = 0;
|
|
value32 = 0x80bf0d29;
|
|
} else if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
|
|
maxPage = 127;
|
|
txpktbuf_bndy = 123;
|
|
value8 = 0;
|
|
value32 = 0x80750005;
|
|
}
|
|
|
|
/* Set reserved page for each queue */
|
|
/* 11. RQPN 0x200[31:0] = 0x80BD1C1C */
|
|
/* load RQPN */
|
|
rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
|
|
rtl_write_dword(rtlpriv, REG_RQPN, value32);
|
|
|
|
/* 12. TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
|
|
/* TXRKTBUG_PG_BNDY */
|
|
rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
|
|
(rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 |
|
|
txpktbuf_bndy));
|
|
|
|
/* 13. TDECTRL[15:8] 0x209[7:0] = 0xF6 */
|
|
/* Beacon Head for TXDMA */
|
|
rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
|
|
|
|
/* 14. BCNQ_PGBNDY 0x424[7:0] = 0xF6 */
|
|
/* BCNQ_PGBNDY */
|
|
rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
|
|
rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
|
|
|
|
/* 15. WMAC_LBK_BF_HD 0x45D[7:0] = 0xF6 */
|
|
/* WMAC_LBK_BF_HD */
|
|
rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
|
|
|
|
/* Set Tx/Rx page size (Tx must be 128 Bytes, */
|
|
/* Rx can be 64,128,256,512,1024 bytes) */
|
|
/* 16. PBP [7:0] = 0x11 */
|
|
/* TRX page size */
|
|
rtl_write_byte(rtlpriv, REG_PBP, 0x11);
|
|
|
|
/* 17. DRV_INFO_SZ = 0x04 */
|
|
rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
|
|
|
|
/* 18. LLT_table_init(Adapter); */
|
|
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
|
|
status = _rtl92de_llt_write(hw, i, i + 1);
|
|
if (true != status)
|
|
return status;
|
|
}
|
|
|
|
/* end of list */
|
|
status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
|
|
if (true != status)
|
|
return status;
|
|
|
|
/* Make the other pages as ring buffer */
|
|
/* This ring buffer is used as beacon buffer if we */
|
|
/* config this MAC as two MAC transfer. */
|
|
/* Otherwise used as local loopback buffer. */
|
|
for (i = txpktbuf_bndy; i < maxPage; i++) {
|
|
status = _rtl92de_llt_write(hw, i, (i + 1));
|
|
if (true != status)
|
|
return status;
|
|
}
|
|
|
|
/* Let last entry point to the start entry of ring buffer */
|
|
status = _rtl92de_llt_write(hw, maxPage, txpktbuf_bndy);
|
|
if (true != status)
|
|
return status;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
|
|
struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
|
|
|
|
if (rtlpci->up_first_time)
|
|
return;
|
|
if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
|
|
rtl92de_sw_led_on(hw, pLed0);
|
|
else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
|
|
rtl92de_sw_led_on(hw, pLed0);
|
|
else
|
|
rtl92de_sw_led_off(hw, pLed0);
|
|
}
|
|
|
|
static bool _rtl92de_init_mac(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
unsigned char bytetmp;
|
|
unsigned short wordtmp;
|
|
u16 retry;
|
|
|
|
rtl92d_phy_set_poweron(hw);
|
|
/* Add for resume sequence of power domain according
|
|
* to power document V11. Chapter V.11.... */
|
|
/* 0. RSV_CTRL 0x1C[7:0] = 0x00 */
|
|
/* unlock ISO/CLK/Power control register */
|
|
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
|
|
rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05);
|
|
|
|
/* 1. AFE_XTAL_CTRL [7:0] = 0x0F enable XTAL */
|
|
/* 2. SPS0_CTRL 0x11[7:0] = 0x2b enable SPS into PWM mode */
|
|
/* 3. delay (1ms) this is not necessary when initially power on */
|
|
|
|
/* C. Resume Sequence */
|
|
/* a. SPS0_CTRL 0x11[7:0] = 0x2b */
|
|
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
|
|
|
|
/* b. AFE_XTAL_CTRL [7:0] = 0x0F */
|
|
rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
|
|
|
|
/* c. DRV runs power on init flow */
|
|
|
|
/* auto enable WLAN */
|
|
/* 4. APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0 */
|
|
/* Power On Reset for MAC Block */
|
|
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
|
|
udelay(2);
|
|
rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
|
|
udelay(2);
|
|
|
|
/* 5. Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
|
|
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
|
|
udelay(50);
|
|
retry = 0;
|
|
while ((bytetmp & BIT(0)) && retry < 1000) {
|
|
retry++;
|
|
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
|
|
udelay(50);
|
|
}
|
|
|
|
/* Enable Radio off, GPIO, and LED function */
|
|
/* 6. APS_FSMCO 0x04[15:0] = 0x0012 when enable HWPDN */
|
|
rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
|
|
|
|
/* release RF digital isolation */
|
|
/* 7. SYS_ISO_CTRL 0x01[1] = 0x0; */
|
|
/*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
|
|
rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
|
|
udelay(2);
|
|
|
|
/* make sure that BB reset OK. */
|
|
/* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */
|
|
|
|
/* Disable REG_CR before enable it to assure reset */
|
|
rtl_write_word(rtlpriv, REG_CR, 0x0);
|
|
|
|
/* Release MAC IO register reset */
|
|
rtl_write_word(rtlpriv, REG_CR, 0x2ff);
|
|
|
|
/* clear stopping tx/rx dma */
|
|
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0);
|
|
|
|
/* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */
|
|
|
|
/* System init */
|
|
/* 18. LLT_table_init(Adapter); */
|
|
if (!_rtl92de_llt_table_init(hw))
|
|
return false;
|
|
|
|
/* Clear interrupt and enable interrupt */
|
|
/* 19. HISR 0x124[31:0] = 0xffffffff; */
|
|
/* HISRE 0x12C[7:0] = 0xFF */
|
|
rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
|
|
rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
|
|
|
|
/* 20. HIMR 0x120[31:0] |= [enable INT mask bit map]; */
|
|
/* 21. HIMRE 0x128[7:0] = [enable INT mask bit map] */
|
|
/* The IMR should be enabled later after all init sequence
|
|
* is finished. */
|
|
|
|
/* 22. PCIE configuration space configuration */
|
|
/* 23. Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ), */
|
|
/* and PCIe gated clock function is enabled. */
|
|
/* PCIE configuration space will be written after
|
|
* all init sequence.(Or by BIOS) */
|
|
|
|
rtl92d_phy_config_maccoexist_rfpage(hw);
|
|
|
|
/* THe below section is not related to power document Vxx . */
|
|
/* This is only useful for driver and OS setting. */
|
|
/* -------------------Software Relative Setting---------------------- */
|
|
wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
|
|
wordtmp &= 0xf;
|
|
wordtmp |= 0xF771;
|
|
rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
|
|
|
|
/* Reported Tx status from HW for rate adaptive. */
|
|
/* This should be realtive to power on step 14. But in document V11 */
|
|
/* still not contain the description.!!! */
|
|
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
|
|
|
|
/* Set Tx/Rx page size (Tx must be 128 Bytes,
|
|
* Rx can be 64,128,256,512,1024 bytes) */
|
|
/* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */
|
|
|
|
/* Set RCR register */
|
|
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
|
|
/* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */
|
|
|
|
/* Set TCR register */
|
|
rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
|
|
|
|
/* disable earlymode */
|
|
rtl_write_byte(rtlpriv, 0x4d0, 0x0);
|
|
|
|
/* Set TX/RX descriptor physical address(from OS API). */
|
|
rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
|
|
rtlpci->tx_ring[BEACON_QUEUE].dma);
|
|
rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma);
|
|
rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma);
|
|
rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma);
|
|
rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma);
|
|
rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma);
|
|
rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma);
|
|
/* Set RX Desc Address */
|
|
rtl_write_dword(rtlpriv, REG_RX_DESA,
|
|
rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
