kernel-fxtec-pro1x/fs/udf/super.c
Jan Kara 3bf25cb40d udf: use get_bh()
Make UDF use get_bh() instead of directly accessing b_count and use
brelse() instead of udf_release_data() which does just brelse()...

Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 11:15:21 -07:00

1950 lines
51 KiB
C

/*
* super.c
*
* PURPOSE
* Super block routines for the OSTA-UDF(tm) filesystem.
*
* DESCRIPTION
* OSTA-UDF(tm) = Optical Storage Technology Association
* Universal Disk Format.
*
* This code is based on version 2.00 of the UDF specification,
* and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
* http://www.osta.org/
* http://www.ecma.ch/
* http://www.iso.org/
*
* COPYRIGHT
* This file is distributed under the terms of the GNU General Public
* License (GPL). Copies of the GPL can be obtained from:
* ftp://prep.ai.mit.edu/pub/gnu/GPL
* Each contributing author retains all rights to their own work.
*
* (C) 1998 Dave Boynton
* (C) 1998-2004 Ben Fennema
* (C) 2000 Stelias Computing Inc
*
* HISTORY
*
* 09/24/98 dgb changed to allow compiling outside of kernel, and
* added some debugging.
* 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
* 10/16/98 attempting some multi-session support
* 10/17/98 added freespace count for "df"
* 11/11/98 gr added novrs option
* 11/26/98 dgb added fileset,anchor mount options
* 12/06/98 blf really hosed things royally. vat/sparing support. sequenced vol descs
* rewrote option handling based on isofs
* 12/20/98 find the free space bitmap (if it exists)
*/
#include "udfdecl.h"
#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/parser.h>
#include <linux/stat.h>
#include <linux/cdrom.h>
#include <linux/nls.h>
#include <linux/smp_lock.h>
#include <linux/buffer_head.h>
#include <linux/vfs.h>
#include <linux/vmalloc.h>
#include <asm/byteorder.h>
#include <linux/udf_fs.h>
#include "udf_sb.h"
#include "udf_i.h"
#include <linux/init.h>
#include <asm/uaccess.h>
#define VDS_POS_PRIMARY_VOL_DESC 0
#define VDS_POS_UNALLOC_SPACE_DESC 1
#define VDS_POS_LOGICAL_VOL_DESC 2
#define VDS_POS_PARTITION_DESC 3
#define VDS_POS_IMP_USE_VOL_DESC 4
#define VDS_POS_VOL_DESC_PTR 5
#define VDS_POS_TERMINATING_DESC 6
#define VDS_POS_LENGTH 7
static char error_buf[1024];
/* These are the "meat" - everything else is stuffing */
static int udf_fill_super(struct super_block *, void *, int);
static void udf_put_super(struct super_block *);
static void udf_write_super(struct super_block *);
static int udf_remount_fs(struct super_block *, int *, char *);
static int udf_check_valid(struct super_block *, int, int);
static int udf_vrs(struct super_block *sb, int silent);
static int udf_load_partition(struct super_block *, kernel_lb_addr *);
static int udf_load_logicalvol(struct super_block *, struct buffer_head *, kernel_lb_addr *);
static void udf_load_logicalvolint(struct super_block *, kernel_extent_ad);
static void udf_find_anchor(struct super_block *);
static int udf_find_fileset(struct super_block *, kernel_lb_addr *, kernel_lb_addr *);
static void udf_load_pvoldesc(struct super_block *, struct buffer_head *);
static void udf_load_fileset(struct super_block *, struct buffer_head *, kernel_lb_addr *);
static void udf_load_partdesc(struct super_block *, struct buffer_head *);
static void udf_open_lvid(struct super_block *);
static void udf_close_lvid(struct super_block *);
static unsigned int udf_count_free(struct super_block *);
static int udf_statfs(struct dentry *, struct kstatfs *);
/* UDF filesystem type */
static int udf_get_sb(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data, struct vfsmount *mnt)
{
return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt);
}
static struct file_system_type udf_fstype = {
.owner = THIS_MODULE,
.name = "udf",
.get_sb = udf_get_sb,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
static struct kmem_cache * udf_inode_cachep;
static struct inode *udf_alloc_inode(struct super_block *sb)
{
struct udf_inode_info *ei;
ei = (struct udf_inode_info *)kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
if (!ei)
return NULL;
ei->i_unique = 0;
ei->i_lenExtents = 0;
ei->i_next_alloc_block = 0;
ei->i_next_alloc_goal = 0;
ei->i_strat4096 = 0;
return &ei->vfs_inode;
}
static void udf_destroy_inode(struct inode *inode)
{
kmem_cache_free(udf_inode_cachep, UDF_I(inode));
}
static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags)
{
struct udf_inode_info *ei = (struct udf_inode_info *) foo;
if (flags & SLAB_CTOR_CONSTRUCTOR) {
ei->i_ext.i_data = NULL;
inode_init_once(&ei->vfs_inode);
}
}
static int init_inodecache(void)
{
udf_inode_cachep = kmem_cache_create("udf_inode_cache",
sizeof(struct udf_inode_info),
0, (SLAB_RECLAIM_ACCOUNT|
SLAB_MEM_SPREAD),
init_once, NULL);
if (udf_inode_cachep == NULL)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
kmem_cache_destroy(udf_inode_cachep);
}
/* Superblock operations */
static const struct super_operations udf_sb_ops = {
.alloc_inode = udf_alloc_inode,
.destroy_inode = udf_destroy_inode,
.write_inode = udf_write_inode,
.delete_inode = udf_delete_inode,
.clear_inode = udf_clear_inode,
.put_super = udf_put_super,
.write_super = udf_write_super,
.statfs = udf_statfs,
.remount_fs = udf_remount_fs,
};
struct udf_options
{
unsigned char novrs;
unsigned int blocksize;
unsigned int session;
unsigned int lastblock;
unsigned int anchor;
unsigned int volume;
unsigned short partition;
unsigned int fileset;
unsigned int rootdir;
unsigned int flags;
mode_t umask;
gid_t gid;
uid_t uid;
struct nls_table *nls_map;
};
static int __init init_udf_fs(void)
{
int err;
err = init_inodecache();
if (err)
goto out1;
err = register_filesystem(&udf_fstype);
if (err)
goto out;
return 0;
out:
destroy_inodecache();
out1:
return err;
}
static void __exit exit_udf_fs(void)
{
unregister_filesystem(&udf_fstype);
destroy_inodecache();
}
module_init(init_udf_fs)
module_exit(exit_udf_fs)
/*
* udf_parse_options
*
* PURPOSE
* Parse mount options.
*
* DESCRIPTION
* The following mount options are supported:
*
* gid= Set the default group.
* umask= Set the default umask.
* uid= Set the default user.
* bs= Set the block size.
* unhide Show otherwise hidden files.
* undelete Show deleted files in lists.
* adinicb Embed data in the inode (default)
* noadinicb Don't embed data in the inode
* shortad Use short ad's
* longad Use long ad's (default)
* nostrict Unset strict conformance
* iocharset= Set the NLS character set
*
* The remaining are for debugging and disaster recovery:
*
* novrs Skip volume sequence recognition
*
* The following expect a offset from 0.
*
* session= Set the CDROM session (default= last session)
* anchor= Override standard anchor location. (default= 256)
* volume= Override the VolumeDesc location. (unused)
* partition= Override the PartitionDesc location. (unused)
* lastblock= Set the last block of the filesystem/
*
* The following expect a offset from the partition root.
*
* fileset= Override the fileset block location. (unused)
* rootdir= Override the root directory location. (unused)
* WARNING: overriding the rootdir to a non-directory may
* yield highly unpredictable results.
