kernel-fxtec-pro1x/kernel/kprobes.c
Ananth N Mavinakayanahalli 278ff95370 [PATCH] Kprobes: Fix deadlock in function-return probes
When two function-return probes are inserted on kfree()[1] and the second
on say, sys_link()[2], and later [2] is unregistered, we have a deadlock as
kfree is called with the kretprobe_lock held and the function-return probe
on kfree will also try to grab the same lock.

However, we can move the kfree() during unregistration to outside the
spinlock as we are sure that no instances from the free list will be used
after synchronized_sched() returns during the unregistration process.
Thanks to Masami Hiramatsu for spotting this.

Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-03 08:32:00 -08:00

669 lines
17 KiB
C

/*
* Kernel Probes (KProbes)
* kernel/kprobes.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) IBM Corporation, 2002, 2004
*
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
* Probes initial implementation (includes suggestions from
* Rusty Russell).
* 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
* hlists and exceptions notifier as suggested by Andi Kleen.
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
* interface to access function arguments.
* 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
* exceptions notifier to be first on the priority list.
* 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
* <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
* <prasanna@in.ibm.com> added function-return probes.
*/
#include <linux/kprobes.h>
#include <linux/hash.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/moduleloader.h>
#include <asm-generic/sections.h>
#include <asm/cacheflush.h>
#include <asm/errno.h>
#include <asm/kdebug.h>
#define KPROBE_HASH_BITS 6
#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
DECLARE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
DEFINE_SPINLOCK(kretprobe_lock); /* Protects kretprobe_inst_table */
static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
/*
* kprobe->ainsn.insn points to the copy of the instruction to be
* single-stepped. x86_64, POWER4 and above have no-exec support and
* stepping on the instruction on a vmalloced/kmalloced/data page
* is a recipe for disaster
*/
#define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
struct kprobe_insn_page {
struct hlist_node hlist;
kprobe_opcode_t *insns; /* Page of instruction slots */
char slot_used[INSNS_PER_PAGE];
int nused;
};
static struct hlist_head kprobe_insn_pages;
/**
* get_insn_slot() - Find a slot on an executable page for an instruction.
* We allocate an executable page if there's no room on existing ones.
*/
kprobe_opcode_t __kprobes *get_insn_slot(void)
{
struct kprobe_insn_page *kip;
struct hlist_node *pos;
hlist_for_each(pos, &kprobe_insn_pages) {
kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
if (kip->nused < INSNS_PER_PAGE) {
int i;
for (i = 0; i < INSNS_PER_PAGE; i++) {
if (!kip->slot_used[i]) {
kip->slot_used[i] = 1;
kip->nused++;
return kip->insns + (i * MAX_INSN_SIZE);
}
}
/* Surprise! No unused slots. Fix kip->nused. */
kip->nused = INSNS_PER_PAGE;
}
}
/* All out of space. Need to allocate a new page. Use slot 0.*/
kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
if (!kip) {
return NULL;
}
/*
* Use module_alloc so this page is within +/- 2GB of where the
* kernel image and loaded module images reside. This is required
* so x86_64 can correctly handle the %rip-relative fixups.
*/
kip->insns = module_alloc(PAGE_SIZE);
if (!kip->insns) {
kfree(kip);
return NULL;
}
INIT_HLIST_NODE(&kip->hlist);
hlist_add_head(&kip->hlist, &kprobe_insn_pages);
memset(kip->slot_used, 0, INSNS_PER_PAGE);
kip->slot_used[0] = 1;
kip->nused = 1;
return kip->insns;
}
void __kprobes free_insn_slot(kprobe_opcode_t *slot)
{
struct kprobe_insn_page *kip;
struct hlist_node *pos;
hlist_for_each(pos, &kprobe_insn_pages) {
kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
if (kip->insns <= slot &&
slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
int i = (slot - kip->insns) / MAX_INSN_SIZE;
kip->slot_used[i] = 0;
kip->nused--;
if (kip->nused == 0) {
/*
* Page is no longer in use. Free it unless
* it's the last one. We keep the last one
* so as not to have to set it up again the
* next time somebody inserts a probe.
