kernel-fxtec-pro1x/arch/x86/Kconfig
Kyungsik Lee f9b493ac9b arm: add support for LZ4-compressed kernel
Integrates the LZ4 decompression code to the arm pre-boot code.

Signed-off-by: Kyungsik Lee <kyungsik.lee@lge.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Florian Fainelli <florian@openwrt.org>
Cc: Yann Collet <yann.collet.73@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 10:33:30 -07:00

2363 lines
74 KiB
Text

# Select 32 or 64 bit
config 64BIT
bool "64-bit kernel" if ARCH = "x86"
default ARCH != "i386"
---help---
Say yes to build a 64-bit kernel - formerly known as x86_64
Say no to build a 32-bit kernel - formerly known as i386
config X86_32
def_bool y
depends on !64BIT
select CLKSRC_I8253
select HAVE_UID16
config X86_64
def_bool y
depends on 64BIT
select X86_DEV_DMA_OPS
### Arch settings
config X86
def_bool y
select ARCH_HAS_DEBUG_STRICT_USER_COPY_CHECKS
select HAVE_AOUT if X86_32
select HAVE_UNSTABLE_SCHED_CLOCK
select ARCH_SUPPORTS_NUMA_BALANCING
select ARCH_WANTS_PROT_NUMA_PROT_NONE
select HAVE_IDE
select HAVE_OPROFILE
select HAVE_PCSPKR_PLATFORM
select HAVE_PERF_EVENTS
select HAVE_IOREMAP_PROT
select HAVE_KPROBES
select HAVE_MEMBLOCK
select HAVE_MEMBLOCK_NODE_MAP
select ARCH_DISCARD_MEMBLOCK
select ARCH_WANT_OPTIONAL_GPIOLIB
select ARCH_WANT_FRAME_POINTERS
select HAVE_DMA_ATTRS
select HAVE_DMA_CONTIGUOUS if !SWIOTLB
select HAVE_KRETPROBES
select HAVE_OPTPROBES
select HAVE_KPROBES_ON_FTRACE
select HAVE_FTRACE_MCOUNT_RECORD
select HAVE_FENTRY if X86_64
select HAVE_C_RECORDMCOUNT
select HAVE_DYNAMIC_FTRACE
select HAVE_DYNAMIC_FTRACE_WITH_REGS
select HAVE_FUNCTION_TRACER
select HAVE_FUNCTION_GRAPH_TRACER
select HAVE_FUNCTION_GRAPH_FP_TEST
select HAVE_FUNCTION_TRACE_MCOUNT_TEST
select HAVE_SYSCALL_TRACEPOINTS
select SYSCTL_EXCEPTION_TRACE
select HAVE_KVM
select HAVE_ARCH_KGDB
select HAVE_ARCH_TRACEHOOK
select HAVE_GENERIC_DMA_COHERENT if X86_32
select HAVE_EFFICIENT_UNALIGNED_ACCESS
select USER_STACKTRACE_SUPPORT
select HAVE_REGS_AND_STACK_ACCESS_API
select HAVE_DMA_API_DEBUG
select HAVE_KERNEL_GZIP
select HAVE_KERNEL_BZIP2
select HAVE_KERNEL_LZMA
select HAVE_KERNEL_XZ
select HAVE_KERNEL_LZO
select HAVE_KERNEL_LZ4
select HAVE_HW_BREAKPOINT
select HAVE_MIXED_BREAKPOINTS_REGS
select PERF_EVENTS
select HAVE_PERF_EVENTS_NMI
select HAVE_PERF_REGS
select HAVE_PERF_USER_STACK_DUMP
select HAVE_DEBUG_KMEMLEAK
select ANON_INODES
select HAVE_ALIGNED_STRUCT_PAGE if SLUB
select HAVE_CMPXCHG_LOCAL
select HAVE_CMPXCHG_DOUBLE
select HAVE_ARCH_KMEMCHECK
select HAVE_USER_RETURN_NOTIFIER
select ARCH_BINFMT_ELF_RANDOMIZE_PIE
select HAVE_ARCH_JUMP_LABEL
select HAVE_TEXT_POKE_SMP
select HAVE_GENERIC_HARDIRQS
select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
select SPARSE_IRQ
select GENERIC_FIND_FIRST_BIT
select GENERIC_IRQ_PROBE
select GENERIC_PENDING_IRQ if SMP
select GENERIC_IRQ_SHOW
select GENERIC_CLOCKEVENTS_MIN_ADJUST
select IRQ_FORCED_THREADING
select USE_GENERIC_SMP_HELPERS if SMP
select HAVE_BPF_JIT if X86_64
select HAVE_ARCH_TRANSPARENT_HUGEPAGE
select CLKEVT_I8253
select ARCH_HAVE_NMI_SAFE_CMPXCHG
select GENERIC_IOMAP
select DCACHE_WORD_ACCESS
select GENERIC_SMP_IDLE_THREAD
select ARCH_WANT_IPC_PARSE_VERSION if X86_32
select HAVE_ARCH_SECCOMP_FILTER
select BUILDTIME_EXTABLE_SORT
select GENERIC_CMOS_UPDATE
select HAVE_ARCH_SOFT_DIRTY
select CLOCKSOURCE_WATCHDOG
select GENERIC_CLOCKEVENTS
select ARCH_CLOCKSOURCE_DATA if X86_64
select GENERIC_CLOCKEVENTS_BROADCAST if X86_64 || (X86_32 && X86_LOCAL_APIC)
select GENERIC_TIME_VSYSCALL if X86_64
select KTIME_SCALAR if X86_32