*
* PRE-CONDITIONS
* options Pointer to mount options string.
* uopts Pointer to mount options variable.
*
* POST-CONDITIONS
* <return> 1 Mount options parsed okay.
* <return> 0 Error parsing mount options.
*
* HISTORY
* July 1, 1997 - Andrew E. Mileski
* Written, tested, and released.
*/
enum {
Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
Opt_rootdir, Opt_utf8, Opt_iocharset,
Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore
};
static match_table_t tokens = {
{Opt_novrs, "novrs"},
{Opt_nostrict, "nostrict"},
{Opt_bs, "bs=%u"},
{Opt_unhide, "unhide"},
{Opt_undelete, "undelete"},
{Opt_noadinicb, "noadinicb"},
{Opt_adinicb, "adinicb"},
{Opt_shortad, "shortad"},
{Opt_longad, "longad"},
{Opt_uforget, "uid=forget"},
{Opt_uignore, "uid=ignore"},
{Opt_gforget, "gid=forget"},
{Opt_gignore, "gid=ignore"},
{Opt_gid, "gid=%u"},
{Opt_uid, "uid=%u"},
{Opt_umask, "umask=%o"},
{Opt_session, "session=%u"},
{Opt_lastblock, "lastblock=%u"},
{Opt_anchor, "anchor=%u"},
{Opt_volume, "volume=%u"},
{Opt_partition, "partition=%u"},
{Opt_fileset, "fileset=%u"},
{Opt_rootdir, "rootdir=%u"},
{Opt_utf8, "utf8"},
{Opt_iocharset, "iocharset=%s"},
{Opt_err, NULL}
};
static int
udf_parse_options(char *options, struct udf_options *uopt)
{
char *p;
int option;
uopt->novrs = 0;
uopt->blocksize = 2048;
uopt->partition = 0xFFFF;
uopt->session = 0xFFFFFFFF;
uopt->lastblock = 0;
uopt->anchor = 0;
uopt->volume = 0xFFFFFFFF;
uopt->rootdir = 0xFFFFFFFF;
uopt->fileset = 0xFFFFFFFF;
uopt->nls_map = NULL;
if (!options)
return 1;
while ((p = strsep(&options, ",")) != NULL)
{
substring_t args[MAX_OPT_ARGS];
int token;
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token)
{
case Opt_novrs:
uopt->novrs = 1;
case Opt_bs:
if (match_int(&args[0], &option))
return 0;
uopt->blocksize = option;
break;
case Opt_unhide:
uopt->flags |= (1 << UDF_FLAG_UNHIDE);
break;
case Opt_undelete:
uopt->flags |= (1 << UDF_FLAG_UNDELETE);
break;
case Opt_noadinicb:
uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
break;
case Opt_adinicb:
uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
break;
case Opt_shortad:
uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
break;
case Opt_longad:
uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
break;
case Opt_gid:
if (match_int(args, &option))
return 0;
uopt->gid = option;
break;
case Opt_uid:
if (match_int(args, &option))
return 0;
uopt->uid = option;
break;
case Opt_umask:
if (match_octal(args, &option))
return 0;
uopt->umask = option;
break;
case Opt_nostrict:
uopt->flags &= ~(1 << UDF_FLAG_STRICT);
break;
case Opt_session:
if (match_int(args, &option))
return 0;
uopt->session = option;
break;
case Opt_lastblock:
if (match_int(args, &option))
return 0;
uopt->lastblock = option;
break;
case Opt_anchor:
if (match_int(args, &option))
return 0;
uopt->anchor = option;
break;
case Opt_volume:
if (match_int(args, &option))
return 0;
uopt->volume = option;
break;
case Opt_partition:
if (match_int(args, &option))
return 0;
uopt->partition = option;
break;
case Opt_fileset:
if (match_int(args, &option))
return 0;
uopt->fileset = option;
break;
case Opt_rootdir:
if (match_int(args, &option))
return 0;
uopt->rootdir = option;
break;
case Opt_utf8:
uopt->flags |= (1 << UDF_FLAG_UTF8);
break;
#ifdef CONFIG_UDF_NLS
case Opt_iocharset:
uopt->nls_map = load_nls(args[0].from);
uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
break;
#endif
case Opt_uignore:
uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
break;
case Opt_uforget:
uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
break;
case Opt_gignore:
uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
break;
case Opt_gforget:
uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
break;
default:
printk(KERN_ERR "udf: bad mount option \"%s\" "
"or missing value\n", p);
return 0;
}
}
return 1;
}
void
udf_write_super(struct super_block *sb)
{
lock_kernel();
if (!(sb->s_flags & MS_RDONLY))
udf_open_lvid(sb);
sb->s_dirt = 0;
unlock_kernel();
}
static int
udf_remount_fs(struct super_block *sb, int *flags, char *options)
{
struct udf_options uopt;
uopt.flags = UDF_SB(sb)->s_flags ;
uopt.uid = UDF_SB(sb)->s_uid ;
uopt.gid = UDF_SB(sb)->s_gid ;
uopt.umask = UDF_SB(sb)->s_umask ;
if ( !udf_parse_options(options, &uopt) )
return -EINVAL;
UDF_SB(sb)->s_flags = uopt.flags;
UDF_SB(sb)->s_uid = uopt.uid;
UDF_SB(sb)->s_gid = uopt.gid;
UDF_SB(sb)->s_umask = uopt.umask;
if (UDF_SB_LVIDBH(sb)) {
int write_rev = le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFWriteRev);
if (write_rev > UDF_MAX_WRITE_VERSION)
*flags |= MS_RDONLY;
}
if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
return 0;
if (*flags & MS_RDONLY)
udf_close_lvid(sb);
else
udf_open_lvid(sb);
return 0;
}
/*
* udf_set_blocksize
*
* PURPOSE
* Set the block size to be used in all transfers.
*
* DESCRIPTION
* To allow room for a DMA transfer, it is best to guess big when unsure.
* This routine picks 2048 bytes as the blocksize when guessing. This
* should be adequate until devices with larger block sizes become common.
*
* Note that the Linux kernel can currently only deal with blocksizes of
* 512, 1024, 2048, 4096, and 8192 bytes.
*
* PRE-CONDITIONS
* sb Pointer to _locked_ superblock.
*
* POST-CONDITIONS
* sb->s_blocksize Blocksize.
* sb->s_blocksize_bits log2 of blocksize.
* <return> 0 Blocksize is valid.
* <return> 1 Blocksize is invalid.
*
* HISTORY
* July 1, 1997 - Andrew E. Mileski
* Written, tested, and released.