*/
hlist_del(&kip->hlist);
if (hlist_empty(&kprobe_insn_pages)) {
INIT_HLIST_NODE(&kip->hlist);
hlist_add_head(&kip->hlist,
&kprobe_insn_pages);
} else {
module_free(NULL, kip->insns);
kfree(kip);
}
}
return;
}
}
}
#endif
/* We have preemption disabled.. so it is safe to use __ versions */
static inline void set_kprobe_instance(struct kprobe *kp)
{
__get_cpu_var(kprobe_instance) = kp;
}
static inline void reset_kprobe_instance(void)
{
__get_cpu_var(kprobe_instance) = NULL;
}
/*
* This routine is called either:
* - under the kprobe_mutex - during kprobe_[un]register()
* OR
* - with preemption disabled - from arch/xxx/kernel/kprobes.c
*/
struct kprobe __kprobes *get_kprobe(void *addr)
{
struct hlist_head *head;
struct hlist_node *node;
struct kprobe *p;
head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
hlist_for_each_entry_rcu(p, node, head, hlist) {
if (p->addr == addr)
return p;
}
return NULL;
}
/*
* Aggregate handlers for multiple kprobes support - these handlers
* take care of invoking the individual kprobe handlers on p->list
*/
static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
struct kprobe *kp;
list_for_each_entry_rcu(kp, &p->list, list) {
if (kp->pre_handler) {
set_kprobe_instance(kp);
if (kp->pre_handler(kp, regs))
return 1;
}
reset_kprobe_instance();
}
return 0;
}
static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
unsigned long flags)
{
struct kprobe *kp;
list_for_each_entry_rcu(kp, &p->list, list) {
if (kp->post_handler) {
set_kprobe_instance(kp);
kp->post_handler(kp, regs, flags);
reset_kprobe_instance();
}
}
return;
}
static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
int trapnr)
{
struct kprobe *cur = __get_cpu_var(kprobe_instance);
/*
* if we faulted "during" the execution of a user specified
* probe handler, invoke just that probe's fault handler
*/
if (cur && cur->fault_handler) {
if (cur->fault_handler(cur, regs, trapnr))
return 1;
}
return 0;
}
static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
{
struct kprobe *cur = __get_cpu_var(kprobe_instance);
int ret = 0;
if (cur && cur->break_handler) {
if (cur->break_handler(cur, regs))
ret = 1;
}
reset_kprobe_instance();
return ret;
}
/* Walks the list and increments nmissed count for multiprobe case */
void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
{
struct kprobe *kp;
if (p->pre_handler != aggr_pre_handler) {
p->nmissed++;
} else {
list_for_each_entry_rcu(kp, &p->list, list)
kp->nmissed++;
}
return;
}
/* Called with kretprobe_lock held */
struct kretprobe_instance __kprobes *get_free_rp_inst(struct kretprobe *rp)
{
struct hlist_node *node;
struct kretprobe_instance *ri;
hlist_for_each_entry(ri, node, &rp->free_instances, uflist)
return ri;
return NULL;
}
/* Called with kretprobe_lock held */
static struct kretprobe_instance __kprobes *get_used_rp_inst(struct kretprobe
*rp)
{
struct hlist_node *node;
struct kretprobe_instance *ri;
hlist_for_each_entry(ri, node, &rp->used_instances, uflist)
return ri;
return NULL;
}
/* Called with kretprobe_lock held */
void __kprobes add_rp_inst(struct kretprobe_instance *ri)
{
/*
* Remove rp inst off the free list -
* Add it back when probed function returns
*/
hlist_del(&ri->uflist);
/* Add rp inst onto table */
INIT_HLIST_NODE(&ri->hlist);
hlist_add_head(&ri->hlist,
&kretprobe_inst_table[hash_ptr(ri->task, KPROBE_HASH_BITS)]);
/* Also add this rp inst to the used list. */
INIT_HLIST_NODE(&ri->uflist);
hlist_add_head(&ri->uflist, &ri->rp->used_instances);
}
/* Called with kretprobe_lock held */
void __kprobes recycle_rp_inst(struct kretprobe_instance *ri)
{
/* remove rp inst off the rprobe_inst_table */
hlist_del(&ri->hlist);
if (ri->rp) {
/* remove rp inst off the used list */
hlist_del(&ri->uflist);
/* put rp inst back onto the free list */
INIT_HLIST_NODE(&ri->uflist);
hlist_add_head(&ri->uflist, &ri->rp->free_instances);
} else
/* Unregistering */
kfree(ri);
}
struct hlist_head __kprobes *kretprobe_inst_table_head(struct task_struct *tsk)
{
return &kretprobe_inst_table[hash_ptr(tsk, KPROBE_HASH_BITS)];
}
/*
* This function is called from exit_thread or flush_thread when task tk's
* stack is being recycled so that we can recycle any function-return probe
* instances associated with this task. These left over instances represent
* probed functions that have been called but will never return.