select GENERIC_STRNCPY_FROM_USER
select GENERIC_STRNLEN_USER
select HAVE_CONTEXT_TRACKING if X86_64
select HAVE_IRQ_TIME_ACCOUNTING
select VIRT_TO_BUS
select MODULES_USE_ELF_REL if X86_32
select MODULES_USE_ELF_RELA if X86_64
select CLONE_BACKWARDS if X86_32
select ARCH_USE_BUILTIN_BSWAP
select OLD_SIGSUSPEND3 if X86_32 || IA32_EMULATION
select OLD_SIGACTION if X86_32
select COMPAT_OLD_SIGACTION if IA32_EMULATION
select RTC_LIB
select HAVE_DEBUG_STACKOVERFLOW
config INSTRUCTION_DECODER
def_bool y
depends on KPROBES || PERF_EVENTS || UPROBES
config OUTPUT_FORMAT
string
default "elf32-i386" if X86_32
default "elf64-x86-64" if X86_64
config ARCH_DEFCONFIG
string
default "arch/x86/configs/i386_defconfig" if X86_32
default "arch/x86/configs/x86_64_defconfig" if X86_64
config LOCKDEP_SUPPORT
def_bool y
config STACKTRACE_SUPPORT
def_bool y
config HAVE_LATENCYTOP_SUPPORT
def_bool y
config MMU
def_bool y
config SBUS
bool
config NEED_DMA_MAP_STATE
def_bool y
depends on X86_64 || INTEL_IOMMU || DMA_API_DEBUG
config NEED_SG_DMA_LENGTH
def_bool y
config GENERIC_ISA_DMA
def_bool y
depends on ISA_DMA_API
config GENERIC_BUG
def_bool y
depends on BUG
select GENERIC_BUG_RELATIVE_POINTERS if X86_64
config GENERIC_BUG_RELATIVE_POINTERS
bool
config GENERIC_HWEIGHT
def_bool y
config ARCH_MAY_HAVE_PC_FDC
def_bool y
depends on ISA_DMA_API
config RWSEM_XCHGADD_ALGORITHM
def_bool y
config GENERIC_CALIBRATE_DELAY
def_bool y
config ARCH_HAS_CPU_RELAX
def_bool y
config ARCH_HAS_CACHE_LINE_SIZE
def_bool y
config ARCH_HAS_CPU_AUTOPROBE
def_bool y
config HAVE_SETUP_PER_CPU_AREA
def_bool y
config NEED_PER_CPU_EMBED_FIRST_CHUNK
def_bool y
config NEED_PER_CPU_PAGE_FIRST_CHUNK
def_bool y
config ARCH_HIBERNATION_POSSIBLE
def_bool y
config ARCH_SUSPEND_POSSIBLE
def_bool y
config ARCH_WANT_HUGE_PMD_SHARE
def_bool y
config ARCH_WANT_GENERAL_HUGETLB
def_bool y
config ZONE_DMA32
bool
default X86_64
config AUDIT_ARCH
bool
default X86_64
config ARCH_SUPPORTS_OPTIMIZED_INLINING
def_bool y
config ARCH_SUPPORTS_DEBUG_PAGEALLOC
def_bool y
config HAVE_INTEL_TXT
def_bool y
depends on INTEL_IOMMU && ACPI
config X86_32_SMP
def_bool y
depends on X86_32 && SMP
config X86_64_SMP
def_bool y
depends on X86_64 && SMP
config X86_HT
def_bool y
depends on SMP
config X86_32_LAZY_GS
def_bool y
depends on X86_32 && !CC_STACKPROTECTOR
config ARCH_HWEIGHT_CFLAGS
string
default "-fcall-saved-ecx -fcall-saved-edx" if X86_32
default "-fcall-saved-rdi -fcall-saved-rsi -fcall-saved-rdx -fcall-saved-rcx -fcall-saved-r8 -fcall-saved-r9 -fcall-saved-r10 -fcall-saved-r11" if X86_64
config ARCH_CPU_PROBE_RELEASE
def_bool y
depends on HOTPLUG_CPU
config ARCH_SUPPORTS_UPROBES
def_bool y
source "init/Kconfig"
source "kernel/Kconfig.freezer"
menu "Processor type and features"
config ZONE_DMA
bool "DMA memory allocation support" if EXPERT
default y
help
DMA memory allocation support allows devices with less than 32-bit
addressing to allocate within the first 16MB of address space.
Disable if no such devices will be used.
If unsure, say Y.
config SMP
bool "Symmetric multi-processing support"
---help---
This enables support for systems with more than one CPU. If you have
a system with only one CPU, like most personal computers, say N. If
you have a system with more than one CPU, say Y.
If you say N here, the kernel will run on single and multiprocessor
machines, but will use only one CPU of a multiprocessor machine. If
you say Y here, the kernel will run on many, but not all,
singleprocessor machines. On a singleprocessor machine, the kernel
will run faster if you say N here.