*/
static int
udf_set_blocksize(struct super_block *sb, int bsize)
{
if (!sb_min_blocksize(sb, bsize)) {
udf_debug("Bad block size (%d)\n", bsize);
printk(KERN_ERR "udf: bad block size (%d)\n", bsize);
return 0;
}
return sb->s_blocksize;
}
static int
udf_vrs(struct super_block *sb, int silent)
{
struct volStructDesc *vsd = NULL;
int sector = 32768;
int sectorsize;
struct buffer_head *bh = NULL;
int iso9660=0;
int nsr02=0;
int nsr03=0;
/* Block size must be a multiple of 512 */
if (sb->s_blocksize & 511)
return 0;
if (sb->s_blocksize < sizeof(struct volStructDesc))
sectorsize = sizeof(struct volStructDesc);
else
sectorsize = sb->s_blocksize;
sector += (UDF_SB_SESSION(sb) << sb->s_blocksize_bits);
udf_debug("Starting at sector %u (%ld byte sectors)\n",
(sector >> sb->s_blocksize_bits), sb->s_blocksize);
/* Process the sequence (if applicable) */
for (;!nsr02 && !nsr03; sector += sectorsize)
{
/* Read a block */
bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
if (!bh)
break;
/* Look for ISO descriptors */
vsd = (struct volStructDesc *)(bh->b_data +
(sector & (sb->s_blocksize - 1)));
if (vsd->stdIdent[0] == 0)
{
brelse(bh);
break;
}
else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN))
{
iso9660 = sector;
switch (vsd->structType)
{
case 0:
udf_debug("ISO9660 Boot Record found\n");
break;
case 1:
udf_debug("ISO9660 Primary Volume Descriptor found\n");
break;
case 2:
udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
break;
case 3:
udf_debug("ISO9660 Volume Partition Descriptor found\n");
break;
case 255:
udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
break;
default:
udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
break;
}
}
else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
{
}
else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, VSD_STD_ID_LEN))
{
brelse(bh);
break;
}
else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
{
nsr02 = sector;
}
else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
{
nsr03 = sector;
}
brelse(bh);
}
if (nsr03)
return nsr03;
else if (nsr02)
return nsr02;
else if (sector - (UDF_SB_SESSION(sb) << sb->s_blocksize_bits) == 32768)
return -1;
else
return 0;
}
/*
* udf_find_anchor
*
* PURPOSE
* Find an anchor volume descriptor.
*
* PRE-CONDITIONS
* sb Pointer to _locked_ superblock.
* lastblock Last block on media.
*
* POST-CONDITIONS
* <return> 1 if not found, 0 if ok
*
* HISTORY
* July 1, 1997 - Andrew E. Mileski
* Written, tested, and released.
*/
static void
udf_find_anchor(struct super_block *sb)
{
int lastblock = UDF_SB_LASTBLOCK(sb);
struct buffer_head *bh = NULL;
uint16_t ident;
uint32_t location;
int i;
if (lastblock)
{
int varlastblock = udf_variable_to_fixed(lastblock);
int last[] = { lastblock, lastblock - 2,
lastblock - 150, lastblock - 152,
varlastblock, varlastblock - 2,
varlastblock - 150, varlastblock - 152 };
lastblock = 0;
/* Search for an anchor volume descriptor pointer */
/* according to spec, anchor is in either:
* block 256
* lastblock-256
* lastblock
* however, if the disc isn't closed, it could be 512 */
for (i = 0; !lastblock && i < ARRAY_SIZE(last); i++) {
if (last[i] < 0 || !(bh = sb_bread(sb, last[i])))
{
ident = location = 0;
}
else
{
ident = le16_to_cpu(((tag *)bh->b_data)->tagIdent);
location = le32_to_cpu(((tag *)bh->b_data)->tagLocation);
brelse(bh);
}
if (ident == TAG_IDENT_AVDP)
{
if (location == last[i] - UDF_SB_SESSION(sb))
{
lastblock = UDF_SB_ANCHOR(sb)[0] = last[i] - UDF_SB_SESSION(sb);
UDF_SB_ANCHOR(sb)[1] = last[i] - 256 - UDF_SB_SESSION(sb);
}
else if (location == udf_variable_to_fixed(last[i]) - UDF_SB_SESSION(sb))
{
UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
lastblock = UDF_SB_ANCHOR(sb)[0] = udf_variable_to_fixed(last[i]) - UDF_SB_SESSION(sb);
UDF_SB_ANCHOR(sb)[1] = lastblock - 256 - UDF_SB_SESSION(sb);
}
else
udf_debug("Anchor found at block %d, location mismatch %d.\n",
last[i], location);
}
else if (ident == TAG_IDENT_FE || ident == TAG_IDENT_EFE)
{
lastblock = last[i];
UDF_SB_ANCHOR(sb)[3] = 512;
}
else
{
if (last[i] < 256 || !(bh = sb_bread(sb, last[i] - 256)))
{
ident = location = 0;
}
else
{
ident = le16_to_cpu(((tag *)bh->b_data)->tagIdent);
location = le32_to_cpu(((tag *)bh->b_data)->tagLocation);
brelse(bh);
}
if (ident == TAG_IDENT_AVDP &&
location == last[i] - 256 - UDF_SB_SESSION(sb))
{
lastblock = last[i];
UDF_SB_ANCHOR(sb)[1] = last[i] - 256;
}
else
{
if (last[i] < 312 + UDF_SB_SESSION(sb) || !(bh = sb_bread(sb, last[i] - 312 - UDF_SB_SESSION(sb))))
{
ident = location = 0;
}
else
{
ident = le16_to_cpu(((tag *)bh->b_data)->tagIdent);
location = le32_to_cpu(((tag *)bh->b_data)->tagLocation);
brelse(bh);
}
if (ident == TAG_IDENT_AVDP &&
location == udf_variable_to_fixed(last[i]) - 256)
{
UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
lastblock = udf_variable_to_fixed(last[i]);
UDF_SB_ANCHOR(sb)[1] = lastblock - 256;
}
}
}
}
}
if (!lastblock)
{
/* We havn't found the lastblock. check 312 */
if ((bh = sb_bread(sb, 312 + UDF_SB_SESSION(sb))))
{
ident = le16_to_cpu(((tag *)bh->b_data)->tagIdent);
location = le32_to_cpu(((tag *)bh->b_data)->tagLocation);
brelse(bh);
if (ident == TAG_IDENT_AVDP && location == 256)
UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
}
}
for (i = 0; i < ARRAY_SIZE(UDF_SB_ANCHOR(sb)); i++) {
if (UDF_SB_ANCHOR(sb)[i])
{
if (!(bh = udf_read_tagged(sb,
UDF_SB_ANCHOR(sb)[i], UDF_SB_ANCHOR(sb)[i], &ident)))