|
|
|
|
/* if we want to support 64 bit DMA, we should set it here,
|
|
* but now we do not support 64 bit DMA*/
|
|
|
|
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33);
|
|
|
|
/* Reset interrupt migration setting when initialization */
|
|
rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
|
|
|
|
/* Reconsider when to do this operation after asking HWSD. */
|
|
bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
|
|
rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
|
|
do {
|
|
retry++;
|
|
bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
|
|
} while ((retry < 200) && !(bytetmp & BIT(7)));
|
|
|
|
/* After MACIO reset,we must refresh LED state. */
|
|
_rtl92de_gen_refresh_led_state(hw);
|
|
|
|
/* Reset H2C protection register */
|
|
rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void _rtl92de_hw_configure(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
u8 reg_bw_opmode = BW_OPMODE_20MHZ;
|
|
u32 reg_rrsr;
|
|
|
|
reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
|
|
rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
|
|
rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
|
|
rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
|
|
rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
|
|
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
|
|
rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
|
|
rtl_write_word(rtlpriv, REG_RL, 0x0707);
|
|
rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
|
|
rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
|
|
rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
|
|
rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
|
|
rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
|
|
rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
|
|
/* Aggregation threshold */
|
|
if (rtlhal->macphymode == DUALMAC_DUALPHY)
|
|
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641);
|
|
else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
|
|
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641);
|
|
else
|
|
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
|
|
rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
|
|
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
|
|
rtlpci->reg_bcn_ctrl_val = 0x1f;
|
|
rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
|
|
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
|
|
rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
|
|
rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
|
|
rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
|
|
/* For throughput */
|
|
rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666);
|
|
/* ACKTO for IOT issue. */
|
|
rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
|
|
/* Set Spec SIFS (used in NAV) */
|
|
rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
|
|
rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
|
|
/* Set SIFS for CCK */
|
|
rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
|
|
/* Set SIFS for OFDM */
|
|
rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
|
|
/* Set Multicast Address. */
|
|
rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
|
|
rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
|
|
switch (rtlpriv->phy.rf_type) {
|
|
case RF_1T2R:
|
|
case RF_1T1R:
|
|
rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
|
|
break;
|
|
case RF_2T2R:
|
|
case RF_2T2R_GREEN:
|
|
rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
|
|
|
|
rtl_write_byte(rtlpriv, 0x34b, 0x93);
|
|
rtl_write_word(rtlpriv, 0x350, 0x870c);
|
|
rtl_write_byte(rtlpriv, 0x352, 0x1);
|
|
if (ppsc->support_backdoor)
|
|
rtl_write_byte(rtlpriv, 0x349, 0x1b);
|
|
else
|
|
rtl_write_byte(rtlpriv, 0x349, 0x03);
|
|
rtl_write_word(rtlpriv, 0x350, 0x2718);
|
|
rtl_write_byte(rtlpriv, 0x352, 0x1);
|
|
}
|
|
|
|
void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
u8 sec_reg_value;
|
|
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
|
|
"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
|
|
rtlpriv->sec.pairwise_enc_algorithm,
|
|
rtlpriv->sec.group_enc_algorithm);
|
|
if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
|
|
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
|
|
"not open hw encryption\n");
|
|
return;
|
|
}
|
|
sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
|
|
if (rtlpriv->sec.use_defaultkey) {
|
|
sec_reg_value |= SCR_TXUSEDK;
|
|
sec_reg_value |= SCR_RXUSEDK;
|
|
}
|
|
sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
|
|
rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
|
|
RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
|
|
"The SECR-value %x\n", sec_reg_value);
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
|
|
}
|
|
|
|
int rtl92de_hw_init(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
struct rtl_phy *rtlphy = &(rtlpriv->phy);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
|
|
bool rtstatus = true;
|
|
u8 tmp_u1b;
|
|
int i;
|
|
int err;
|
|
unsigned long flags;
|
|
|
|
rtlpci->being_init_adapter = true;
|
|
rtlpci->init_ready = false;
|
|
spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
|
|
/* we should do iqk after disable/enable */
|
|
rtl92d_phy_reset_iqk_result(hw);
|
|
/* rtlpriv->intf_ops->disable_aspm(hw); */
|
|
rtstatus = _rtl92de_init_mac(hw);
|
|
if (!rtstatus) {
|
|
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
|
|
err = 1;
|
|
spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
|
|
return err;
|
|
}
|
|
err = rtl92d_download_fw(hw);
|
|
spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
|
|
if (err) {
|
|
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
|
|
"Failed to download FW. Init HW without FW..\n");
|
|
return 1;
|
|
}
|
|
rtlhal->last_hmeboxnum = 0;
|
|
rtlpriv->psc.fw_current_inpsmode = false;
|
|
|
|
tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
|
|
tmp_u1b = tmp_u1b | 0x30;
|
|
rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
|
|
|
|
if (rtlhal->earlymode_enable) {
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
|
|
"EarlyMode Enabled!!!\n");
|
|
|
|
tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0);
|
|
tmp_u1b = tmp_u1b | 0x1f;
|
|
rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b);
|
|
|
|
rtl_write_byte(rtlpriv, 0x4d3, 0x80);
|
|
|
|
tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
|
|
tmp_u1b = tmp_u1b | 0x40;
|
|
rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
|
|
}
|
|
|
|
if (mac->rdg_en) {
|
|
rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff);
|
|
rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
|
|
rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
|
|
}
|
|
|
|
rtl92d_phy_mac_config(hw);
|
|
/* because last function modify RCR, so we update
|
|
* rcr var here, or TP will unstable for receive_config
|
|
* is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
|
|
* RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
|
|
rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
|
|
rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
|
|
|
|
rtl92d_phy_bb_config(hw);
|
|
|
|
rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
|
|
/* set before initialize RF */
|
|
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
|
|
|
|
/* config RF */
|
|
rtl92d_phy_rf_config(hw);
|
|
|
|
/* After read predefined TXT, we must set BB/MAC/RF
|
|
* register as our requirement */
|
|
/* After load BB,RF params,we need do more for 92D. */
|
|
rtl92d_update_bbrf_configuration(hw);
|
|
/* set default value after initialize RF, */
|
|
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
|
|
rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
|
|
RF_CHNLBW, BRFREGOFFSETMASK);
|
|
rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