Note that if you say Y here and choose architecture "586" or
"Pentium" under "Processor family", the kernel will not work on 486
architectures. Similarly, multiprocessor kernels for the "PPro"
architecture may not work on all Pentium based boards.
People using multiprocessor machines who say Y here should also say
Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
Management" code will be disabled if you say Y here.
See also <file:Documentation/x86/i386/IO-APIC.txt>,
<file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
<http://www.tldp.org/docs.html#howto>.
If you don't know what to do here, say N.
config X86_X2APIC
bool "Support x2apic"
depends on X86_LOCAL_APIC && X86_64 && IRQ_REMAP
---help---
This enables x2apic support on CPUs that have this feature.
This allows 32-bit apic IDs (so it can support very large systems),
and accesses the local apic via MSRs not via mmio.
If you don't know what to do here, say N.
config X86_MPPARSE
bool "Enable MPS table" if ACPI || SFI
default y
depends on X86_LOCAL_APIC
---help---
For old smp systems that do not have proper acpi support. Newer systems
(esp with 64bit cpus) with acpi support, MADT and DSDT will override it
config X86_BIGSMP
bool "Support for big SMP systems with more than 8 CPUs"
depends on X86_32 && SMP
---help---
This option is needed for the systems that have more than 8 CPUs
config GOLDFISH
def_bool y
depends on X86_GOLDFISH
if X86_32
config X86_EXTENDED_PLATFORM
bool "Support for extended (non-PC) x86 platforms"
default y
---help---
If you disable this option then the kernel will only support
standard PC platforms. (which covers the vast majority of
systems out there.)
If you enable this option then you'll be able to select support
for the following (non-PC) 32 bit x86 platforms:
Goldfish (Android emulator)
AMD Elan
NUMAQ (IBM/Sequent)
RDC R-321x SoC
SGI 320/540 (Visual Workstation)
STA2X11-based (e.g. Northville)
Summit/EXA (IBM x440)
Unisys ES7000 IA32 series
Moorestown MID devices
If you have one of these systems, or if you want to build a
generic distribution kernel, say Y here - otherwise say N.
endif
if X86_64
config X86_EXTENDED_PLATFORM
bool "Support for extended (non-PC) x86 platforms"
default y
---help---
If you disable this option then the kernel will only support
standard PC platforms. (which covers the vast majority of
systems out there.)
If you enable this option then you'll be able to select support
for the following (non-PC) 64 bit x86 platforms:
Numascale NumaChip
ScaleMP vSMP
SGI Ultraviolet
If you have one of these systems, or if you want to build a
generic distribution kernel, say Y here - otherwise say N.
endif
# This is an alphabetically sorted list of 64 bit extended platforms
# Please maintain the alphabetic order if and when there are additions
config X86_NUMACHIP
bool "Numascale NumaChip"
depends on X86_64
depends on X86_EXTENDED_PLATFORM
depends on NUMA
depends on SMP
depends on X86_X2APIC
depends on PCI_MMCONFIG
---help---
Adds support for Numascale NumaChip large-SMP systems. Needed to
enable more than ~168 cores.
If you don't have one of these, you should say N here.
config X86_VSMP
bool "ScaleMP vSMP"
select HYPERVISOR_GUEST
select PARAVIRT
depends on X86_64 && PCI
depends on X86_EXTENDED_PLATFORM
depends on SMP
---help---
Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is
supposed to run on these EM64T-based machines. Only choose this option
if you have one of these machines.
config X86_UV
bool "SGI Ultraviolet"
depends on X86_64
depends on X86_EXTENDED_PLATFORM
depends on NUMA
depends on X86_X2APIC
---help---
This option is needed in order to support SGI Ultraviolet systems.
If you don't have one of these, you should say N here.
# Following is an alphabetically sorted list of 32 bit extended platforms
# Please maintain the alphabetic order if and when there are additions
config X86_GOLDFISH
bool "Goldfish (Virtual Platform)"
depends on X86_32
depends on X86_EXTENDED_PLATFORM
---help---
Enable support for the Goldfish virtual platform used primarily
for Android development. Unless you are building for the Android
Goldfish emulator say N here.
config X86_INTEL_CE
bool "CE4100 TV platform"
depends on PCI
depends on PCI_GODIRECT
depends on X86_32
depends on X86_EXTENDED_PLATFORM
select X86_REBOOTFIXUPS
select OF
select OF_EARLY_FLATTREE
select IRQ_DOMAIN
---help---
Select for the Intel CE media processor (CE4100) SOC.
This option compiles in support for the CE4100 SOC for settop
boxes and media devices.
config X86_WANT_INTEL_MID
bool "Intel MID platform support"
depends on X86_32
depends on X86_EXTENDED_PLATFORM
---help---
Select to build a kernel capable of supporting Intel MID platform
systems which do not have the PCI legacy interfaces (Moorestown,
Medfield). If you are building for a PC class system say N here.
if X86_WANT_INTEL_MID
config X86_INTEL_MID
bool
config X86_MDFLD
bool "Medfield MID platform"
depends on PCI
depends on PCI_GOANY
depends on X86_IO_APIC
select X86_INTEL_MID
select SFI
select DW_APB_TIMER
select APB_TIMER
select I2C
select SPI
select INTEL_SCU_IPC
select X86_PLATFORM_DEVICES
select MFD_INTEL_MSIC
---help---
Medfield is Intel's Low Power Intel Architecture (LPIA) based Moblin
Internet Device(MID) platform.