{
UDF_SB_ANCHOR(sb)[i] = 0;
}
else
{
brelse(bh);
if ((ident != TAG_IDENT_AVDP) && (i ||
(ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE)))
{
UDF_SB_ANCHOR(sb)[i] = 0;
}
}
}
}
UDF_SB_LASTBLOCK(sb) = lastblock;
}
static int
udf_find_fileset(struct super_block *sb, kernel_lb_addr *fileset, kernel_lb_addr *root)
{
struct buffer_head *bh = NULL;
long lastblock;
uint16_t ident;
if (fileset->logicalBlockNum != 0xFFFFFFFF ||
fileset->partitionReferenceNum != 0xFFFF)
{
bh = udf_read_ptagged(sb, *fileset, 0, &ident);
if (!bh)
return 1;
else if (ident != TAG_IDENT_FSD)
{
brelse(bh);
return 1;
}
}
if (!bh) /* Search backwards through the partitions */
{
kernel_lb_addr newfileset;
return 1;
for (newfileset.partitionReferenceNum=UDF_SB_NUMPARTS(sb)-1;
(newfileset.partitionReferenceNum != 0xFFFF &&
fileset->logicalBlockNum == 0xFFFFFFFF &&
fileset->partitionReferenceNum == 0xFFFF);
newfileset.partitionReferenceNum--)
{
lastblock = UDF_SB_PARTLEN(sb, newfileset.partitionReferenceNum);
newfileset.logicalBlockNum = 0;
do
{
bh = udf_read_ptagged(sb, newfileset, 0, &ident);
if (!bh)
{
newfileset.logicalBlockNum ++;
continue;
}
switch (ident)
{
case TAG_IDENT_SBD:
{
struct spaceBitmapDesc *sp;
sp = (struct spaceBitmapDesc *)bh->b_data;
newfileset.logicalBlockNum += 1 +
((le32_to_cpu(sp->numOfBytes) + sizeof(struct spaceBitmapDesc) - 1)
>> sb->s_blocksize_bits);
brelse(bh);
break;
}
case TAG_IDENT_FSD:
{
*fileset = newfileset;
break;
}
default:
{
newfileset.logicalBlockNum ++;
brelse(bh);
bh = NULL;
break;
}
}
}
while (newfileset.logicalBlockNum < lastblock &&
fileset->logicalBlockNum == 0xFFFFFFFF &&
fileset->partitionReferenceNum == 0xFFFF);
}
}
if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
fileset->partitionReferenceNum != 0xFFFF) && bh)
{
udf_debug("Fileset at block=%d, partition=%d\n",
fileset->logicalBlockNum, fileset->partitionReferenceNum);
UDF_SB_PARTITION(sb) = fileset->partitionReferenceNum;
udf_load_fileset(sb, bh, root);
brelse(bh);
return 0;
}
return 1;
}
static void
udf_load_pvoldesc(struct super_block *sb, struct buffer_head *bh)
{
struct primaryVolDesc *pvoldesc;
time_t recording;
long recording_usec;
struct ustr instr;
struct ustr outstr;
pvoldesc = (struct primaryVolDesc *)bh->b_data;
if ( udf_stamp_to_time(&recording, &recording_usec,
lets_to_cpu(pvoldesc->recordingDateAndTime)) )
{
kernel_timestamp ts;
ts = lets_to_cpu(pvoldesc->recordingDateAndTime);
udf_debug("recording time %ld/%ld, %04u/%02u/%02u %02u:%02u (%x)\n",
recording, recording_usec,
ts.year, ts.month, ts.day, ts.hour, ts.minute, ts.typeAndTimezone);
UDF_SB_RECORDTIME(sb).tv_sec = recording;
UDF_SB_RECORDTIME(sb).tv_nsec = recording_usec * 1000;
}
if ( !udf_build_ustr(&instr, pvoldesc->volIdent, 32) )
{
if (udf_CS0toUTF8(&outstr, &instr))
{
strncpy( UDF_SB_VOLIDENT(sb), outstr.u_name,
outstr.u_len > 31 ? 31 : outstr.u_len);
udf_debug("volIdent[] = '%s'\n", UDF_SB_VOLIDENT(sb));
}
}
if ( !udf_build_ustr(&instr, pvoldesc->volSetIdent, 128) )
{
if (udf_CS0toUTF8(&outstr, &instr))
udf_debug("volSetIdent[] = '%s'\n", outstr.u_name);
}
}
static void
udf_load_fileset(struct super_block *sb, struct buffer_head *bh, kernel_lb_addr *root)
{
struct fileSetDesc *fset;
fset = (struct fileSetDesc *)bh->b_data;
*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
UDF_SB_SERIALNUM(sb) = le16_to_cpu(fset->descTag.tagSerialNum);
udf_debug("Rootdir at block=%d, partition=%d\n",
root->logicalBlockNum, root->partitionReferenceNum);
}
static void
udf_load_partdesc(struct super_block *sb, struct buffer_head *bh)
{
struct partitionDesc *p;
int i;
p = (struct partitionDesc *)bh->b_data;
for (i=0; i<UDF_SB_NUMPARTS(sb); i++)
{
udf_debug("Searching map: (%d == %d)\n",
UDF_SB_PARTMAPS(sb)[i].s_partition_num, le16_to_cpu(p->partitionNumber));
if (UDF_SB_PARTMAPS(sb)[i].s_partition_num == le16_to_cpu(p->partitionNumber))
{
UDF_SB_PARTLEN(sb,i) = le32_to_cpu(p->partitionLength); /* blocks */
UDF_SB_PARTROOT(sb,i) = le32_to_cpu(p->partitionStartingLocation);
if (le32_to_cpu(p->accessType) == PD_ACCESS_TYPE_READ_ONLY)
UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_READ_ONLY;
if (le32_to_cpu(p->accessType) == PD_ACCESS_TYPE_WRITE_ONCE)
UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_WRITE_ONCE;
if (le32_to_cpu(p->accessType) == PD_ACCESS_TYPE_REWRITABLE)
UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_REWRITABLE;
if (le32_to_cpu(p->accessType) == PD_ACCESS_TYPE_OVERWRITABLE)
UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_OVERWRITABLE;
if (!strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) ||
!strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
{
struct partitionHeaderDesc *phd;
phd = (struct partitionHeaderDesc *)(p->partitionContentsUse);
if (phd->unallocSpaceTable.extLength)
{
kernel_lb_addr loc = { le32_to_cpu(phd->unallocSpaceTable.extPosition), i };
UDF_SB_PARTMAPS(sb)[i].s_uspace.s_table =
udf_iget(sb, loc);
UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_UNALLOC_TABLE;
udf_debug("unallocSpaceTable (part %d) @ %ld\n",
i, UDF_SB_PARTMAPS(sb)[i].s_uspace.s_table->i_ino);
}
if (phd->unallocSpaceBitmap.extLength)
{
UDF_SB_ALLOC_BITMAP(sb, i, s_uspace);
if (UDF_SB_PARTMAPS(sb)[i].s_uspace.s_bitmap != NULL)
{
UDF_SB_PARTMAPS(sb)[i].s_uspace.s_bitmap->s_extLength =
le32_to_cpu(phd->unallocSpaceBitmap.extLength);
UDF_SB_PARTMAPS(sb)[i].s_uspace.s_bitmap->s_extPosition =