|
|
RF_CHNLBW, BRFREGOFFSETMASK);
|
|
|
|
/*---- Set CCK and OFDM Block "ON"----*/
|
|
if (rtlhal->current_bandtype == BAND_ON_2_4G)
|
|
rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
|
|
rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
|
|
if (rtlhal->interfaceindex == 0) {
|
|
/* RFPGA0_ANALOGPARAMETER2: cck clock select,
|
|
* set to 20MHz by default */
|
|
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
|
|
BIT(11), 3);
|
|
} else {
|
|
/* Mac1 */
|
|
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) |
|
|
BIT(10), 3);
|
|
}
|
|
|
|
_rtl92de_hw_configure(hw);
|
|
|
|
/* reset hw sec */
|
|
rtl_cam_reset_all_entry(hw);
|
|
rtl92de_enable_hw_security_config(hw);
|
|
|
|
/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
|
|
/* TX power index for different rate set. */
|
|
rtl92d_phy_get_hw_reg_originalvalue(hw);
|
|
rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
|
|
|
|
ppsc->rfpwr_state = ERFON;
|
|
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
|
|
|
|
_rtl92de_enable_aspm_back_door(hw);
|
|
/* rtlpriv->intf_ops->enable_aspm(hw); */
|
|
|
|
rtl92d_dm_init(hw);
|
|
rtlpci->being_init_adapter = false;
|
|
|
|
if (ppsc->rfpwr_state == ERFON) {
|
|
rtl92d_phy_lc_calibrate(hw);
|
|
/* 5G and 2.4G must wait sometime to let RF LO ready */
|
|
if (rtlhal->macphymode == DUALMAC_DUALPHY) {
|
|
u32 tmp_rega;
|
|
for (i = 0; i < 10000; i++) {
|
|
udelay(MAX_STALL_TIME);
|
|
|
|
tmp_rega = rtl_get_rfreg(hw,
|
|
(enum radio_path)RF90_PATH_A,
|
|
0x2a, BMASKDWORD);
|
|
|
|
if (((tmp_rega & BIT(11)) == BIT(11)))
|
|
break;
|
|
}
|
|
/* check that loop was successful. If not, exit now */
|
|
if (i == 10000) {
|
|
rtlpci->init_ready = false;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
rtlpci->init_ready = true;
|
|
return err;
|
|
}
|
|
|
|
static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
|
|
u32 value32;
|
|
|
|
value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
|
|
if (!(value32 & 0x000f0000)) {
|
|
version = VERSION_TEST_CHIP_92D_SINGLEPHY;
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n");
|
|
} else {
|
|
version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n");
|
|
}
|
|
return version;
|
|
}
|
|
|
|
static int _rtl92de_set_media_status(struct ieee80211_hw *hw,
|
|
enum nl80211_iftype type)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
|
|
enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
|
|
u8 bcnfunc_enable;
|
|
|
|
bt_msr &= 0xfc;
|
|
|
|
if (type == NL80211_IFTYPE_UNSPECIFIED ||
|
|
type == NL80211_IFTYPE_STATION) {
|
|
_rtl92de_stop_tx_beacon(hw);
|
|
_rtl92de_enable_bcn_sub_func(hw);
|
|
} else if (type == NL80211_IFTYPE_ADHOC ||
|
|
type == NL80211_IFTYPE_AP) {
|
|
_rtl92de_resume_tx_beacon(hw);
|
|
_rtl92de_disable_bcn_sub_func(hw);
|
|
} else {
|
|
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
|
|
"Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
|
|
type);
|
|
}
|
|
bcnfunc_enable = rtl_read_byte(rtlpriv, REG_BCN_CTRL);
|
|
switch (type) {
|
|
case NL80211_IFTYPE_UNSPECIFIED:
|
|
bt_msr |= MSR_NOLINK;
|
|
ledaction = LED_CTL_LINK;
|
|
bcnfunc_enable &= 0xF7;
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
|
|
"Set Network type to NO LINK!\n");
|
|
break;
|
|
case NL80211_IFTYPE_ADHOC:
|
|
bt_msr |= MSR_ADHOC;
|
|
bcnfunc_enable |= 0x08;
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
|
|
"Set Network type to Ad Hoc!\n");
|
|
break;
|
|
case NL80211_IFTYPE_STATION:
|
|
bt_msr |= MSR_INFRA;
|
|
ledaction = LED_CTL_LINK;
|
|
bcnfunc_enable &= 0xF7;
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
|
|
"Set Network type to STA!\n");
|
|
break;
|
|
case NL80211_IFTYPE_AP:
|
|
bt_msr |= MSR_AP;
|
|
bcnfunc_enable |= 0x08;
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
|
|
"Set Network type to AP!\n");
|
|
break;
|
|
default:
|
|
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
|
|
"Network type %d not supported!\n", type);
|
|
return 1;
|
|
break;
|
|
|
|
}
|
|
rtl_write_byte(rtlpriv, REG_CR + 2, bt_msr);
|
|
rtlpriv->cfg->ops->led_control(hw, ledaction);
|
|
if ((bt_msr & 0xfc) == MSR_AP)
|
|
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
|
|
else
|
|
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
|
|
return 0;
|
|
}
|
|
|
|
void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
u32 reg_rcr = rtlpci->receive_config;
|
|
|
|
if (rtlpriv->psc.rfpwr_state != ERFON)
|
|
return;
|
|
if (check_bssid) {
|
|
reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr));
|
|
_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
|
|
} else if (!check_bssid) {
|
|
reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
|
|
_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr));
|
|
}
|
|
}
|
|
|
|
int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
|
|
if (_rtl92de_set_media_status(hw, type))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* check bssid */
|
|
if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
|
|
if (type != NL80211_IFTYPE_AP)
|
|
rtl92de_set_check_bssid(hw, true);
|
|
} else {
|
|
rtl92de_set_check_bssid(hw, false);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* do iqk or reload iqk */
|
|
/* windows just rtl92d_phy_reload_iqk_setting in set channel,
|
|
* but it's very strict for time sequence so we add
|
|
* rtl92d_phy_reload_iqk_setting here */
|
|
void rtl92d_linked_set_reg(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_phy *rtlphy = &(rtlpriv->phy);
|
|
u8 indexforchannel;
|
|
u8 channel = rtlphy->current_channel;
|
|
|
|
indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
|
|
if (!rtlphy->iqk_matrix_regsetting[indexforchannel].iqk_done) {
|
|
RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG,
|
|
"Do IQK for channel:%d\n", channel);
|
|
rtl92d_phy_iq_calibrate(hw);
|
|
}
|
|
}
|
|
|
|
/* don't set REG_EDCA_BE_PARAM here because
|
|
* mac80211 will send pkt when scan */
|
|
void rtl92de_set_qos(struct ieee80211_hw *hw, int aci)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
rtl92d_dm_init_edca_turbo(hw);
|
|
return;
|
|
switch (aci) {
|
|
case AC1_BK:
|
|
rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
|
|
break;
|
|
case AC0_BE:
|
|
break;
|
|
case AC2_VI:
|
|
rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
|
|
break;
|
|
case AC3_VO:
|
|
rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
|
|
break;
|
|
default:
|
|
RT_ASSERT(false, "invalid aci: %d !\n", aci);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void rtl92de_enable_interrupt(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
|
|
rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
|
|
rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
|
|
}
|
|
|
|
void rtl92de_disable_interrupt(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
|
|
rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
|
|
rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
|
|
synchronize_irq(rtlpci->pdev->irq);
|
|
}
|
|
|
|
static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
u8 u1b_tmp;
|
|
unsigned long flags;
|
|
|
|
rtlpriv->intf_ops->enable_aspm(hw);
|
|
rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
|
|
rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0);
|
|
rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0);
|
|
|
|
/* 0x20:value 05-->04 */
|
|
rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
|
|
|
|
/* ==== Reset digital sequence ====== */
|
|
rtl92d_firmware_selfreset(hw);
|
|
|
|
/* f. SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
|
|
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
|
|
|
|
/* g. MCUFWDL 0x80[1:0]=0 reset MCU ready status */
|
|
rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
|
|
|
|