Unlike standard x86 PCs, Medfield does not have many legacy devices
nor standard legacy replacement devices/features. e.g. Medfield does
not contain i8259, i8254, HPET, legacy BIOS, most of the io ports.
endif
config X86_INTEL_LPSS
bool "Intel Low Power Subsystem Support"
depends on ACPI
select COMMON_CLK
---help---
Select to build support for Intel Low Power Subsystem such as
found on Intel Lynxpoint PCH. Selecting this option enables
things like clock tree (common clock framework) which are needed
by the LPSS peripheral drivers.
config X86_RDC321X
bool "RDC R-321x SoC"
depends on X86_32
depends on X86_EXTENDED_PLATFORM
select M486
select X86_REBOOTFIXUPS
---help---
This option is needed for RDC R-321x system-on-chip, also known
as R-8610-(G).
If you don't have one of these chips, you should say N here.
config X86_32_NON_STANDARD
bool "Support non-standard 32-bit SMP architectures"
depends on X86_32 && SMP
depends on X86_EXTENDED_PLATFORM
---help---
This option compiles in the NUMAQ, Summit, bigsmp, ES7000,
STA2X11, default subarchitectures. It is intended for a generic
binary kernel. If you select them all, kernel will probe it
one by one and will fallback to default.
# Alphabetically sorted list of Non standard 32 bit platforms
config X86_NUMAQ
bool "NUMAQ (IBM/Sequent)"
depends on X86_32_NON_STANDARD
depends on PCI
select NUMA
select X86_MPPARSE
---help---
This option is used for getting Linux to run on a NUMAQ (IBM/Sequent)
NUMA multiquad box. This changes the way that processors are
bootstrapped, and uses Clustered Logical APIC addressing mode instead
of Flat Logical. You will need a new lynxer.elf file to flash your
firmware with - send email to <Martin.Bligh@us.ibm.com>.
config X86_SUPPORTS_MEMORY_FAILURE
def_bool y
# MCE code calls memory_failure():
depends on X86_MCE
# On 32-bit this adds too big of NODES_SHIFT and we run out of page flags:
depends on !X86_NUMAQ
# On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH:
depends on X86_64 || !SPARSEMEM
select ARCH_SUPPORTS_MEMORY_FAILURE
config X86_VISWS
bool "SGI 320/540 (Visual Workstation)"
depends on X86_32 && PCI && X86_MPPARSE && PCI_GODIRECT
depends on X86_32_NON_STANDARD
---help---
The SGI Visual Workstation series is an IA32-based workstation
based on SGI systems chips with some legacy PC hardware attached.
Say Y here to create a kernel to run on the SGI 320 or 540.
A kernel compiled for the Visual Workstation will run on general
PCs as well. See <file:Documentation/sgi-visws.txt> for details.
config STA2X11
bool "STA2X11 Companion Chip Support"
depends on X86_32_NON_STANDARD && PCI
select X86_DEV_DMA_OPS
select X86_DMA_REMAP
select SWIOTLB
select MFD_STA2X11
select ARCH_REQUIRE_GPIOLIB
default n
---help---
This adds support for boards based on the STA2X11 IO-Hub,
a.k.a. "ConneXt". The chip is used in place of the standard
PC chipset, so all "standard" peripherals are missing. If this
option is selected the kernel will still be able to boot on
standard PC machines.
config X86_SUMMIT
bool "Summit/EXA (IBM x440)"
depends on X86_32_NON_STANDARD
---help---
This option is needed for IBM systems that use the Summit/EXA chipset.
In particular, it is needed for the x440.
config X86_ES7000
bool "Unisys ES7000 IA32 series"
depends on X86_32_NON_STANDARD && X86_BIGSMP
---help---
Support for Unisys ES7000 systems. Say 'Y' here if this kernel is
supposed to run on an IA32-based Unisys ES7000 system.
config X86_32_IRIS
tristate "Eurobraille/Iris poweroff module"
depends on X86_32
---help---
The Iris machines from EuroBraille do not have APM or ACPI support
to shut themselves down properly. A special I/O sequence is
needed to do so, which is what this module does at
kernel shutdown.
This is only for Iris machines from EuroBraille.
If unused, say N.
config SCHED_OMIT_FRAME_POINTER
def_bool y
prompt "Single-depth WCHAN output"
depends on X86
---help---
Calculate simpler /proc/<PID>/wchan values. If this option
is disabled then wchan values will recurse back to the
caller function. This provides more accurate wchan values,
at the expense of slightly more scheduling overhead.
If in doubt, say "Y".
menuconfig HYPERVISOR_GUEST
bool "Linux guest support"
---help---
Say Y here to enable options for running Linux under various hyper-
visors. This option enables basic hypervisor detection and platform
setup.