le32_to_cpu(phd->unallocSpaceBitmap.extPosition);
UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_UNALLOC_BITMAP;
udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
i, UDF_SB_PARTMAPS(sb)[i].s_uspace.s_bitmap->s_extPosition);
}
}
if (phd->partitionIntegrityTable.extLength)
udf_debug("partitionIntegrityTable (part %d)\n", i);
if (phd->freedSpaceTable.extLength)
{
kernel_lb_addr loc = { le32_to_cpu(phd->freedSpaceTable.extPosition), i };
UDF_SB_PARTMAPS(sb)[i].s_fspace.s_table =
udf_iget(sb, loc);
UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_FREED_TABLE;
udf_debug("freedSpaceTable (part %d) @ %ld\n",
i, UDF_SB_PARTMAPS(sb)[i].s_fspace.s_table->i_ino);
}
if (phd->freedSpaceBitmap.extLength)
{
UDF_SB_ALLOC_BITMAP(sb, i, s_fspace);
if (UDF_SB_PARTMAPS(sb)[i].s_fspace.s_bitmap != NULL)
{
UDF_SB_PARTMAPS(sb)[i].s_fspace.s_bitmap->s_extLength =
le32_to_cpu(phd->freedSpaceBitmap.extLength);
UDF_SB_PARTMAPS(sb)[i].s_fspace.s_bitmap->s_extPosition =
le32_to_cpu(phd->freedSpaceBitmap.extPosition);
UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_FREED_BITMAP;
udf_debug("freedSpaceBitmap (part %d) @ %d\n",
i, UDF_SB_PARTMAPS(sb)[i].s_fspace.s_bitmap->s_extPosition);
}
}
}
break;
}
}
if (i == UDF_SB_NUMPARTS(sb))
{
udf_debug("Partition (%d) not found in partition map\n", le16_to_cpu(p->partitionNumber));
}
else
{
udf_debug("Partition (%d:%d type %x) starts at physical %d, block length %d\n",
le16_to_cpu(p->partitionNumber), i, UDF_SB_PARTTYPE(sb,i),
UDF_SB_PARTROOT(sb,i), UDF_SB_PARTLEN(sb,i));
}
}
static int
udf_load_logicalvol(struct super_block *sb, struct buffer_head * bh, kernel_lb_addr *fileset)
{
struct logicalVolDesc *lvd;
int i, j, offset;
uint8_t type;
lvd = (struct logicalVolDesc *)bh->b_data;
UDF_SB_ALLOC_PARTMAPS(sb, le32_to_cpu(lvd->numPartitionMaps));
for (i=0,offset=0;
i<UDF_SB_NUMPARTS(sb) && offset<le32_to_cpu(lvd->mapTableLength);
i++,offset+=((struct genericPartitionMap *)&(lvd->partitionMaps[offset]))->partitionMapLength)
{
type = ((struct genericPartitionMap *)&(lvd->partitionMaps[offset]))->partitionMapType;
if (type == 1)
{
struct genericPartitionMap1 *gpm1 = (struct genericPartitionMap1 *)&(lvd->partitionMaps[offset]);
UDF_SB_PARTTYPE(sb,i) = UDF_TYPE1_MAP15;
UDF_SB_PARTVSN(sb,i) = le16_to_cpu(gpm1->volSeqNum);
UDF_SB_PARTNUM(sb,i) = le16_to_cpu(gpm1->partitionNum);
UDF_SB_PARTFUNC(sb,i) = NULL;
}
else if (type == 2)
{
struct udfPartitionMap2 *upm2 = (struct udfPartitionMap2 *)&(lvd->partitionMaps[offset]);
if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, strlen(UDF_ID_VIRTUAL)))
{
if (le16_to_cpu(((__le16 *)upm2->partIdent.identSuffix)[0]) == 0x0150)
{
UDF_SB_PARTTYPE(sb,i) = UDF_VIRTUAL_MAP15;
UDF_SB_PARTFUNC(sb,i) = udf_get_pblock_virt15;
}
else if (le16_to_cpu(((__le16 *)upm2->partIdent.identSuffix)[0]) == 0x0200)
{
UDF_SB_PARTTYPE(sb,i) = UDF_VIRTUAL_MAP20;
UDF_SB_PARTFUNC(sb,i) = udf_get_pblock_virt20;
}
}
else if (!strncmp(upm2->partIdent.ident, UDF_ID_SPARABLE, strlen(UDF_ID_SPARABLE)))
{
uint32_t loc;
uint16_t ident;
struct sparingTable *st;
struct sparablePartitionMap *spm = (struct sparablePartitionMap *)&(lvd->partitionMaps[offset]);
UDF_SB_PARTTYPE(sb,i) = UDF_SPARABLE_MAP15;
UDF_SB_TYPESPAR(sb,i).s_packet_len = le16_to_cpu(spm->packetLength);
for (j=0; j<spm->numSparingTables; j++)
{
loc = le32_to_cpu(spm->locSparingTable[j]);
UDF_SB_TYPESPAR(sb,i).s_spar_map[j] =
udf_read_tagged(sb, loc, loc, &ident);
if (UDF_SB_TYPESPAR(sb,i).s_spar_map[j] != NULL)
{
st = (struct sparingTable *)UDF_SB_TYPESPAR(sb,i).s_spar_map[j]->b_data;
if (ident != 0 ||
strncmp(st->sparingIdent.ident, UDF_ID_SPARING, strlen(UDF_ID_SPARING)))
{
brelse(UDF_SB_TYPESPAR(sb,i).s_spar_map[j]);
UDF_SB_TYPESPAR(sb,i).s_spar_map[j] = NULL;
}
}
}
UDF_SB_PARTFUNC(sb,i) = udf_get_pblock_spar15;
}
else
{
udf_debug("Unknown ident: %s\n", upm2->partIdent.ident);
continue;
}
UDF_SB_PARTVSN(sb,i) = le16_to_cpu(upm2->volSeqNum);
UDF_SB_PARTNUM(sb,i) = le16_to_cpu(upm2->partitionNum);
}
udf_debug("Partition (%d:%d) type %d on volume %d\n",
i, UDF_SB_PARTNUM(sb,i), type, UDF_SB_PARTVSN(sb,i));
}
if (fileset)
{
long_ad *la = (long_ad *)&(lvd->logicalVolContentsUse[0]);
*fileset = lelb_to_cpu(la->extLocation);
udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
fileset->logicalBlockNum,
fileset->partitionReferenceNum);
}
if (lvd->integritySeqExt.extLength)
udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
return 0;
}
/*
* udf_load_logicalvolint
*
*/
static void
udf_load_logicalvolint(struct super_block *sb, kernel_extent_ad loc)
{
struct buffer_head *bh = NULL;
uint16_t ident;
while (loc.extLength > 0 &&
(bh = udf_read_tagged(sb, loc.extLocation,
loc.extLocation, &ident)) &&
ident == TAG_IDENT_LVID)
{
UDF_SB_LVIDBH(sb) = bh;
if (UDF_SB_LVID(sb)->nextIntegrityExt.extLength)
udf_load_logicalvolint(sb, leea_to_cpu(UDF_SB_LVID(sb)->nextIntegrityExt));
if (UDF_SB_LVIDBH(sb) != bh)
brelse(bh);
loc.extLength -= sb->s_blocksize;
loc.extLocation ++;
}
if (UDF_SB_LVIDBH(sb) != bh)
brelse(bh);
}
/*
* udf_process_sequence
*
* PURPOSE
* Process a main/reserve volume descriptor sequence.
*
* PRE-CONDITIONS
* sb Pointer to _locked_ superblock.
* block First block of first extent of the sequence.
* lastblock Lastblock of first extent of the sequence.
*
* HISTORY
* July 1, 1997 - Andrew E. Mileski
* Written, tested, and released.