*/
void __kprobes kprobe_flush_task(struct task_struct *tk)
{
struct kretprobe_instance *ri;
struct hlist_head *head;
struct hlist_node *node, *tmp;
unsigned long flags = 0;
spin_lock_irqsave(&kretprobe_lock, flags);
head = kretprobe_inst_table_head(current);
hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
if (ri->task == tk)
recycle_rp_inst(ri);
}
spin_unlock_irqrestore(&kretprobe_lock, flags);
}
static inline void free_rp_inst(struct kretprobe *rp)
{
struct kretprobe_instance *ri;
while ((ri = get_free_rp_inst(rp)) != NULL) {
hlist_del(&ri->uflist);
kfree(ri);
}
}
/*
* Keep all fields in the kprobe consistent
*/
static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
{
memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
}
/*
* Add the new probe to old_p->list. Fail if this is the
* second jprobe at the address - two jprobes can't coexist
*/
static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
{
struct kprobe *kp;
if (p->break_handler) {
list_for_each_entry_rcu(kp, &old_p->list, list) {
if (kp->break_handler)
return -EEXIST;
}
list_add_tail_rcu(&p->list, &old_p->list);
} else
list_add_rcu(&p->list, &old_p->list);
return 0;
}
/*
* Fill in the required fields of the "manager kprobe". Replace the
* earlier kprobe in the hlist with the manager kprobe
*/
static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
{
copy_kprobe(p, ap);
ap->addr = p->addr;
ap->pre_handler = aggr_pre_handler;
ap->post_handler = aggr_post_handler;
ap->fault_handler = aggr_fault_handler;
ap->break_handler = aggr_break_handler;
INIT_LIST_HEAD(&ap->list);
list_add_rcu(&p->list, &ap->list);
hlist_replace_rcu(&p->hlist, &ap->hlist);
}
/*
* This is the second or subsequent kprobe at the address - handle
* the intricacies
*/
static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
struct kprobe *p)
{
int ret = 0;
struct kprobe *ap;
if (old_p->pre_handler == aggr_pre_handler) {
copy_kprobe(old_p, p);
ret = add_new_kprobe(old_p, p);
} else {
ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
if (!ap)
return -ENOMEM;
add_aggr_kprobe(ap, old_p);
copy_kprobe(ap, p);
ret = add_new_kprobe(ap, p);
}
return ret;
}
static int __kprobes in_kprobes_functions(unsigned long addr)
{
if (addr >= (unsigned long)__kprobes_text_start
&& addr < (unsigned long)__kprobes_text_end)
return -EINVAL;
return 0;
}
static int __kprobes __register_kprobe(struct kprobe *p,
unsigned long called_from)
{
int ret = 0;
struct kprobe *old_p;
struct module *probed_mod;
if ((!kernel_text_address((unsigned long) p->addr)) ||
in_kprobes_functions((unsigned long) p->addr))
return -EINVAL;
p->mod_refcounted = 0;
/* Check are we probing a module */
if ((probed_mod = module_text_address((unsigned long) p->addr))) {
struct module *calling_mod = module_text_address(called_from);
/* We must allow modules to probe themself and
* in this case avoid incrementing the module refcount,
* so as to allow unloading of self probing modules.
*/
if (calling_mod && (calling_mod != probed_mod)) {
if (unlikely(!try_module_get(probed_mod)))
return -EINVAL;
p->mod_refcounted = 1;
} else
probed_mod = NULL;
}
p->nmissed = 0;
down(&kprobe_mutex);
old_p = get_kprobe(p->addr);
if (old_p) {
ret = register_aggr_kprobe(old_p, p);
goto out;
}
if ((ret = arch_prepare_kprobe(p)) != 0)
goto out;
INIT_HLIST_NODE(&p->hlist);
hlist_add_head_rcu(&p->hlist,
&kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
arch_arm_kprobe(p);
out:
up(&kprobe_mutex);
if (ret && probed_mod)
module_put(probed_mod);
return ret;
}
int __kprobes register_kprobe(struct kprobe *p)
{
return __register_kprobe(p,
(unsigned long)__builtin_return_address(0));
}
void __kprobes unregister_kprobe(struct kprobe *p)
{
struct module *mod;
struct kprobe *old_p, *list_p;
int cleanup_p;
down(&kprobe_mutex);
old_p = get_kprobe(p->addr);
if (unlikely(!old_p)) {
up(&kprobe_mutex);
return;
}
if (p != old_p) {
list_for_each_entry_rcu(list_p, &old_p->list, list)
if (list_p == p)
/* kprobe p is a valid probe */
goto valid_p;
up(&kprobe_mutex);
return;
}
valid_p:
if ((old_p == p) || ((old_p->pre_handler == aggr_pre_handler) &&
(p->list.next == &old_p->list) &&
(p->list.prev == &old_p->list))) {
/* Only probe on the hash list */
arch_disarm_kprobe(p);
hlist_del_rcu(&old_p->hlist);
cleanup_p = 1;
} else {
list_del_rcu(&p->list);
cleanup_p = 0;
}
up(&kprobe_mutex);
synchronize_sched();
if (p->mod_refcounted &&
(mod = module_text_address((unsigned long)p->addr)))
module_put(mod);
if (cleanup_p) {
if (p != old_p) {
list_del_rcu(&p->list);
kfree(old_p);
}
arch_remove_kprobe(p);
}
}
static struct notifier_block kprobe_exceptions_nb = {
.notifier_call = kprobe_exceptions_notify,
.priority = 0x7fffffff /* we need to notified first */
};
int __kprobes register_jprobe(struct jprobe *jp)
{
/* Todo: Verify probepoint is a function entry point */
jp->kp.pre_handler = setjmp_pre_handler;
jp->kp.break_handler = longjmp_break_handler;
return __register_kprobe(&jp->kp,
(unsigned long)__builtin_return_address(0));
}
void __kprobes unregister_jprobe(struct jprobe *jp)
{
unregister_kprobe(&jp->kp);
}
#ifdef ARCH_SUPPORTS_KRETPROBES
/*
* This kprobe pre_handler is registered with every kretprobe. When probe
* hits it will set up the return probe.