If you say N, all options in this submenu will be skipped and
disabled, and Linux guest support won't be built in.
if HYPERVISOR_GUEST
config PARAVIRT
bool "Enable paravirtualization code"
---help---
This changes the kernel so it can modify itself when it is run
under a hypervisor, potentially improving performance significantly
over full virtualization. However, when run without a hypervisor
the kernel is theoretically slower and slightly larger.
config PARAVIRT_DEBUG
bool "paravirt-ops debugging"
depends on PARAVIRT && DEBUG_KERNEL
---help---
Enable to debug paravirt_ops internals. Specifically, BUG if
a paravirt_op is missing when it is called.
config PARAVIRT_SPINLOCKS
bool "Paravirtualization layer for spinlocks"
depends on PARAVIRT && SMP
---help---
Paravirtualized spinlocks allow a pvops backend to replace the
spinlock implementation with something virtualization-friendly
(for example, block the virtual CPU rather than spinning).
Unfortunately the downside is an up to 5% performance hit on
native kernels, with various workloads.
If you are unsure how to answer this question, answer N.
source "arch/x86/xen/Kconfig"
config KVM_GUEST
bool "KVM Guest support (including kvmclock)"
depends on PARAVIRT
select PARAVIRT_CLOCK
default y
---help---
This option enables various optimizations for running under the KVM
hypervisor. It includes a paravirtualized clock, so that instead
of relying on a PIT (or probably other) emulation by the
underlying device model, the host provides the guest with
timing infrastructure such as time of day, and system time
source "arch/x86/lguest/Kconfig"
config PARAVIRT_TIME_ACCOUNTING
bool "Paravirtual steal time accounting"
depends on PARAVIRT
default n
---help---
Select this option to enable fine granularity task steal time
accounting. Time spent executing other tasks in parallel with
the current vCPU is discounted from the vCPU power. To account for
that, there can be a small performance impact.
If in doubt, say N here.
config PARAVIRT_CLOCK
bool
endif #HYPERVISOR_GUEST
config NO_BOOTMEM
def_bool y
config MEMTEST
bool "Memtest"
---help---
This option adds a kernel parameter 'memtest', which allows memtest
to be set.
memtest=0, mean disabled; -- default
memtest=1, mean do 1 test pattern;
...
memtest=4, mean do 4 test patterns.
If you are unsure how to answer this question, answer N.
config X86_SUMMIT_NUMA
def_bool y
depends on X86_32 && NUMA && X86_32_NON_STANDARD
config X86_CYCLONE_TIMER
def_bool y
depends on X86_SUMMIT
source "arch/x86/Kconfig.cpu"
config HPET_TIMER
def_bool X86_64
prompt "HPET Timer Support" if X86_32
---help---
Use the IA-PC HPET (High Precision Event Timer) to manage
time in preference to the PIT and RTC, if a HPET is
present.
HPET is the next generation timer replacing legacy 8254s.
The HPET provides a stable time base on SMP
systems, unlike the TSC, but it is more expensive to access,
as it is off-chip. You can find the HPET spec at
<http://www.intel.com/hardwaredesign/hpetspec_1.pdf>.
You can safely choose Y here. However, HPET will only be
activated if the platform and the BIOS support this feature.
Otherwise the 8254 will be used for timing services.
Choose N to continue using the legacy 8254 timer.
config HPET_EMULATE_RTC
def_bool y
depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
config APB_TIMER
def_bool y if X86_INTEL_MID
prompt "Intel MID APB Timer Support" if X86_INTEL_MID
select DW_APB_TIMER
depends on X86_INTEL_MID && SFI
help
APB timer is the replacement for 8254, HPET on X86 MID platforms.
The APBT provides a stable time base on SMP
systems, unlike the TSC, but it is more expensive to access,
as it is off-chip. APB timers are always running regardless of CPU
C states, they are used as per CPU clockevent device when possible.
# Mark as expert because too many people got it wrong.
# The code disables itself when not needed.
config DMI
default y
bool "Enable DMI scanning" if EXPERT
---help---
Enabled scanning of DMI to identify machine quirks. Say Y
here unless you have verified that your setup is not
affected by entries in the DMI blacklist. Required by PNP
BIOS code.
config GART_IOMMU
bool "GART IOMMU support" if EXPERT
default y
select SWIOTLB
depends on X86_64 && PCI && AMD_NB
---help---
Support for full DMA access of devices with 32bit memory access only
on systems with more than 3GB. This is usually needed for USB,
sound, many IDE/SATA chipsets and some other devices.
Provides a driver for the AMD Athlon64/Opteron/Turion/Sempron GART
based hardware IOMMU and a software bounce buffer based IOMMU used
on Intel systems and as fallback.
The code is only active when needed (enough memory and limited
device) unless CONFIG_IOMMU_DEBUG or iommu=force is specified
too.
config CALGARY_IOMMU
bool "IBM Calgary IOMMU support"
select SWIOTLB
depends on X86_64 && PCI
---help---
Support for hardware IOMMUs in IBM's xSeries x366 and x460
systems. Needed to run systems with more than 3GB of memory
properly with 32-bit PCI devices that do not support DAC
(Double Address Cycle). Calgary also supports bus level
isolation, where all DMAs pass through the IOMMU. This
prevents them from going anywhere except their intended
destination. This catches hard-to-find kernel bugs and
mis-behaving drivers and devices that do not use the DMA-API
properly to set up their DMA buffers. The IOMMU can be
turned off at boot time with the iommu=off parameter.