*/
static int
udf_process_sequence(struct super_block *sb, long block, long lastblock, kernel_lb_addr *fileset)
{
struct buffer_head *bh = NULL;
struct udf_vds_record vds[VDS_POS_LENGTH];
struct generic_desc *gd;
struct volDescPtr *vdp;
int done=0;
int i,j;
uint32_t vdsn;
uint16_t ident;
long next_s = 0, next_e = 0;
memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
/* Read the main descriptor sequence */
for (;(!done && block <= lastblock); block++)
{
bh = udf_read_tagged(sb, block, block, &ident);
if (!bh)
break;
/* Process each descriptor (ISO 13346 3/8.3-8.4) */
gd = (struct generic_desc *)bh->b_data;
vdsn = le32_to_cpu(gd->volDescSeqNum);
switch (ident)
{
case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
if (vdsn >= vds[VDS_POS_PRIMARY_VOL_DESC].volDescSeqNum)
{
vds[VDS_POS_PRIMARY_VOL_DESC].volDescSeqNum = vdsn;
vds[VDS_POS_PRIMARY_VOL_DESC].block = block;
}
break;
case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
if (vdsn >= vds[VDS_POS_VOL_DESC_PTR].volDescSeqNum)
{
vds[VDS_POS_VOL_DESC_PTR].volDescSeqNum = vdsn;
vds[VDS_POS_VOL_DESC_PTR].block = block;
vdp = (struct volDescPtr *)bh->b_data;
next_s = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
next_e = le32_to_cpu(vdp->nextVolDescSeqExt.extLength);
next_e = next_e >> sb->s_blocksize_bits;
next_e += next_s;
}
break;
case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
if (vdsn >= vds[VDS_POS_IMP_USE_VOL_DESC].volDescSeqNum)
{
vds[VDS_POS_IMP_USE_VOL_DESC].volDescSeqNum = vdsn;
vds[VDS_POS_IMP_USE_VOL_DESC].block = block;
}
break;
case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
if (!vds[VDS_POS_PARTITION_DESC].block)
vds[VDS_POS_PARTITION_DESC].block = block;
break;
case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
if (vdsn >= vds[VDS_POS_LOGICAL_VOL_DESC].volDescSeqNum)
{
vds[VDS_POS_LOGICAL_VOL_DESC].volDescSeqNum = vdsn;
vds[VDS_POS_LOGICAL_VOL_DESC].block = block;
}
break;
case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
if (vdsn >= vds[VDS_POS_UNALLOC_SPACE_DESC].volDescSeqNum)
{
vds[VDS_POS_UNALLOC_SPACE_DESC].volDescSeqNum = vdsn;
vds[VDS_POS_UNALLOC_SPACE_DESC].block = block;
}
break;
case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
vds[VDS_POS_TERMINATING_DESC].block = block;
if (next_e)
{
block = next_s;
lastblock = next_e;
next_s = next_e = 0;
}
else
done = 1;
break;
}
brelse(bh);
}
for (i=0; i<VDS_POS_LENGTH; i++)
{
if (vds[i].block)
{
bh = udf_read_tagged(sb, vds[i].block, vds[i].block, &ident);
if (i == VDS_POS_PRIMARY_VOL_DESC)
udf_load_pvoldesc(sb, bh);
else if (i == VDS_POS_LOGICAL_VOL_DESC)
udf_load_logicalvol(sb, bh, fileset);
else if (i == VDS_POS_PARTITION_DESC)
{
struct buffer_head *bh2 = NULL;
udf_load_partdesc(sb, bh);
for (j=vds[i].block+1; j<vds[VDS_POS_TERMINATING_DESC].block; j++)
{
bh2 = udf_read_tagged(sb, j, j, &ident);
gd = (struct generic_desc *)bh2->b_data;
if (ident == TAG_IDENT_PD)
udf_load_partdesc(sb, bh2);
brelse(bh2);
}
}
brelse(bh);
}
}
return 0;
}
/*
* udf_check_valid()
*/
static int
udf_check_valid(struct super_block *sb, int novrs, int silent)
{
long block;
if (novrs)
{
udf_debug("Validity check skipped because of novrs option\n");
return 0;
}
/* Check that it is NSR02 compliant */
/* Process any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
else if ((block = udf_vrs(sb, silent)) == -1)
{
udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
if (!UDF_SB_LASTBLOCK(sb))
UDF_SB_LASTBLOCK(sb) = udf_get_last_block(sb);
return 0;
}
else
return !block;
}
static int
udf_load_partition(struct super_block *sb, kernel_lb_addr *fileset)
{
struct anchorVolDescPtr *anchor;
uint16_t ident;
struct buffer_head *bh;
long main_s, main_e, reserve_s, reserve_e;
int i, j;
if (!sb)
return 1;
for (i = 0; i < ARRAY_SIZE(UDF_SB_ANCHOR(sb)); i++) {
if (UDF_SB_ANCHOR(sb)[i] && (bh = udf_read_tagged(sb,
UDF_SB_ANCHOR(sb)[i], UDF_SB_ANCHOR(sb)[i], &ident)))
{
anchor = (struct anchorVolDescPtr *)bh->b_data;
/* Locate the main sequence */
main_s = le32_to_cpu( anchor->mainVolDescSeqExt.extLocation );
main_e = le32_to_cpu( anchor->mainVolDescSeqExt.extLength );
main_e = main_e >> sb->s_blocksize_bits;
main_e += main_s;
/* Locate the reserve sequence */
reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
reserve_e = reserve_e >> sb->s_blocksize_bits;
reserve_e += reserve_s;
brelse(bh);
/* Process the main & reserve sequences */
/* responsible for finding the PartitionDesc(s) */
if (!(udf_process_sequence(sb, main_s, main_e, fileset) &&
udf_process_sequence(sb, reserve_s, reserve_e, fileset)))
{
break;
}
}
}
if (i == ARRAY_SIZE(UDF_SB_ANCHOR(sb))) {
udf_debug("No Anchor block found\n");
return 1;
} else
udf_debug("Using anchor in block %d\n", UDF_SB_ANCHOR(sb)[i]);
for (i=0; i<UDF_SB_NUMPARTS(sb); i++)
{
switch UDF_SB_PARTTYPE(sb, i)
{
case UDF_VIRTUAL_MAP15:
case UDF_VIRTUAL_MAP20:
{
kernel_lb_addr ino;
if (!UDF_SB_LASTBLOCK(sb))
{
UDF_SB_LASTBLOCK(sb) = udf_get_last_block(sb);
udf_find_anchor(sb);
}
if (!UDF_SB_LASTBLOCK(sb))
{
udf_debug("Unable to determine Lastblock (For Virtual Partition)\n");
return 1;
}
for (j=0; j<UDF_SB_NUMPARTS(sb); j++)
{
if (j != i &&
UDF_SB_PARTVSN(sb,i) == UDF_SB_PARTVSN(sb,j) &&
UDF_SB_PARTNUM(sb,i) == UDF_SB_PARTNUM(sb,j))
{
ino.partitionReferenceNum = j;
ino.logicalBlockNum = UDF_SB_LASTBLOCK(sb) -
UDF_SB_PARTROOT(sb,j);
break;
}
}
if (j == UDF_SB_NUMPARTS(sb))
return 1;
if (!(UDF_SB_VAT(sb) = udf_iget(sb, ino)))
return 1;
if (UDF_SB_PARTTYPE(sb,i) == UDF_VIRTUAL_MAP15)
{
UDF_SB_TYPEVIRT(sb,i).s_start_offset = udf_ext0_offset(UDF_SB_VAT(sb));
UDF_SB_TYPEVIRT(sb,i).s_num_entries = (UDF_SB_VAT(sb)->i_size - 36) >> 2;
}
else if (UDF_SB_PARTTYPE(sb,i) == UDF_VIRTUAL_MAP20)
{
struct buffer_head *bh = NULL;
uint32_t pos;
pos = udf_block_map(UDF_SB_VAT(sb), 0);
bh = sb_bread(sb, pos);
UDF_SB_TYPEVIRT(sb,i).s_start_offset =
le16_to_cpu(((struct virtualAllocationTable20 *)bh->b_data + udf_ext0_offset(UDF_SB_VAT(sb)))->lengthHeader) +
udf_ext0_offset(UDF_SB_VAT(sb));
UDF_SB_TYPEVIRT(sb,i).s_num_entries = (UDF_SB_VAT(sb)->i_size -
UDF_SB_TYPEVIRT(sb,i).s_start_offset) >> 2;
brelse(bh);
}
UDF_SB_PARTROOT(sb,i) = udf_get_pblock(sb, 0, i, 0);
UDF_SB_PARTLEN(sb,i) = UDF_SB_PARTLEN(sb,ino.partitionReferenceNum);
}
}
}
return 0;
}
static void udf_open_lvid(struct super_block *sb)
{
if (UDF_SB_LVIDBH(sb))
{
int i;
kernel_timestamp cpu_time;
UDF_SB_LVIDIU(sb)->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
UDF_SB_LVIDIU(sb)->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
if (udf_time_to_stamp(&cpu_time, CURRENT_TIME))
UDF_SB_LVID(sb)->recordingDateAndTime = cpu_to_lets(cpu_time);
UDF_SB_LVID(sb)->integrityType = LVID_INTEGRITY_TYPE_OPEN;
UDF_SB_LVID(sb)->descTag.descCRC =
cpu_to_le16(udf_crc((char *)UDF_SB_LVID(sb) + sizeof(tag),
le16_to_cpu(UDF_SB_LVID(sb)->descTag.descCRCLength), 0));
UDF_SB_LVID(sb)->descTag.tagChecksum = 0;
for (i=0; i<16; i++)
if (i != 4)
UDF_SB_LVID(sb)->descTag.tagChecksum +=
((uint8_t *)&(UDF_SB_LVID(sb)->descTag))[i];
mark_buffer_dirty(UDF_SB_LVIDBH(sb));
}
}
static void udf_close_lvid(struct super_block *sb)
{
if (UDF_SB_LVIDBH(sb) &&
UDF_SB_LVID(sb)->integrityType == LVID_INTEGRITY_TYPE_OPEN)
{
int i;
kernel_timestamp cpu_time;
UDF_SB_LVIDIU(sb)->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
UDF_SB_LVIDIU(sb)->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
if (udf_time_to_stamp(&cpu_time, CURRENT_TIME))
UDF_SB_LVID(sb)->recordingDateAndTime = cpu_to_lets(cpu_time);
if (UDF_MAX_WRITE_VERSION > le16_to_cpu(UDF_SB_LVIDIU(sb)->maxUDFWriteRev))
UDF_SB_LVIDIU(sb)->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
if (UDF_SB_UDFREV(sb) > le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFReadRev))
UDF_SB_LVIDIU(sb)->minUDFReadRev = cpu_to_le16(UDF_SB_UDFREV(sb));
if (UDF_SB_UDFREV(sb) > le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFWriteRev))
UDF_SB_LVIDIU(sb)->minUDFWriteRev = cpu_to_le16(UDF_SB_UDFREV(sb));
UDF_SB_LVID(sb)->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
UDF_SB_LVID(sb)->descTag.descCRC =
cpu_to_le16(udf_crc((char *)UDF_SB_LVID(sb) + sizeof(tag),
le16_to_cpu(UDF_SB_LVID(sb)->descTag.descCRCLength), 0));
UDF_SB_LVID(sb)->descTag.tagChecksum = 0;
for (i=0; i<16; i++)
if (i != 4)
UDF_SB_LVID(sb)->descTag.tagChecksum +=
((uint8_t *)&(UDF_SB_LVID(sb)->descTag))[i];
mark_buffer_dirty(UDF_SB_LVIDBH(sb));
}
}
/*
* udf_read_super
*
* PURPOSE
* Complete the specified super block.
