kernel-fxtec-pro1x/arch/ppc/syslib/ppc440spe_pcie.c
Roland Dreier b0f7b8bc57 [PATCH] ppc32: Add 440SPe support
Add support for the AMCC PowerPC 440SPe SoC, including PCI Express in root
port mode.

Signed-off-by: Roland Dreier <rolandd@cisco.com>
Cc: Matt Porter <mporter@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-07 07:53:26 -08:00

442 lines
12 KiB
C

/*
* Copyright (c) 2005 Cisco Systems. All rights reserved.
* Roland Dreier <rolandd@cisco.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <asm/reg.h>
#include <asm/io.h>
#include <asm/ibm44x.h>
#include "ppc440spe_pcie.h"
static int
pcie_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
int len, u32 *val)
{
struct pci_controller *hose = bus->sysdata;
if (PCI_SLOT(devfn) != 1)
return PCIBIOS_DEVICE_NOT_FOUND;
offset += devfn << 12;
/*
* Note: the caller has already checked that offset is
* suitably aligned and that len is 1, 2 or 4.
*/
switch (len) {
case 1:
*val = in_8(hose->cfg_data + offset);
break;
case 2:
*val = in_le16(hose->cfg_data + offset);
break;
default:
*val = in_le32(hose->cfg_data + offset);
break;
}
if (0) printk("%s: read %x(%d) @ %x\n", __func__, *val, len, offset);
return PCIBIOS_SUCCESSFUL;
}
static int
pcie_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
int len, u32 val)
{
struct pci_controller *hose = bus->sysdata;
if (PCI_SLOT(devfn) != 1)
return PCIBIOS_DEVICE_NOT_FOUND;
offset += devfn << 12;
switch (len) {
case 1:
out_8(hose->cfg_data + offset, val);
break;
case 2:
out_le16(hose->cfg_data + offset, val);
break;
default:
out_le32(hose->cfg_data + offset, val);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops pcie_pci_ops =
{
.read = pcie_read_config,
.write = pcie_write_config
};
enum {
PTYPE_ENDPOINT = 0x0,
PTYPE_LEGACY_ENDPOINT = 0x1,
PTYPE_ROOT_PORT = 0x4,
LNKW_X1 = 0x1,
LNKW_X4 = 0x4,
LNKW_X8 = 0x8
};
static void check_error(void)
{
u32 valPE0, valPE1, valPE2;
/* SDR0_PEGPLLLCT1 reset */
if (!(valPE0 = SDR_READ(PESDR0_PLLLCT1) & 0x01000000)) {
printk(KERN_INFO "PCIE: SDR0_PEGPLLLCT1 reset error 0x%8x\n", valPE0);
}
valPE0 = SDR_READ(PESDR0_RCSSET);
valPE1 = SDR_READ(PESDR1_RCSSET);
valPE2 = SDR_READ(PESDR2_RCSSET);
/* SDR0_PExRCSSET rstgu */
if ( !(valPE0 & 0x01000000) ||
!(valPE1 & 0x01000000) ||
!(valPE2 & 0x01000000)) {
printk(KERN_INFO "PCIE: SDR0_PExRCSSET rstgu error\n");
}
/* SDR0_PExRCSSET rstdl */
if ( !(valPE0 & 0x00010000) ||
!(valPE1 & 0x00010000) ||
!(valPE2 & 0x00010000)) {
printk(KERN_INFO "PCIE: SDR0_PExRCSSET rstdl error\n");
}
/* SDR0_PExRCSSET rstpyn */
if ( (valPE0 & 0x00001000) ||
(valPE1 & 0x00001000) ||
(valPE2 & 0x00001000)) {
printk(KERN_INFO "PCIE: SDR0_PExRCSSET rstpyn error\n");
}
/* SDR0_PExRCSSET hldplb */