Normally the kernel will make the right choice by itself.
If unsure, say Y.
config CALGARY_IOMMU_ENABLED_BY_DEFAULT
def_bool y
prompt "Should Calgary be enabled by default?"
depends on CALGARY_IOMMU
---help---
Should Calgary be enabled by default? if you choose 'y', Calgary
will be used (if it exists). If you choose 'n', Calgary will not be
used even if it exists. If you choose 'n' and would like to use
Calgary anyway, pass 'iommu=calgary' on the kernel command line.
If unsure, say Y.
# need this always selected by IOMMU for the VIA workaround
config SWIOTLB
def_bool y if X86_64
---help---
Support for software bounce buffers used on x86-64 systems
which don't have a hardware IOMMU. Using this PCI devices
which can only access 32-bits of memory can be used on systems
with more than 3 GB of memory.
If unsure, say Y.
config IOMMU_HELPER
def_bool y
depends on CALGARY_IOMMU || GART_IOMMU || SWIOTLB || AMD_IOMMU
config MAXSMP
bool "Enable Maximum number of SMP Processors and NUMA Nodes"
depends on X86_64 && SMP && DEBUG_KERNEL
select CPUMASK_OFFSTACK
---help---
Enable maximum number of CPUS and NUMA Nodes for this architecture.
If unsure, say N.
config NR_CPUS
int "Maximum number of CPUs" if SMP && !MAXSMP
range 2 8 if SMP && X86_32 && !X86_BIGSMP
range 2 512 if SMP && !MAXSMP
default "1" if !SMP
default "4096" if MAXSMP
default "32" if SMP && (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP || X86_ES7000)
default "8" if SMP
---help---
This allows you to specify the maximum number of CPUs which this
kernel will support. The maximum supported value is 512 and the
minimum value which makes sense is 2.
This is purely to save memory - each supported CPU adds
approximately eight kilobytes to the kernel image.
config SCHED_SMT
bool "SMT (Hyperthreading) scheduler support"
depends on X86_HT
---help---
SMT scheduler support improves the CPU scheduler's decision making
when dealing with Intel Pentium 4 chips with HyperThreading at a
cost of slightly increased overhead in some places. If unsure say
N here.
config SCHED_MC
def_bool y
prompt "Multi-core scheduler support"
depends on X86_HT
---help---
Multi-core scheduler support improves the CPU scheduler's decision
making when dealing with multi-core CPU chips at a cost of slightly
increased overhead in some places. If unsure say N here.
source "kernel/Kconfig.preempt"
config X86_UP_APIC
bool "Local APIC support on uniprocessors"
depends on X86_32 && !SMP && !X86_32_NON_STANDARD
---help---
A local APIC (Advanced Programmable Interrupt Controller) is an
integrated interrupt controller in the CPU. If you have a single-CPU
system which has a processor with a local APIC, you can say Y here to
enable and use it. If you say Y here even though your machine doesn't
have a local APIC, then the kernel will still run with no slowdown at
all. The local APIC supports CPU-generated self-interrupts (timer,
performance counters), and the NMI watchdog which detects hard
lockups.
config X86_UP_IOAPIC
bool "IO-APIC support on uniprocessors"
depends on X86_UP_APIC
---help---
An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
SMP-capable replacement for PC-style interrupt controllers. Most
SMP systems and many recent uniprocessor systems have one.
If you have a single-CPU system with an IO-APIC, you can say Y here
to use it. If you say Y here even though your machine doesn't have
an IO-APIC, then the kernel will still run with no slowdown at all.
config X86_LOCAL_APIC
def_bool y
depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC
config X86_IO_APIC
def_bool y
depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_IOAPIC
config X86_VISWS_APIC
def_bool y
depends on X86_32 && X86_VISWS
config X86_REROUTE_FOR_BROKEN_BOOT_IRQS
bool "Reroute for broken boot IRQs"
depends on X86_IO_APIC
---help---
This option enables a workaround that fixes a source of
spurious interrupts. This is recommended when threaded
interrupt handling is used on systems where the generation of
superfluous "boot interrupts" cannot be disabled.
Some chipsets generate a legacy INTx "boot IRQ" when the IRQ
entry in the chipset's IO-APIC is masked (as, e.g. the RT
kernel does during interrupt handling). On chipsets where this
boot IRQ generation cannot be disabled, this workaround keeps
the original IRQ line masked so that only the equivalent "boot
IRQ" is delivered to the CPUs. The workaround also tells the
kernel to set up the IRQ handler on the boot IRQ line. In this
way only one interrupt is delivered to the kernel. Otherwise
the spurious second interrupt may cause the kernel to bring
down (vital) interrupt lines.
Only affects "broken" chipsets. Interrupt sharing may be
increased on these systems.
config X86_MCE
bool "Machine Check / overheating reporting"
default y
---help---
Machine Check support allows the processor to notify the
kernel if it detects a problem (e.g. overheating, data corruption).