*/
static int __kprobes pre_handler_kretprobe(struct kprobe *p,
struct pt_regs *regs)
{
struct kretprobe *rp = container_of(p, struct kretprobe, kp);
unsigned long flags = 0;
/*TODO: consider to only swap the RA after the last pre_handler fired */
spin_lock_irqsave(&kretprobe_lock, flags);
arch_prepare_kretprobe(rp, regs);
spin_unlock_irqrestore(&kretprobe_lock, flags);
return 0;
}
int __kprobes register_kretprobe(struct kretprobe *rp)
{
int ret = 0;
struct kretprobe_instance *inst;
int i;
rp->kp.pre_handler = pre_handler_kretprobe;
/* Pre-allocate memory for max kretprobe instances */
if (rp->maxactive <= 0) {
#ifdef CONFIG_PREEMPT
rp->maxactive = max(10, 2 * NR_CPUS);
#else
rp->maxactive = NR_CPUS;
#endif
}
INIT_HLIST_HEAD(&rp->used_instances);
INIT_HLIST_HEAD(&rp->free_instances);
for (i = 0; i < rp->maxactive; i++) {
inst = kmalloc(sizeof(struct kretprobe_instance), GFP_KERNEL);
if (inst == NULL) {
free_rp_inst(rp);
return -ENOMEM;
}
INIT_HLIST_NODE(&inst->uflist);
hlist_add_head(&inst->uflist, &rp->free_instances);
}
rp->nmissed = 0;
/* Establish function entry probe point */
if ((ret = __register_kprobe(&rp->kp,
(unsigned long)__builtin_return_address(0))) != 0)
free_rp_inst(rp);
return ret;
}
#else /* ARCH_SUPPORTS_KRETPROBES */
int __kprobes register_kretprobe(struct kretprobe *rp)
{
return -ENOSYS;
}
#endif /* ARCH_SUPPORTS_KRETPROBES */
void __kprobes unregister_kretprobe(struct kretprobe *rp)
{
unsigned long flags;
struct kretprobe_instance *ri;
unregister_kprobe(&rp->kp);
/* No race here */
spin_lock_irqsave(&kretprobe_lock, flags);
while ((ri = get_used_rp_inst(rp)) != NULL) {
ri->rp = NULL;
hlist_del(&ri->uflist);
}
spin_unlock_irqrestore(&kretprobe_lock, flags);
free_rp_inst(rp);
}
static int __init init_kprobes(void)
{
int i, err = 0;
/* FIXME allocate the probe table, currently defined statically */
/* initialize all list heads */
for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
INIT_HLIST_HEAD(&kprobe_table[i]);
INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
}
err = arch_init_kprobes();
if (!err)
err = register_die_notifier(&kprobe_exceptions_nb);
return err;
}
__initcall(init_kprobes);
EXPORT_SYMBOL_GPL(register_kprobe);
EXPORT_SYMBOL_GPL(unregister_kprobe);
EXPORT_SYMBOL_GPL(register_jprobe);
EXPORT_SYMBOL_GPL(unregister_jprobe);
EXPORT_SYMBOL_GPL(jprobe_return);
EXPORT_SYMBOL_GPL(register_kretprobe);
EXPORT_SYMBOL_GPL(unregister_kretprobe);