/* ==== Pull GPIO PIN to balance level and LED control ====== */
|
|
|
|
/* h. GPIO_PIN_CTRL 0x44[31:0]=0x000 */
|
|
rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
|
|
|
|
/* i. Value = GPIO_PIN_CTRL[7:0] */
|
|
u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
|
|
|
|
/* j. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
|
|
/* write external PIN level */
|
|
rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL,
|
|
0x00FF0000 | (u1b_tmp << 8));
|
|
|
|
/* k. GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
|
|
rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
|
|
|
|
/* l. LEDCFG 0x4C[15:0] = 0x8080 */
|
|
rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
|
|
|
|
/* ==== Disable analog sequence === */
|
|
|
|
/* m. AFE_PLL_CTRL[7:0] = 0x80 disable PLL */
|
|
rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
|
|
|
|
/* n. SPS0_CTRL 0x11[7:0] = 0x22 enter PFM mode */
|
|
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
|
|
|
|
/* o. AFE_XTAL_CTRL 0x24[7:0] = 0x0E disable XTAL, if No BT COEX */
|
|
rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
|
|
|
|
/* p. RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
|
|
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
|
|
|
|
/* ==== interface into suspend === */
|
|
|
|
/* q. APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
|
|
/* According to power document V11, we need to set this */
|
|
/* value as 0x18. Otherwise, we may not L0s sometimes. */
|
|
/* This indluences power consumption. Bases on SD1's test, */
|
|
/* set as 0x00 do not affect power current. And if it */
|
|
/* is set as 0x18, they had ever met auto load fail problem. */
|
|
rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
|
|
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
|
|
"In PowerOff,reg0x%x=%X\n",
|
|
REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL));
|
|
/* r. Note: for PCIe interface, PON will not turn */
|
|
/* off m-bias and BandGap in PCIe suspend mode. */
|
|
|
|
/* 0x17[7] 1b': power off in process 0b' : power off over */
|
|
if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
|
|
spin_lock_irqsave(&globalmutex_power, flags);
|
|
u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
|
|
u1b_tmp &= (~BIT(7));
|
|
rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp);
|
|
spin_unlock_irqrestore(&globalmutex_power, flags);
|
|
}
|
|
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n");
|
|
}
|
|
|
|
void rtl92de_card_disable(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
enum nl80211_iftype opmode;
|
|
|
|
mac->link_state = MAC80211_NOLINK;
|
|
opmode = NL80211_IFTYPE_UNSPECIFIED;
|
|
_rtl92de_set_media_status(hw, opmode);
|
|
|
|
if (rtlpci->driver_is_goingto_unload ||
|
|
ppsc->rfoff_reason > RF_CHANGE_BY_PS)
|
|
rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
|
|
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
|
|
/* Power sequence for each MAC. */
|
|
/* a. stop tx DMA */
|
|
/* b. close RF */
|
|
/* c. clear rx buf */
|
|
/* d. stop rx DMA */
|
|
/* e. reset MAC */
|
|
|
|
/* a. stop tx DMA */
|
|
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE);
|
|
udelay(50);
|
|
|
|
/* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
|
|
|
|
/* c. ========RF OFF sequence========== */
|
|
/* 0x88c[23:20] = 0xf. */
|
|
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
|
|
rtl_set_rfreg(hw, RF90_PATH_A, 0x00, BRFREGOFFSETMASK, 0x00);
|
|
|
|
/* APSD_CTRL 0x600[7:0] = 0x40 */
|
|
rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
|
|
|
|
/* Close antenna 0,0xc04,0xd04 */
|
|
rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKBYTE0, 0);
|
|
rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0);
|
|
|
|
/* SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB state machine */
|
|
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
|
|
|
|
/* Mac0 can not do Global reset. Mac1 can do. */
|
|
/* SYS_FUNC_EN 0x02[7:0] = 0xE0 reset BB state machine */
|
|
if (rtlpriv->rtlhal.interfaceindex == 1)
|
|
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
|
|
udelay(50);
|
|
|
|
/* d. stop tx/rx dma before disable REG_CR (0x100) to fix */
|
|
/* dma hang issue when disable/enable device. */
|
|
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff);
|
|
udelay(50);
|
|
rtl_write_byte(rtlpriv, REG_CR, 0x0);
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n");
|
|
if (rtl92d_phy_check_poweroff(hw))
|
|
_rtl92de_poweroff_adapter(hw);
|
|
return;
|
|
}
|
|
|
|
void rtl92de_interrupt_recognized(struct ieee80211_hw *hw,
|
|
u32 *p_inta, u32 *p_intb)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
|
|
*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
|
|
rtl_write_dword(rtlpriv, ISR, *p_inta);
|
|
|
|
/*
|
|
* *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
|
|
* rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
|
|
*/
|
|
}
|
|
|
|
void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
u16 bcn_interval, atim_window;
|
|
|
|
bcn_interval = mac->beacon_interval;
|
|
atim_window = 2;
|
|
/*rtl92de_disable_interrupt(hw); */
|
|
rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
|
|
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
|
|
rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
|
|
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20);
|
|
if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G)
|
|
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30);
|
|
else
|
|
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20);
|
|
rtl_write_byte(rtlpriv, 0x606, 0x30);
|
|
}
|
|
|
|
void rtl92de_set_beacon_interval(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
u16 bcn_interval = mac->beacon_interval;
|
|
|
|
RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
|
|
"beacon_interval:%d\n", bcn_interval);
|
|
/* rtl92de_disable_interrupt(hw); */
|
|
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
|
|
/* rtl92de_enable_interrupt(hw); */
|
|
}
|
|
|
|
void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw,
|
|
u32 add_msr, u32 rm_msr)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
|
|
RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
|
|
add_msr, rm_msr);
|
|
if (add_msr)
|
|
rtlpci->irq_mask[0] |= add_msr;
|
|
if (rm_msr)
|
|
rtlpci->irq_mask[0] &= (~rm_msr);
|
|
rtl92de_disable_interrupt(hw);
|
|
rtl92de_enable_interrupt(hw);
|
|
}
|
|
|
|
static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo,
|
|
u8 *rom_content, bool autoLoadfail)
|
|
{
|
|
u32 rfpath, eeaddr, group, offset1, offset2;
|
|
u8 i;
|
|
|
|
memset(pwrinfo, 0, sizeof(struct txpower_info));
|
|
if (autoLoadfail) {
|
|
for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
|
|
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
|
|
if (group < CHANNEL_GROUP_MAX_2G) {
|
|
pwrinfo->cck_index[rfpath][group] =
|
|
EEPROM_DEFAULT_TXPOWERLEVEL_2G;
|
|
pwrinfo->ht40_1sindex[rfpath][group] =
|
|
EEPROM_DEFAULT_TXPOWERLEVEL_2G;
|
|
} else {
|
|
pwrinfo->ht40_1sindex[rfpath][group] =
|
|
EEPROM_DEFAULT_TXPOWERLEVEL_5G;
|
|
}
|
|
pwrinfo->ht40_2sindexdiff[rfpath][group] =
|
|
EEPROM_DEFAULT_HT40_2SDIFF;
|
|
pwrinfo->ht20indexdiff[rfpath][group] =
|
|
EEPROM_DEFAULT_HT20_DIFF;
|
|
pwrinfo->ofdmindexdiff[rfpath][group] =
|
|
EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
|
|
pwrinfo->ht40maxoffset[rfpath][group] =
|
|
EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
|
|
pwrinfo->ht20maxoffset[rfpath][group] =
|
|
EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
|
|
}
|
|
}
|
|
for (i = 0; i < 3; i++) {
|
|
pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
|
|
pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Maybe autoload OK,buf the tx power index value is not filled.