if ( (valPE0 & 0x10000000) ||
(valPE1 & 0x10000000) ||
(valPE2 & 0x10000000)) {
printk(KERN_INFO "PCIE: SDR0_PExRCSSET hldplb error\n");
}
/* SDR0_PExRCSSET rdy */
if ( (valPE0 & 0x00100000) ||
(valPE1 & 0x00100000) ||
(valPE2 & 0x00100000)) {
printk(KERN_INFO "PCIE: SDR0_PExRCSSET rdy error\n");
}
/* SDR0_PExRCSSET shutdown */
if ( (valPE0 & 0x00000100) ||
(valPE1 & 0x00000100) ||
(valPE2 & 0x00000100)) {
printk(KERN_INFO "PCIE: SDR0_PExRCSSET shutdown error\n");
}
}
/*
* Initialize PCI Express core as described in User Manual section 27.12.1
*/
int ppc440spe_init_pcie(void)
{
/* Set PLL clock receiver to LVPECL */
SDR_WRITE(PESDR0_PLLLCT1, SDR_READ(PESDR0_PLLLCT1) | 1 << 28);
check_error();
printk(KERN_INFO "PCIE initialization OK\n");
if (!(SDR_READ(PESDR0_PLLLCT2) & 0x10000))
printk(KERN_INFO "PESDR_PLLCT2 resistance calibration failed (0x%08x)\n",
SDR_READ(PESDR0_PLLLCT2));
/* De-assert reset of PCIe PLL, wait for lock */
SDR_WRITE(PESDR0_PLLLCT1, SDR_READ(PESDR0_PLLLCT1) & ~(1 << 24));
udelay(3);
return 0;
}
int ppc440spe_init_pcie_rootport(int port)
{
static int core_init;
void __iomem *utl_base;
u32 val = 0;
int i;
if (!core_init) {
++core_init;
i = ppc440spe_init_pcie();
if (i)
return i;
}
/*
* Initialize various parts of the PCI Express core for our port:
*
* - Set as a root port and enable max width
* (PXIE0 -> X8, PCIE1 and PCIE2 -> X4).
* - Set up UTL configuration.
* - Increase SERDES drive strength to levels suggested by AMCC.
* - De-assert RSTPYN, RSTDL and RSTGU.
*/
switch (port) {
case 0:
SDR_WRITE(PESDR0_DLPSET, PTYPE_ROOT_PORT << 20 | LNKW_X8 << 12);
SDR_WRITE(PESDR0_UTLSET1, 0x21222222);
SDR_WRITE(PESDR0_UTLSET2, 0x11000000);
SDR_WRITE(PESDR0_HSSL0SET1, 0x35000000);
SDR_WRITE(PESDR0_HSSL1SET1, 0x35000000);
SDR_WRITE(PESDR0_HSSL2SET1, 0x35000000);
SDR_WRITE(PESDR0_HSSL3SET1, 0x35000000);
SDR_WRITE(PESDR0_HSSL4SET1, 0x35000000);
SDR_WRITE(PESDR0_HSSL5SET1, 0x35000000);
SDR_WRITE(PESDR0_HSSL6SET1, 0x35000000);
SDR_WRITE(PESDR0_HSSL7SET1, 0x35000000);
SDR_WRITE(PESDR0_RCSSET,
(SDR_READ(PESDR0_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12);
break;
case 1:
SDR_WRITE(PESDR1_DLPSET, PTYPE_ROOT_PORT << 20 | LNKW_X4 << 12);
SDR_WRITE(PESDR1_UTLSET1, 0x21222222);
SDR_WRITE(PESDR1_UTLSET2, 0x11000000);
SDR_WRITE(PESDR1_HSSL0SET1, 0x35000000);
SDR_WRITE(PESDR1_HSSL1SET1, 0x35000000);
SDR_WRITE(PESDR1_HSSL2SET1, 0x35000000);
SDR_WRITE(PESDR1_HSSL3SET1, 0x35000000);
SDR_WRITE(PESDR1_RCSSET,
(SDR_READ(PESDR1_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12);
break;
case 2:
SDR_WRITE(PESDR2_DLPSET, PTYPE_ROOT_PORT << 20 | LNKW_X4 << 12);
SDR_WRITE(PESDR2_UTLSET1, 0x21222222);
SDR_WRITE(PESDR2_UTLSET2, 0x11000000);
SDR_WRITE(PESDR2_HSSL0SET1, 0x35000000);