*
* PRE-CONDITIONS
* sb Pointer to superblock to complete - never NULL.
* sb->s_dev Device to read suberblock from.
* options Pointer to mount options.
* silent Silent flag.
*
* HISTORY
* July 1, 1997 - Andrew E. Mileski
* Written, tested, and released.
*/
static int udf_fill_super(struct super_block *sb, void *options, int silent)
{
int i;
struct inode *inode=NULL;
struct udf_options uopt;
kernel_lb_addr rootdir, fileset;
struct udf_sb_info *sbi;
uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
uopt.uid = -1;
uopt.gid = -1;
uopt.umask = 0;
sbi = kmalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
if (!sbi)
return -ENOMEM;
sb->s_fs_info = sbi;
memset(UDF_SB(sb), 0x00, sizeof(struct udf_sb_info));
mutex_init(&sbi->s_alloc_mutex);
if (!udf_parse_options((char *)options, &uopt))
goto error_out;
if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
uopt.flags & (1 << UDF_FLAG_NLS_MAP))
{
udf_error(sb, "udf_read_super",
"utf8 cannot be combined with iocharset\n");
goto error_out;
}
#ifdef CONFIG_UDF_NLS
if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map)
{
uopt.nls_map = load_nls_default();
if (!uopt.nls_map)
uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
else
udf_debug("Using default NLS map\n");
}
#endif
if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
uopt.flags |= (1 << UDF_FLAG_UTF8);
fileset.logicalBlockNum = 0xFFFFFFFF;
fileset.partitionReferenceNum = 0xFFFF;
UDF_SB(sb)->s_flags = uopt.flags;
UDF_SB(sb)->s_uid = uopt.uid;
UDF_SB(sb)->s_gid = uopt.gid;
UDF_SB(sb)->s_umask = uopt.umask;
UDF_SB(sb)->s_nls_map = uopt.nls_map;
/* Set the block size for all transfers */
if (!udf_set_blocksize(sb, uopt.blocksize))
goto error_out;
if ( uopt.session == 0xFFFFFFFF )
UDF_SB_SESSION(sb) = udf_get_last_session(sb);
else
UDF_SB_SESSION(sb) = uopt.session;
udf_debug("Multi-session=%d\n", UDF_SB_SESSION(sb));
UDF_SB_LASTBLOCK(sb) = uopt.lastblock;
UDF_SB_ANCHOR(sb)[0] = UDF_SB_ANCHOR(sb)[1] = 0;
UDF_SB_ANCHOR(sb)[2] = uopt.anchor;
UDF_SB_ANCHOR(sb)[3] = 256;
if (udf_check_valid(sb, uopt.novrs, silent)) /* read volume recognition sequences */
{
printk("UDF-fs: No VRS found\n");
goto error_out;
}
udf_find_anchor(sb);
/* Fill in the rest of the superblock */
sb->s_op = &udf_sb_ops;
sb->dq_op = NULL;
sb->s_dirt = 0;
sb->s_magic = UDF_SUPER_MAGIC;
sb->s_time_gran = 1000;
if (udf_load_partition(sb, &fileset))
{
printk("UDF-fs: No partition found (1)\n");
goto error_out;
}
udf_debug("Lastblock=%d\n", UDF_SB_LASTBLOCK(sb));
if ( UDF_SB_LVIDBH(sb) )
{
uint16_t minUDFReadRev = le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFReadRev);
uint16_t minUDFWriteRev = le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFWriteRev);
/* uint16_t maxUDFWriteRev = le16_to_cpu(UDF_SB_LVIDIU(sb)->maxUDFWriteRev); */
if (minUDFReadRev > UDF_MAX_READ_VERSION)
{
printk("UDF-fs: minUDFReadRev=%x (max is %x)\n",
le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFReadRev),
UDF_MAX_READ_VERSION);
goto error_out;
}
else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
{
sb->s_flags |= MS_RDONLY;
}
UDF_SB_UDFREV(sb) = minUDFWriteRev;
if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
}
if ( !UDF_SB_NUMPARTS(sb) )
{
printk("UDF-fs: No partition found (2)\n");
goto error_out;
}
if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_READ_ONLY) {
printk("UDF-fs: Partition marked readonly; forcing readonly mount\n");
sb->s_flags |= MS_RDONLY;
}
if ( udf_find_fileset(sb, &fileset, &rootdir) )
{
printk("UDF-fs: No fileset found\n");
goto error_out;
}
if (!silent)
{
kernel_timestamp ts;
udf_time_to_stamp(&ts, UDF_SB_RECORDTIME(sb));
udf_info("UDF %s (%s) Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
UDFFS_VERSION, UDFFS_DATE,
UDF_SB_VOLIDENT(sb), ts.year, ts.month, ts.day, ts.hour, ts.minute,
ts.typeAndTimezone);
}
if (!(sb->s_flags & MS_RDONLY))
udf_open_lvid(sb);
/* Assign the root inode */
/* assign inodes by physical block number */
/* perhaps it's not extensible enough, but for now ... */
inode = udf_iget(sb, rootdir);
if (!inode)
{
printk("UDF-fs: Error in udf_iget, block=%d, partition=%d\n",
rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
goto error_out;
}
/* Allocate a dentry for the root inode */
sb->s_root = d_alloc_root(inode);
if (!sb->s_root)
{
printk("UDF-fs: Couldn't allocate root dentry\n");
iput(inode);
goto error_out;
}
sb->s_maxbytes = 1<<30;
return 0;
error_out:
if (UDF_SB_VAT(sb))
iput(UDF_SB_VAT(sb));
if (UDF_SB_NUMPARTS(sb))
{
if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_TABLE)
iput(UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_uspace.s_table);
if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_TABLE)
iput(UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_fspace.s_table);
if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_BITMAP)
UDF_SB_FREE_BITMAP(sb,UDF_SB_PARTITION(sb),s_uspace);
if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_BITMAP)
UDF_SB_FREE_BITMAP(sb,UDF_SB_PARTITION(sb),s_fspace);
if (UDF_SB_PARTTYPE(sb, UDF_SB_PARTITION(sb)) == UDF_SPARABLE_MAP15)
{
for (i=0; i<4; i++)
brelse(UDF_SB_TYPESPAR(sb, UDF_SB_PARTITION(sb)).s_spar_map[i]);
}
}
#ifdef CONFIG_UDF_NLS
if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
unload_nls(UDF_SB(sb)->s_nls_map);
#endif
if (!(sb->s_flags & MS_RDONLY))
udf_close_lvid(sb);
brelse(UDF_SB_LVIDBH(sb));
UDF_SB_FREE(sb);
kfree(sbi);
sb->s_fs_info = NULL;
return -EINVAL;
}
void udf_error(struct super_block *sb, const char *function,
const char *fmt, ...)