|
|
* If we find it, we set it to default value. */
|
|
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
|
|
for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) {
|
|
eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3)
|
|
+ group;
|
|
pwrinfo->cck_index[rfpath][group] =
|
|
(rom_content[eeaddr] == 0xFF) ?
|
|
(eeaddr > 0x7B ?
|
|
EEPROM_DEFAULT_TXPOWERLEVEL_5G :
|
|
EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
|
|
rom_content[eeaddr];
|
|
}
|
|
}
|
|
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
|
|
for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
|
|
offset1 = group / 3;
|
|
offset2 = group % 3;
|
|
eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) +
|
|
offset2 + offset1 * 21;
|
|
pwrinfo->ht40_1sindex[rfpath][group] =
|
|
(rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ?
|
|
EEPROM_DEFAULT_TXPOWERLEVEL_5G :
|
|
EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
|
|
rom_content[eeaddr];
|
|
}
|
|
}
|
|
/* These just for 92D efuse offset. */
|
|
for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
|
|
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
|
|
int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G;
|
|
|
|
offset1 = group / 3;
|
|
offset2 = group % 3;
|
|
|
|
if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF)
|
|
pwrinfo->ht40_2sindexdiff[rfpath][group] =
|
|
(rom_content[base1 +
|
|
offset2 + offset1 * 21] >> (rfpath * 4))
|
|
& 0xF;
|
|
else
|
|
pwrinfo->ht40_2sindexdiff[rfpath][group] =
|
|
EEPROM_DEFAULT_HT40_2SDIFF;
|
|
if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2
|
|
+ offset1 * 21] != 0xFF)
|
|
pwrinfo->ht20indexdiff[rfpath][group] =
|
|
(rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G
|
|
+ offset2 + offset1 * 21] >> (rfpath * 4))
|
|
& 0xF;
|
|
else
|
|
pwrinfo->ht20indexdiff[rfpath][group] =
|
|
EEPROM_DEFAULT_HT20_DIFF;
|
|
if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2
|
|
+ offset1 * 21] != 0xFF)
|
|
pwrinfo->ofdmindexdiff[rfpath][group] =
|
|
(rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
|
|
+ offset2 + offset1 * 21] >> (rfpath * 4))
|
|
& 0xF;
|
|
else
|
|
pwrinfo->ofdmindexdiff[rfpath][group] =
|
|
EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
|
|
if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2
|
|
+ offset1 * 21] != 0xFF)
|
|
pwrinfo->ht40maxoffset[rfpath][group] =
|
|
(rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G
|
|
+ offset2 + offset1 * 21] >> (rfpath * 4))
|
|
& 0xF;
|
|
else
|
|
pwrinfo->ht40maxoffset[rfpath][group] =
|
|
EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
|
|
if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2
|
|
+ offset1 * 21] != 0xFF)
|
|
pwrinfo->ht20maxoffset[rfpath][group] =
|
|
(rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G +
|
|
offset2 + offset1 * 21] >> (rfpath * 4)) &
|
|
0xF;
|
|
else
|
|
pwrinfo->ht20maxoffset[rfpath][group] =
|
|
EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
|
|
}
|
|
}
|
|
if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) {
|
|
/* 5GL */
|
|
pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F;
|
|
pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F;
|
|
/* 5GM */
|
|
pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F;
|
|
pwrinfo->tssi_b[1] =
|
|
(rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 |
|
|
(rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2;
|
|
/* 5GH */
|
|
pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] &
|
|
0xF0) >> 4 |
|
|
(rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4;
|
|
pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] &
|
|
0xFC) >> 2;
|
|
} else {
|
|
for (i = 0; i < 3; i++) {
|
|
pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
|
|
pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw,
|
|
bool autoload_fail, u8 *hwinfo)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
|
|
struct txpower_info pwrinfo;
|
|
u8 tempval[2], i, pwr, diff;
|
|
u32 ch, rfPath, group;
|
|
|
|
_rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail);
|
|
if (!autoload_fail) {
|
|
/* bit0~2 */
|
|
rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7);
|
|
rtlefuse->eeprom_thermalmeter =
|
|
hwinfo[EEPROM_THERMAL_METER] & 0x1f;
|
|
rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K];
|
|
tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03;
|
|
tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2;
|
|
rtlefuse->txpwr_fromeprom = true;
|
|
if (IS_92D_D_CUT(rtlpriv->rtlhal.version) ||
|
|
IS_92D_E_CUT(rtlpriv->rtlhal.version)) {
|
|
rtlefuse->internal_pa_5g[0] =
|
|
!((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6);
|
|
rtlefuse->internal_pa_5g[1] =
|
|
!((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6);
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
|
|
"Is D cut,Internal PA0 %d Internal PA1 %d\n",
|
|
rtlefuse->internal_pa_5g[0],
|
|
rtlefuse->internal_pa_5g[1]);
|
|
}
|
|
rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6];
|
|
rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7];
|
|
} else {
|
|
rtlefuse->eeprom_regulatory = 0;
|
|
rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
|
|
rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP;
|
|
tempval[0] = tempval[1] = 3;
|
|
}
|
|
|
|
/* Use default value to fill parameters if
|
|
* efuse is not filled on some place. */
|
|
|
|
/* ThermalMeter from EEPROM */
|
|
if (rtlefuse->eeprom_thermalmeter < 0x06 ||
|
|
rtlefuse->eeprom_thermalmeter > 0x1c)
|
|
rtlefuse->eeprom_thermalmeter = 0x12;
|
|
rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
|
|
|
|
/* check XTAL_K */
|
|
if (rtlefuse->crystalcap == 0xFF)
|
|
rtlefuse->crystalcap = 0;
|
|
if (rtlefuse->eeprom_regulatory > 3)
|
|
rtlefuse->eeprom_regulatory = 0;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
switch (tempval[i]) {
|
|
case 0:
|
|
tempval[i] = 5;
|
|
break;
|
|
case 1:
|
|
tempval[i] = 4;
|
|
break;
|
|
case 2:
|
|
tempval[i] = 3;
|
|
break;
|
|
case 3:
|
|
default:
|
|
tempval[i] = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
rtlefuse->delta_iqk = tempval[0];
|
|
if (tempval[1] > 0)
|
|
rtlefuse->delta_lck = tempval[1] - 1;
|
|
if (rtlefuse->eeprom_c9 == 0xFF)
|
|
rtlefuse->eeprom_c9 = 0x00;
|
|
RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
|
|
"EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
|
|
RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
|
|
"ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