SDR_WRITE(PESDR2_HSSL1SET1, 0x35000000);
SDR_WRITE(PESDR2_HSSL2SET1, 0x35000000);
SDR_WRITE(PESDR2_HSSL3SET1, 0x35000000);
SDR_WRITE(PESDR2_RCSSET,
(SDR_READ(PESDR2_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12);
break;
}
mdelay(1000);
switch (port) {
case 0: val = SDR_READ(PESDR0_RCSSTS); break;
case 1: val = SDR_READ(PESDR1_RCSSTS); break;
case 2: val = SDR_READ(PESDR2_RCSSTS); break;
}
if (!(val & (1 << 20)))
printk(KERN_INFO "PCIE%d: PGRST inactive\n", port);
else
printk(KERN_WARNING "PGRST for PCIE%d failed %08x\n", port, val);
switch (port) {
case 0: printk(KERN_INFO "PCIE0: LOOP %08x\n", SDR_READ(PESDR0_LOOP)); break;
case 1: printk(KERN_INFO "PCIE1: LOOP %08x\n", SDR_READ(PESDR1_LOOP)); break;
case 2: printk(KERN_INFO "PCIE2: LOOP %08x\n", SDR_READ(PESDR2_LOOP)); break;
}
/*
* Map UTL registers at 0xc_1000_0n00
*/
switch (port) {
case 0:
mtdcr(DCRN_PEGPL_REGBAH(PCIE0), 0x0000000c);
mtdcr(DCRN_PEGPL_REGBAL(PCIE0), 0x10000000);
mtdcr(DCRN_PEGPL_REGMSK(PCIE0), 0x00007001);
mtdcr(DCRN_PEGPL_SPECIAL(PCIE0), 0x68782800);
break;
case 1:
mtdcr(DCRN_PEGPL_REGBAH(PCIE1), 0x0000000c);
mtdcr(DCRN_PEGPL_REGBAL(PCIE1), 0x10001000);
mtdcr(DCRN_PEGPL_REGMSK(PCIE1), 0x00007001);
mtdcr(DCRN_PEGPL_SPECIAL(PCIE1), 0x68782800);
break;
case 2:
mtdcr(DCRN_PEGPL_REGBAH(PCIE2), 0x0000000c);
mtdcr(DCRN_PEGPL_REGBAL(PCIE2), 0x10002000);
mtdcr(DCRN_PEGPL_REGMSK(PCIE2), 0x00007001);
mtdcr(DCRN_PEGPL_SPECIAL(PCIE2), 0x68782800);
}
utl_base = ioremap64(0xc10000000ull + 0x1000 * port, 0x100);
/*
* Set buffer allocations and then assert VRB and TXE.
*/
out_be32(utl_base + PEUTL_OUTTR, 0x08000000);
out_be32(utl_base + PEUTL_INTR, 0x02000000);
out_be32(utl_base + PEUTL_OPDBSZ, 0x10000000);
out_be32(utl_base + PEUTL_PBBSZ, 0x53000000);
out_be32(utl_base + PEUTL_IPHBSZ, 0x08000000);
out_be32(utl_base + PEUTL_IPDBSZ, 0x10000000);
out_be32(utl_base + PEUTL_RCIRQEN, 0x00f00000);
out_be32(utl_base + PEUTL_PCTL, 0x80800066);
iounmap(utl_base);
/*
* We map PCI Express configuration access into the 512MB regions
* PCIE0: 0xc_4000_0000
* PCIE1: 0xc_8000_0000
* PCIE2: 0xc_c000_0000
*/
switch (port) {
case 0:
mtdcr(DCRN_PEGPL_CFGBAH(PCIE0), 0x0000000c);
mtdcr(DCRN_PEGPL_CFGBAL(PCIE0), 0x40000000);
mtdcr(DCRN_PEGPL_CFGMSK(PCIE0), 0xe0000001); /* 512MB region, valid */
break;
case 1:
mtdcr(DCRN_PEGPL_CFGBAH(PCIE1), 0x0000000c);
mtdcr(DCRN_PEGPL_CFGBAL(PCIE1), 0x80000000);
mtdcr(DCRN_PEGPL_CFGMSK(PCIE1), 0xe0000001); /* 512MB region, valid */
break;
case 2:
mtdcr(DCRN_PEGPL_CFGBAH(PCIE2), 0x0000000c);
mtdcr(DCRN_PEGPL_CFGBAL(PCIE2), 0xc0000000);
mtdcr(DCRN_PEGPL_CFGMSK(PCIE2), 0xe0000001); /* 512MB region, valid */
break;
}
/*
* Check for VC0 active and assert RDY.