The action the kernel takes depends on the severity of the problem,
ranging from warning messages to halting the machine.
config X86_MCE_INTEL
def_bool y
prompt "Intel MCE features"
depends on X86_MCE && X86_LOCAL_APIC
---help---
Additional support for intel specific MCE features such as
the thermal monitor.
config X86_MCE_AMD
def_bool y
prompt "AMD MCE features"
depends on X86_MCE && X86_LOCAL_APIC
---help---
Additional support for AMD specific MCE features such as
the DRAM Error Threshold.
config X86_ANCIENT_MCE
bool "Support for old Pentium 5 / WinChip machine checks"
depends on X86_32 && X86_MCE
---help---
Include support for machine check handling on old Pentium 5 or WinChip
systems. These typically need to be enabled explicitely on the command
line.
config X86_MCE_THRESHOLD
depends on X86_MCE_AMD || X86_MCE_INTEL
def_bool y
config X86_MCE_INJECT
depends on X86_MCE
tristate "Machine check injector support"
---help---
Provide support for injecting machine checks for testing purposes.
If you don't know what a machine check is and you don't do kernel
QA it is safe to say n.
config X86_THERMAL_VECTOR
def_bool y
depends on X86_MCE_INTEL
config VM86
bool "Enable VM86 support" if EXPERT
default y
depends on X86_32
---help---
This option is required by programs like DOSEMU to run 16-bit legacy
code on X86 processors. It also may be needed by software like
XFree86 to initialize some video cards via BIOS. Disabling this
option saves about 6k.
config TOSHIBA
tristate "Toshiba Laptop support"
depends on X86_32
---help---
This adds a driver to safely access the System Management Mode of
the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
not work on models with a Phoenix BIOS. The System Management Mode
is used to set the BIOS and power saving options on Toshiba portables.
For information on utilities to make use of this driver see the
Toshiba Linux utilities web site at:
<http://www.buzzard.org.uk/toshiba/>.
Say Y if you intend to run this kernel on a Toshiba portable.
Say N otherwise.
config I8K
tristate "Dell laptop support"
select HWMON
---help---
This adds a driver to safely access the System Management Mode
of the CPU on the Dell Inspiron 8000. The System Management Mode
is used to read cpu temperature and cooling fan status and to
control the fans on the I8K portables.
This driver has been tested only on the Inspiron 8000 but it may
also work with other Dell laptops. You can force loading on other
models by passing the parameter `force=1' to the module. Use at
your own risk.
For information on utilities to make use of this driver see the
I8K Linux utilities web site at:
<http://people.debian.org/~dz/i8k/>
Say Y if you intend to run this kernel on a Dell Inspiron 8000.
Say N otherwise.
config X86_REBOOTFIXUPS
bool "Enable X86 board specific fixups for reboot"
depends on X86_32
---help---
This enables chipset and/or board specific fixups to be done
in order to get reboot to work correctly. This is only needed on
some combinations of hardware and BIOS. The symptom, for which
this config is intended, is when reboot ends with a stalled/hung
system.
Currently, the only fixup is for the Geode machines using
CS5530A and CS5536 chipsets and the RDC R-321x SoC.
Say Y if you want to enable the fixup. Currently, it's safe to
enable this option even if you don't need it.
Say N otherwise.
config MICROCODE
tristate "CPU microcode loading support"
select FW_LOADER
---help---
If you say Y here, you will be able to update the microcode on
certain Intel and AMD processors. The Intel support is for the
IA32 family, e.g. Pentium Pro, Pentium II, Pentium III, Pentium 4,
Xeon etc. The AMD support is for families 0x10 and later. You will
obviously need the actual microcode binary data itself which is not
shipped with the Linux kernel.
This option selects the general module only, you need to select
at least one vendor specific module as well.
To compile this driver as a module, choose M here: the module
will be called microcode.
config MICROCODE_INTEL
bool "Intel microcode loading support"
depends on MICROCODE
default MICROCODE
select FW_LOADER
---help---
This options enables microcode patch loading support for Intel
processors.
For latest news and information on obtaining all the required
Intel ingredients for this driver, check:
<http://www.urbanmyth.org/microcode/>.
config MICROCODE_AMD
bool "AMD microcode loading support"
depends on MICROCODE
select FW_LOADER
---help---
If you select this option, microcode patch loading support for AMD
processors will be enabled.
config MICROCODE_OLD_INTERFACE
def_bool y
depends on MICROCODE
config MICROCODE_INTEL_LIB
def_bool y
depends on MICROCODE_INTEL
config MICROCODE_INTEL_EARLY
def_bool n
config MICROCODE_AMD_EARLY
def_bool n
config MICROCODE_EARLY
bool "Early load microcode"
depends on MICROCODE=y && BLK_DEV_INITRD
select MICROCODE_INTEL_EARLY if MICROCODE_INTEL
select MICROCODE_AMD_EARLY if MICROCODE_AMD
default y
help
This option provides functionality to read additional microcode data
at the beginning of initrd image. The data tells kernel to load
microcode to CPU's as early as possible. No functional change if no
microcode data is glued to the initrd, therefore it's safe to say Y.
config X86_MSR
tristate "/dev/cpu/*/msr - Model-specific register support"
---help---
This device gives privileged processes access to the x86
Model-Specific Registers (MSRs). It is a character device with
major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
MSR accesses are directed to a specific CPU on multi-processor
systems.
config X86_CPUID
tristate "/dev/cpu/*/cpuid - CPU information support"
---help---
This device gives processes access to the x86 CPUID instruction to
be executed on a specific processor. It is a character device
with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
/dev/cpu/31/cpuid.
choice
prompt "High Memory Support"
default HIGHMEM64G if X86_NUMAQ
default HIGHMEM4G
depends on X86_32
config NOHIGHMEM
bool "off"
depends on !X86_NUMAQ
---help---
Linux can use up to 64 Gigabytes of physical memory on x86 systems.