|
|
RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
|
|
"CrystalCap = 0x%x\n", rtlefuse->crystalcap);
|
|
RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
|
|
"Delta_IQK = 0x%x Delta_LCK = 0x%x\n",
|
|
rtlefuse->delta_iqk, rtlefuse->delta_lck);
|
|
|
|
for (rfPath = 0; rfPath < RF6052_MAX_PATH; rfPath++) {
|
|
for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
|
|
group = rtl92d_get_chnlgroup_fromarray((u8) ch);
|
|
if (ch < CHANNEL_MAX_NUMBER_2G)
|
|
rtlefuse->txpwrlevel_cck[rfPath][ch] =
|
|
pwrinfo.cck_index[rfPath][group];
|
|
rtlefuse->txpwrlevel_ht40_1s[rfPath][ch] =
|
|
pwrinfo.ht40_1sindex[rfPath][group];
|
|
rtlefuse->txpwr_ht20diff[rfPath][ch] =
|
|
pwrinfo.ht20indexdiff[rfPath][group];
|
|
rtlefuse->txpwr_legacyhtdiff[rfPath][ch] =
|
|
pwrinfo.ofdmindexdiff[rfPath][group];
|
|
rtlefuse->pwrgroup_ht20[rfPath][ch] =
|
|
pwrinfo.ht20maxoffset[rfPath][group];
|
|
rtlefuse->pwrgroup_ht40[rfPath][ch] =
|
|
pwrinfo.ht40maxoffset[rfPath][group];
|
|
pwr = pwrinfo.ht40_1sindex[rfPath][group];
|
|
diff = pwrinfo.ht40_2sindexdiff[rfPath][group];
|
|
rtlefuse->txpwrlevel_ht40_2s[rfPath][ch] =
|
|
(pwr > diff) ? (pwr - diff) : 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw,
|
|
u8 *content)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION];
|
|
|
|
if (macphy_crvalue & BIT(3)) {
|
|
rtlhal->macphymode = SINGLEMAC_SINGLEPHY;
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
|
|
"MacPhyMode SINGLEMAC_SINGLEPHY\n");
|
|
} else {
|
|
rtlhal->macphymode = DUALMAC_DUALPHY;
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
|
|
"MacPhyMode DUALMAC_DUALPHY\n");
|
|
}
|
|
}
|
|
|
|
static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw,
|
|
u8 *content)
|
|
{
|
|
_rtl92de_read_macphymode_from_prom(hw, content);
|
|
rtl92d_phy_config_macphymode(hw);
|
|
rtl92d_phy_config_macphymode_info(hw);
|
|
}
|
|
|
|
static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
enum version_8192d chipver = rtlpriv->rtlhal.version;
|
|
u8 cutvalue[2];
|
|
u16 chipvalue;
|
|
|
|
rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H,
|
|
&cutvalue[1]);
|
|
rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L,
|
|
&cutvalue[0]);
|
|
chipvalue = (cutvalue[1] << 8) | cutvalue[0];
|
|
switch (chipvalue) {
|
|
case 0xAA55:
|
|
chipver |= CHIP_92D_C_CUT;
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n");
|
|
break;
|
|
case 0x9966:
|
|
chipver |= CHIP_92D_D_CUT;
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n");
|
|
break;
|
|
case 0xCC33:
|
|
chipver |= CHIP_92D_E_CUT;
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n");
|
|
break;
|
|
default:
|
|
chipver |= CHIP_92D_D_CUT;
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Unknown CUT!\n");
|
|
break;
|
|
}
|
|
rtlpriv->rtlhal.version = chipver;
|
|
}
|
|
|
|
static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
u16 i, usvalue;
|
|
u8 hwinfo[HWSET_MAX_SIZE];
|
|
u16 eeprom_id;
|
|
unsigned long flags;
|
|
|
|
if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
|
|
spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
|
|
rtl_efuse_shadow_map_update(hw);
|
|
_rtl92de_efuse_update_chip_version(hw);
|
|
spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
|
|
memcpy((void *)hwinfo, (void *)&rtlefuse->efuse_map
|
|
[EFUSE_INIT_MAP][0],
|
|
HWSET_MAX_SIZE);
|
|
} else if (rtlefuse->epromtype == EEPROM_93C46) {
|
|
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
|
|
"RTL819X Not boot from eeprom, check it !!\n");
|
|
}
|
|
RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
|
|
hwinfo, HWSET_MAX_SIZE);
|
|
|
|
eeprom_id = *((u16 *)&hwinfo[0]);
|
|
if (eeprom_id != RTL8190_EEPROM_ID) {
|
|
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
|
|
"EEPROM ID(%#x) is invalid!!\n", eeprom_id);
|
|
rtlefuse->autoload_failflag = true;
|
|
} else {
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
|
|
rtlefuse->autoload_failflag = false;
|
|
}
|
|
if (rtlefuse->autoload_failflag) {
|
|
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
|
|
"RTL819X Not boot from eeprom, check it !!\n");
|
|
return;
|
|
}
|
|
rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMER_ID];
|
|
_rtl92de_read_macphymode_and_bandtype(hw, hwinfo);
|
|
|
|
/* VID, DID SE 0xA-D */
|
|
rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
|
|
rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
|
|
rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
|
|
rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROMId = 0x%4x\n", eeprom_id);
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
|
|
"EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
|
|
"EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
|
|
"EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
|
|
"EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
|
|
|
|
/* Read Permanent MAC address */
|
|
if (rtlhal->interfaceindex == 0) {
|
|
for (i = 0; i < 6; i += 2) {
|
|
usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC0_92D + i];
|
|
*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
|
|
}
|
|
} else {
|
|
for (i = 0; i < 6; i += 2) {
|
|
usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i];
|
|
*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
|
|
}
|
|
}
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR,
|
|
rtlefuse->dev_addr);
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
|
|
_rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo);
|
|
|
|
/* Read Channel Plan */
|
|
switch (rtlhal->bandset) {
|
|
case BAND_ON_2_4G:
|
|
rtlefuse->channel_plan = COUNTRY_CODE_TELEC;
|
|
break;
|
|
case BAND_ON_5G:
|
|
rtlefuse->channel_plan = COUNTRY_CODE_FCC;
|
|
break;
|
|
case BAND_ON_BOTH:
|
|
rtlefuse->channel_plan = COUNTRY_CODE_FCC;
|
|
break;
|
|
default:
|
|
rtlefuse->channel_plan = COUNTRY_CODE_FCC;
|
|
break;
|
|
}
|
|
rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
|
|
rtlefuse->txpwr_fromeprom = true;
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
|
|
"EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
|
|
}
|
|
|
|
void rtl92de_read_eeprom_info(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
u8 tmp_u1b;
|
|
|
|
rtlhal->version = _rtl92de_read_chip_version(hw);
|
|
tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
|
|
rtlefuse->autoload_status = tmp_u1b;
|
|
if (tmp_u1b & BIT(4)) {
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
|
|
rtlefuse->epromtype = EEPROM_93C46;
|
|