*/
switch (port) {
case 0:
if (!(SDR_READ(PESDR0_RCSSTS) & (1 << 16)))
printk(KERN_WARNING "PCIE0: VC0 not active\n");
SDR_WRITE(PESDR0_RCSSET, SDR_READ(PESDR0_RCSSET) | 1 << 20);
break;
case 1:
if (!(SDR_READ(PESDR1_RCSSTS) & (1 << 16)))
printk(KERN_WARNING "PCIE0: VC0 not active\n");
SDR_WRITE(PESDR1_RCSSET, SDR_READ(PESDR1_RCSSET) | 1 << 20);
break;
case 2:
if (!(SDR_READ(PESDR2_RCSSTS) & (1 << 16)))
printk(KERN_WARNING "PCIE0: VC0 not active\n");
SDR_WRITE(PESDR2_RCSSET, SDR_READ(PESDR2_RCSSET) | 1 << 20);
break;
}
#if 0
/* Dump all config regs */
for (i = 0x300; i <= 0x320; ++i)
printk("[%04x] 0x%08x\n", i, SDR_READ(i));
for (i = 0x340; i <= 0x353; ++i)
printk("[%04x] 0x%08x\n", i, SDR_READ(i));
for (i = 0x370; i <= 0x383; ++i)
printk("[%04x] 0x%08x\n", i, SDR_READ(i));
for (i = 0x3a0; i <= 0x3a2; ++i)
printk("[%04x] 0x%08x\n", i, SDR_READ(i));
for (i = 0x3c0; i <= 0x3c3; ++i)
printk("[%04x] 0x%08x\n", i, SDR_READ(i));
#endif
mdelay(100);
return 0;
}
void ppc440spe_setup_pcie(struct pci_controller *hose, int port)
{
void __iomem *mbase;
/*
* Map 16MB, which is enough for 4 bits of bus #
*/
hose->cfg_data = ioremap64(0xc40000000ull + port * 0x40000000,
1 << 24);
hose->ops = &pcie_pci_ops;
/*
* Set bus numbers on our root port
*/
mbase = ioremap64(0xc50000000ull + port * 0x40000000, 4096);
out_8(mbase + PCI_PRIMARY_BUS, 0);
out_8(mbase + PCI_SECONDARY_BUS, 0);
/*
* Set up outbound translation to hose->mem_space from PLB
* addresses at an offset of 0xd_0000_0000. We set the low
* bits of the mask to 11 to turn off splitting into 8
* subregions and to enable the outbound translation.
*/
out_le32(mbase + PECFG_POM0LAH, 0);
out_le32(mbase + PECFG_POM0LAL, hose->mem_space.start);
switch (port) {
case 0:
mtdcr(DCRN_PEGPL_OMR1BAH(PCIE0), 0x0000000d);
mtdcr(DCRN_PEGPL_OMR1BAL(PCIE0), hose->mem_space.start);
mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE0), 0x7fffffff);
mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE0),
~(hose->mem_space.end - hose->mem_space.start) | 3);
break;
case 1:
mtdcr(DCRN_PEGPL_OMR1BAH(PCIE1), 0x0000000d);
mtdcr(DCRN_PEGPL_OMR1BAL(PCIE1), hose->mem_space.start);
mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE1), 0x7fffffff);
mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE1),
~(hose->mem_space.end - hose->mem_space.start) | 3);
break;
case 2:
mtdcr(DCRN_PEGPL_OMR1BAH(PCIE2), 0x0000000d);
mtdcr(DCRN_PEGPL_OMR1BAL(PCIE2), hose->mem_space.start);
mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE2), 0x7fffffff);
mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE2),
~(hose->mem_space.end - hose->mem_space.start) | 3);
break;
}
/* Set up 16GB inbound memory window at 0 */
out_le32(mbase + PCI_BASE_ADDRESS_0, 0);
out_le32(mbase + PCI_BASE_ADDRESS_1, 0);
out_le32(mbase + PECFG_BAR0HMPA, 0x7fffffc);
out_le32(mbase + PECFG_BAR0LMPA, 0);
out_le32(mbase + PECFG_PIM0LAL, 0);
out_le32(mbase + PECFG_PIM0LAH, 0);
out_le32(mbase + PECFG_PIMEN, 0x1);
/* Enable I/O, Mem, and Busmaster cycles */
out_le16(mbase + PCI_COMMAND,
in_le16(mbase + PCI_COMMAND) |
PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
iounmap(mbase);
}