{
va_list args;
if (!(sb->s_flags & MS_RDONLY))
{
/* mark sb error */
sb->s_dirt = 1;
}
va_start(args, fmt);
vsnprintf(error_buf, sizeof(error_buf), fmt, args);
va_end(args);
printk (KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
sb->s_id, function, error_buf);
}
void udf_warning(struct super_block *sb, const char *function,
const char *fmt, ...)
{
va_list args;
va_start (args, fmt);
vsnprintf(error_buf, sizeof(error_buf), fmt, args);
va_end(args);
printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
sb->s_id, function, error_buf);
}
/*
* udf_put_super
*
* PURPOSE
* Prepare for destruction of the superblock.
*
* DESCRIPTION
* Called before the filesystem is unmounted.
*
* HISTORY
* July 1, 1997 - Andrew E. Mileski
* Written, tested, and released.
*/
static void
udf_put_super(struct super_block *sb)
{
int i;
if (UDF_SB_VAT(sb))
iput(UDF_SB_VAT(sb));
if (UDF_SB_NUMPARTS(sb))
{
if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_TABLE)
iput(UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_uspace.s_table);
if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_TABLE)
iput(UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_fspace.s_table);
if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_BITMAP)
UDF_SB_FREE_BITMAP(sb,UDF_SB_PARTITION(sb),s_uspace);
if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_BITMAP)
UDF_SB_FREE_BITMAP(sb,UDF_SB_PARTITION(sb),s_fspace);
if (UDF_SB_PARTTYPE(sb, UDF_SB_PARTITION(sb)) == UDF_SPARABLE_MAP15)
{
for (i=0; i<4; i++)
brelse(UDF_SB_TYPESPAR(sb, UDF_SB_PARTITION(sb)).s_spar_map[i]);
}
}
#ifdef CONFIG_UDF_NLS
if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
unload_nls(UDF_SB(sb)->s_nls_map);
#endif
if (!(sb->s_flags & MS_RDONLY))
udf_close_lvid(sb);
brelse(UDF_SB_LVIDBH(sb));
UDF_SB_FREE(sb);
kfree(sb->s_fs_info);
sb->s_fs_info = NULL;
}
/*
* udf_stat_fs
*
* PURPOSE
* Return info about the filesystem.
*
* DESCRIPTION
* Called by sys_statfs()
*
* HISTORY
* July 1, 1997 - Andrew E. Mileski
* Written, tested, and released.
*/
static int
udf_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
buf->f_type = UDF_SUPER_MAGIC;
buf->f_bsize = sb->s_blocksize;
buf->f_blocks = UDF_SB_PARTLEN(sb, UDF_SB_PARTITION(sb));
buf->f_bfree = udf_count_free(sb);
buf->f_bavail = buf->f_bfree;
buf->f_files = (UDF_SB_LVIDBH(sb) ?
(le32_to_cpu(UDF_SB_LVIDIU(sb)->numFiles) +
le32_to_cpu(UDF_SB_LVIDIU(sb)->numDirs)) : 0) + buf->f_bfree;
buf->f_ffree = buf->f_bfree;
/* __kernel_fsid_t f_fsid */
buf->f_namelen = UDF_NAME_LEN-2;
return 0;
}
static unsigned char udf_bitmap_lookup[16] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
};
static unsigned int
udf_count_free_bitmap(struct super_block *sb, struct udf_bitmap *bitmap)
{
struct buffer_head *bh = NULL;
unsigned int accum = 0;
int index;
int block = 0, newblock;
kernel_lb_addr loc;
uint32_t bytes;
uint8_t value;
uint8_t *ptr;
uint16_t ident;
struct spaceBitmapDesc *bm;
lock_kernel();
loc.logicalBlockNum = bitmap->s_extPosition;
loc.partitionReferenceNum = UDF_SB_PARTITION(sb);
bh = udf_read_ptagged(sb, loc, 0, &ident);
if (!bh)
{
printk(KERN_ERR "udf: udf_count_free failed\n");
goto out;
}
else if (ident != TAG_IDENT_SBD)
{
brelse(bh);
printk(KERN_ERR "udf: udf_count_free failed\n");
goto out;
}
bm = (struct spaceBitmapDesc *)bh->b_data;
bytes = le32_to_cpu(bm->numOfBytes);
index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
ptr = (uint8_t *)bh->b_data;
while ( bytes > 0 )
{
while ((bytes > 0) && (index < sb->s_blocksize))
{
value = ptr[index];
accum += udf_bitmap_lookup[ value & 0x0f ];
accum += udf_bitmap_lookup[ value >> 4 ];
index++;
bytes--;
}
if ( bytes )
{
brelse(bh);
newblock = udf_get_lb_pblock(sb, loc, ++block);
bh = udf_tread(sb, newblock);
if (!bh)
{
udf_debug("read failed\n");
goto out;
}
index = 0;
ptr = (uint8_t *)bh->b_data;
}
}
brelse(bh);
out:
unlock_kernel();
return accum;
}
static unsigned int
udf_count_free_table(struct super_block *sb, struct inode * table)
{
unsigned int accum = 0;
uint32_t elen;
kernel_lb_addr eloc;
int8_t etype;
struct extent_position epos;
lock_kernel();
epos.block = UDF_I_LOCATION(table);
epos.offset = sizeof(struct unallocSpaceEntry);
epos.bh = NULL;
while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
accum += (elen >> table->i_sb->s_blocksize_bits);
brelse(epos.bh);
unlock_kernel();
return accum;
}
static unsigned int
udf_count_free(struct super_block *sb)
{
unsigned int accum = 0;
if (UDF_SB_LVIDBH(sb))
{
if (le32_to_cpu(UDF_SB_LVID(sb)->numOfPartitions) > UDF_SB_PARTITION(sb))
{
accum = le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)]);
if (accum == 0xFFFFFFFF)
accum = 0;
}
}
if (accum)
return accum;
if (UDF_SB_PARTFLAGS(sb,UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_BITMAP)
{
accum += udf_count_free_bitmap(sb,
UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_uspace.s_bitmap);
}
if (UDF_SB_PARTFLAGS(sb,UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_BITMAP)
{
accum += udf_count_free_bitmap(sb,
UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_fspace.s_bitmap);
}
if (accum)
return accum;
if (UDF_SB_PARTFLAGS(sb,UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_TABLE)
{
accum += udf_count_free_table(sb,
UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_uspace.s_table);
}
if (UDF_SB_PARTFLAGS(sb,UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_TABLE)
{
accum += udf_count_free_table(sb,
UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_fspace.s_table);
}
return accum;
}