} else {
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
|
|
rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
|
|
}
|
|
if (tmp_u1b & BIT(5)) {
|
|
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
|
|
|
|
rtlefuse->autoload_failflag = false;
|
|
_rtl92de_read_adapter_info(hw);
|
|
} else {
|
|
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
|
|
}
|
|
return;
|
|
}
|
|
|
|
static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw,
|
|
struct ieee80211_sta *sta)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_phy *rtlphy = &(rtlpriv->phy);
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
u32 ratr_value;
|
|
u8 ratr_index = 0;
|
|
u8 nmode = mac->ht_enable;
|
|
u8 mimo_ps = IEEE80211_SMPS_OFF;
|
|
u16 shortgi_rate;
|
|
u32 tmp_ratr_value;
|
|
u8 curtxbw_40mhz = mac->bw_40;
|
|
u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
|
|
1 : 0;
|
|
u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
|
|
1 : 0;
|
|
enum wireless_mode wirelessmode = mac->mode;
|
|
|
|
if (rtlhal->current_bandtype == BAND_ON_5G)
|
|
ratr_value = sta->supp_rates[1] << 4;
|
|
else
|
|
ratr_value = sta->supp_rates[0];
|
|
ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
|
|
sta->ht_cap.mcs.rx_mask[0] << 12);
|
|
switch (wirelessmode) {
|
|
case WIRELESS_MODE_A:
|
|
ratr_value &= 0x00000FF0;
|
|
break;
|
|
case WIRELESS_MODE_B:
|
|
if (ratr_value & 0x0000000c)
|
|
ratr_value &= 0x0000000d;
|
|
else
|
|
ratr_value &= 0x0000000f;
|
|
break;
|
|
case WIRELESS_MODE_G:
|
|
ratr_value &= 0x00000FF5;
|
|
break;
|
|
case WIRELESS_MODE_N_24G:
|
|
case WIRELESS_MODE_N_5G:
|
|
nmode = 1;
|
|
if (mimo_ps == IEEE80211_SMPS_STATIC) {
|
|
ratr_value &= 0x0007F005;
|
|
} else {
|
|
u32 ratr_mask;
|
|
|
|
if (get_rf_type(rtlphy) == RF_1T2R ||
|
|
get_rf_type(rtlphy) == RF_1T1R) {
|
|
ratr_mask = 0x000ff005;
|
|
} else {
|
|
ratr_mask = 0x0f0ff005;
|
|
}
|
|
|
|
ratr_value &= ratr_mask;
|
|
}
|
|
break;
|
|
default:
|
|
if (rtlphy->rf_type == RF_1T2R)
|
|
ratr_value &= 0x000ff0ff;
|
|
else
|
|
ratr_value &= 0x0f0ff0ff;
|
|
|
|
break;
|
|
}
|
|
ratr_value &= 0x0FFFFFFF;
|
|
if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
|
|
(!curtxbw_40mhz && curshortgi_20mhz))) {
|
|
ratr_value |= 0x10000000;
|
|
tmp_ratr_value = (ratr_value >> 12);
|
|
for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
|
|
if ((1 << shortgi_rate) & tmp_ratr_value)
|
|
break;
|
|
}
|
|
shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
|
|
(shortgi_rate << 4) | (shortgi_rate);
|
|
}
|
|
rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
|
|
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
|
|
rtl_read_dword(rtlpriv, REG_ARFR0));
|
|
}
|
|
|
|
static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw,
|
|
struct ieee80211_sta *sta, u8 rssi_level)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_phy *rtlphy = &(rtlpriv->phy);
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
struct rtl_sta_info *sta_entry = NULL;
|
|
u32 ratr_bitmap;
|
|
u8 ratr_index;
|
|
u8 curtxbw_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
|
|
? 1 : 0;
|
|
u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
|
|
1 : 0;
|
|
u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
|
|
1 : 0;
|
|
enum wireless_mode wirelessmode = 0;
|
|
bool shortgi = false;
|
|
u32 value[2];
|
|
u8 macid = 0;
|
|
u8 mimo_ps = IEEE80211_SMPS_OFF;
|
|
|
|
sta_entry = (struct rtl_sta_info *) sta->drv_priv;
|
|
mimo_ps = sta_entry->mimo_ps;
|
|
wirelessmode = sta_entry->wireless_mode;
|
|
if (mac->opmode == NL80211_IFTYPE_STATION)
|
|
curtxbw_40mhz = mac->bw_40;
|
|
else if (mac->opmode == NL80211_IFTYPE_AP ||
|
|
mac->opmode == NL80211_IFTYPE_ADHOC)
|
|
macid = sta->aid + 1;
|
|
|
|
if (rtlhal->current_bandtype == BAND_ON_5G)
|
|
ratr_bitmap = sta->supp_rates[1] << 4;
|
|
else
|
|
ratr_bitmap = sta->supp_rates[0];
|
|
ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
|
|
sta->ht_cap.mcs.rx_mask[0] << 12);
|
|
switch (wirelessmode) {
|
|
case WIRELESS_MODE_B:
|
|
ratr_index = RATR_INX_WIRELESS_B;
|
|
if (ratr_bitmap & 0x0000000c)
|
|
ratr_bitmap &= 0x0000000d;
|
|
else
|
|
ratr_bitmap &= 0x0000000f;
|
|
break;
|
|
case WIRELESS_MODE_G:
|
|
ratr_index = RATR_INX_WIRELESS_GB;
|
|
|
|
if (rssi_level == 1)
|
|
ratr_bitmap &= 0x00000f00;
|
|
else if (rssi_level == 2)
|
|
ratr_bitmap &= 0x00000ff0;
|
|
else
|
|
ratr_bitmap &= 0x00000ff5;
|
|
break;
|
|
case WIRELESS_MODE_A:
|
|
ratr_index = RATR_INX_WIRELESS_G;
|
|
ratr_bitmap &= 0x00000ff0;
|
|
break;
|
|
case WIRELESS_MODE_N_24G:
|
|
case WIRELESS_MODE_N_5G:
|
|
if (wirelessmode == WIRELESS_MODE_N_24G)
|
|
ratr_index = RATR_INX_WIRELESS_NGB;
|
|
else
|
|
ratr_index = RATR_INX_WIRELESS_NG;
|
|
if (mimo_ps == IEEE80211_SMPS_STATIC) {
|
|
if (rssi_level == 1)
|
|
ratr_bitmap &= 0x00070000;
|
|
else if (rssi_level == 2)
|
|
ratr_bitmap &= 0x0007f000;
|
|
else
|
|
ratr_bitmap &= 0x0007f005;
|
|
} else {
|
|
if (rtlphy->rf_type == RF_1T2R ||
|
|
rtlphy->rf_type == RF_1T1R) {
|
|
if (curtxbw_40mhz) {
|
|
if (rssi_level == 1)
|
|
ratr_bitmap &= 0x000f0000;
|
|
else if (rssi_level == 2)
|
|
ratr_bitmap &= 0x000ff000;
|
|
else
|
|
ratr_bitmap &= 0x000ff015;
|
|
} else {
|
|
if (rssi_level == 1)
|
|
ratr_bitmap &= 0x000f0000;
|
|
else if (rssi_level == 2)
|
|
ratr_bitmap &= 0x000ff000;
|
|
else
|
|
ratr_bitmap &= 0x000ff005;
|
|
}
|
|
} else {
|
|
if (curtxbw_40mhz) {
|
|
if (rssi_level == 1)
|
|
ratr_bitmap &= 0x0f0f0000;
|
|
else if (rssi_level == 2)
|
|
ratr_bitmap &= 0x0f0ff000;
|
|
else
|
|
ratr_bitmap &= 0x0f0ff015;
|
|
} else {
|
|
if (rssi_level == 1)
|
|
ratr_bitmap &= 0x0f0f0000;
|
|
else if (rssi_level == 2)
|
|
ratr_bitmap &= 0x0f0ff000;
|
|
else
|
|
ratr_bitmap &= 0x0f0ff005;
|
|
}
|
|
}
|
|
}
|
|
if ((curtxbw_40mhz && curshortgi_40mhz) ||
|
|
(!curtxbw_40mhz && curshortgi_20mhz)) {
|
|
|
|
if (macid == 0)
|
|
shortgi = true;
|
|
else if (macid == 1)
|
|
shortgi = false;
|
|
}
|
|
break;
|
|
default:
|
|
ratr_index = RATR_INX_WIRELESS_NGB;
|
|
|
|
if (rtlphy->rf_type == RF_1T2R)
|
|
ratr_bitmap &= 0x000ff0ff;
|
|
else
|
|
ratr_bitmap &= 0x0f0ff0ff;
|
|
break;
|
|
}
|
|
|
|
value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28);
|
|
value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
|
|
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
|
|
"ratr_bitmap :%x value0:%x value1:%x\n",
|
|
ratr_bitmap, value[0], value[1]);
|
|
rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value);
|
|
if (macid != 0)
|
|
sta_entry->ratr_index = ratr_index;
|
|
}
|
|
|
|
void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw,
|
|
struct ieee80211_sta *sta, u8 rssi_level)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
|
|
if (rtlpriv->dm.useramask)
|
|
rtl92de_update_hal_rate_mask(hw, sta, rssi_level);
|
|
else
|
|
rtl92de_update_hal_rate_table(hw, sta);
|
|
}
|
|
|
|
void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
u16 sifs_timer;
|
|
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
|
|
(u8 *)&mac->slot_time);
|
|
if (!mac->ht_enable)
|
|
sifs_timer = 0x0a0a;
|
|
else
|
|
sifs_timer = 0x1010;
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
|
|
}
|
|
|
|
bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
enum rf_pwrstate e_rfpowerstate_toset;
|
|
u8 u1tmp;
|
|
bool actuallyset = false;
|
|
unsigned long flag;
|
|
|
|
if (rtlpci->being_init_adapter)
|
|
return false;
|
|
if (ppsc->swrf_processing)
|
|
return false;
|
|
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
|
|
if (ppsc->rfchange_inprogress) {
|
|
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
|
|
return false;
|
|
} else {
|
|
ppsc->rfchange_inprogress = true;
|
|
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
|
|
}
|
|
rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
|
|
REG_MAC_PINMUX_CFG) & ~(BIT(3)));
|
|
u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
|
|
e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
|
|
if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
|
|
RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
|
|
"GPIOChangeRF - HW Radio ON, RF ON\n");
|
|
e_rfpowerstate_toset = ERFON;
|
|
ppsc->hwradiooff = false;
|
|
actuallyset = true;
|
|
} else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
|
|
RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
|
|
"GPIOChangeRF - HW Radio OFF, RF OFF\n");
|
|
e_rfpowerstate_toset = ERFOFF;
|
|
ppsc->hwradiooff = true;
|
|
actuallyset = true;
|
|
}
|
|
if (actuallyset) {
|
|
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
|
|
ppsc->rfchange_inprogress = false;
|
|
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
|
|
} else {
|
|
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
|
|
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
|
|
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
|
|
ppsc->rfchange_inprogress = false;
|
|
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
|
|
}
|
|
*valid = 1;
|
|
return !ppsc->hwradiooff;
|
|
}
|
|
|
|
void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index,
|
|
u8 *p_macaddr, bool is_group, u8 enc_algo,
|
|
bool is_wepkey, bool clear_all)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
|
|
u8 *macaddr = p_macaddr;
|
|
u32 entry_id;
|
|
bool is_pairwise = false;
|
|
static u8 cam_const_addr[4][6] = {
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
|
|
};
|
|
static u8 cam_const_broad[] = {
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
|
|
};
|
|
|
|
if (clear_all) {
|
|
u8 idx;
|
|
u8 cam_offset = 0;
|
|
u8 clear_number = 5;
|
|
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
|
|
for (idx = 0; idx < clear_number; idx++) {
|
|
rtl_cam_mark_invalid(hw, cam_offset + idx);
|
|
rtl_cam_empty_entry(hw, cam_offset + idx);
|
|
|
|
if (idx < 5) {
|
|
memset(rtlpriv->sec.key_buf[idx], 0,
|
|
MAX_KEY_LEN);
|
|
rtlpriv->sec.key_len[idx] = 0;
|
|
}
|
|
}
|
|
} else {
|
|
switch (enc_algo) {
|
|
case WEP40_ENCRYPTION:
|
|
enc_algo = CAM_WEP40;
|
|
break;
|
|
case WEP104_ENCRYPTION:
|
|
enc_algo = CAM_WEP104;
|
|
break;
|
|
case TKIP_ENCRYPTION:
|
|
enc_algo = CAM_TKIP;
|
|
break;
|
|
case AESCCMP_ENCRYPTION:
|
|
enc_algo = CAM_AES;
|
|
break;
|
|
default:
|
|
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
|
|
"switch case not processed\n");
|
|
enc_algo = CAM_TKIP;
|
|
break;
|
|
}
|
|
if (is_wepkey || rtlpriv->sec.use_defaultkey) {
|
|
macaddr = cam_const_addr[key_index];
|
|
entry_id = key_index;
|
|
} else {
|
|
if (is_group) {
|
|
macaddr = cam_const_broad;
|
|
entry_id = key_index;
|
|
} else {
|
|
if (mac->opmode == NL80211_IFTYPE_AP) {
|
|
entry_id = rtl_cam_get_free_entry(hw,
|
|
p_macaddr);
|
|
if (entry_id >= TOTAL_CAM_ENTRY) {
|
|
RT_TRACE(rtlpriv, COMP_SEC,
|
|
DBG_EMERG,
|
|
"Can not find free hw security cam entry\n");
|
|
return;
|
|
}
|
|
} else {
|
|
entry_id = CAM_PAIRWISE_KEY_POSITION;
|
|
}
|
|
key_index = PAIRWISE_KEYIDX;
|
|
is_pairwise = true;
|
|
}
|
|
}
|
|
if (rtlpriv->sec.key_len[key_index] == 0) {
|
|
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
|
|
"delete one entry, entry_id is %d\n",
|
|
entry_id);
|
|
if (mac->opmode == NL80211_IFTYPE_AP)
|
|
rtl_cam_del_entry(hw, p_macaddr);
|
|
rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
|
|
} else {
|
|
RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
|
|
"The insert KEY length is %d\n",
|
|
rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
|
|
RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
|
|
"The insert KEY is %x %x\n",
|
|
rtlpriv->sec.key_buf[0][0],
|
|
rtlpriv->sec.key_buf[0][1]);
|
|
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
|
|
"add one entry\n");
|
|
if (is_pairwise) {
|
|
RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
|
|
"Pairwise Key content",
|
|
rtlpriv->sec.pairwise_key,
|
|
rtlpriv->
|
|
sec.key_len[PAIRWISE_KEYIDX]);
|
|
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
|
|
"set Pairwise key\n");
|
|
rtl_cam_add_one_entry(hw, macaddr, key_index,
|
|
entry_id, enc_algo,
|
|
CAM_CONFIG_NO_USEDK,
|
|
rtlpriv->
|
|
sec.key_buf[key_index]);
|
|
} else {
|
|
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
|
|
"set group key\n");
|
|
if (mac->opmode == NL80211_IFTYPE_ADHOC) {
|
|
rtl_cam_add_one_entry(hw,
|
|
rtlefuse->dev_addr,
|
|
PAIRWISE_KEYIDX,
|
|
CAM_PAIRWISE_KEY_POSITION,
|
|
enc_algo, CAM_CONFIG_NO_USEDK,
|
|
rtlpriv->sec.key_buf[entry_id]);
|
|
}
|
|
rtl_cam_add_one_entry(hw, macaddr, key_index,
|
|
entry_id, enc_algo,
|
|
CAM_CONFIG_NO_USEDK,
|
|
rtlpriv->sec.key_buf
|
|
[entry_id]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void rtl92de_suspend(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
|
|
rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv,
|
|
REG_MAC_PHY_CTRL_NORMAL);
|
|
}
|
|
|
|
void rtl92de_resume(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
|
|
rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL,
|
|
rtlpriv->rtlhal.macphyctl_reg);
|
|
}
|