However, the address space of 32-bit x86 processors is only 4
Gigabytes large. That means that, if you have a large amount of
physical memory, not all of it can be "permanently mapped" by the
kernel. The physical memory that's not permanently mapped is called
"high memory".
If you are compiling a kernel which will never run on a machine with
more than 1 Gigabyte total physical RAM, answer "off" here (default
choice and suitable for most users). This will result in a "3GB/1GB"
split: 3GB are mapped so that each process sees a 3GB virtual memory
space and the remaining part of the 4GB virtual memory space is used
by the kernel to permanently map as much physical memory as
possible.
If the machine has between 1 and 4 Gigabytes physical RAM, then
answer "4GB" here.
If more than 4 Gigabytes is used then answer "64GB" here. This
selection turns Intel PAE (Physical Address Extension) mode on.
PAE implements 3-level paging on IA32 processors. PAE is fully
supported by Linux, PAE mode is implemented on all recent Intel
processors (Pentium Pro and better). NOTE: If you say "64GB" here,
then the kernel will not boot on CPUs that don't support PAE!
The actual amount of total physical memory will either be
auto detected or can be forced by using a kernel command line option
such as "mem=256M". (Try "man bootparam" or see the documentation of
your boot loader (lilo or loadlin) about how to pass options to the
kernel at boot time.)
If unsure, say "off".
config HIGHMEM4G
bool "4GB"
depends on !X86_NUMAQ
---help---
Select this if you have a 32-bit processor and between 1 and 4
gigabytes of physical RAM.
config HIGHMEM64G
bool "64GB"
depends on !M486
select X86_PAE
---help---
Select this if you have a 32-bit processor and more than 4
gigabytes of physical RAM.
endchoice
choice
prompt "Memory split" if EXPERT
default VMSPLIT_3G
depends on X86_32
---help---
Select the desired split between kernel and user memory.
If the address range available to the kernel is less than the
physical memory installed, the remaining memory will be available
as "high memory". Accessing high memory is a little more costly
than low memory, as it needs to be mapped into the kernel first.
Note that increasing the kernel address space limits the range
available to user programs, making the address space there
tighter. Selecting anything other than the default 3G/1G split
will also likely make your kernel incompatible with binary-only
kernel modules.
If you are not absolutely sure what you are doing, leave this
option alone!
config VMSPLIT_3G
bool "3G/1G user/kernel split"
config VMSPLIT_3G_OPT
depends on !X86_PAE
bool "3G/1G user/kernel split (for full 1G low memory)"
config VMSPLIT_2G
bool "2G/2G user/kernel split"
config VMSPLIT_2G_OPT
depends on !X86_PAE
bool "2G/2G user/kernel split (for full 2G low memory)"
config VMSPLIT_1G
bool "1G/3G user/kernel split"
endchoice
config PAGE_OFFSET
hex
default 0xB0000000 if VMSPLIT_3G_OPT
default 0x80000000 if VMSPLIT_2G
default 0x78000000 if VMSPLIT_2G_OPT
default 0x40000000 if VMSPLIT_1G
default 0xC0000000
depends on X86_32
config HIGHMEM
def_bool y
depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)
config X86_PAE
bool "PAE (Physical Address Extension) Support"
depends on X86_32 && !HIGHMEM4G
---help---
PAE is required for NX support, and furthermore enables
larger swapspace support for non-overcommit purposes. It
has the cost of more pagetable lookup overhead, and also
consumes more pagetable space per process.
config ARCH_PHYS_ADDR_T_64BIT
def_bool y
depends on X86_64 || X86_PAE
config ARCH_DMA_ADDR_T_64BIT
def_bool y
depends on X86_64 || HIGHMEM64G
config DIRECT_GBPAGES
bool "Enable 1GB pages for kernel pagetables" if EXPERT
default y
depends on X86_64
---help---
Allow the kernel linear mapping to use 1GB pages on CPUs that
support it. This can improve the kernel's performance a tiny bit by
reducing TLB pressure. If in doubt, say "Y".
# Common NUMA Features
config NUMA
bool "Numa Memory Allocation and Scheduler Support"
depends on SMP
depends on X86_64 || (X86_32 && HIGHMEM64G && (X86_NUMAQ || X86_BIGSMP || X86_SUMMIT && ACPI))
default y if (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP)
---help---
Enable NUMA (Non Uniform Memory Access) support.
The kernel will try to allocate memory used by a CPU on the
local memory controller of the CPU and add some more
NUMA awareness to the kernel.
For 64-bit this is recommended if the system is Intel Core i7
(or later), AMD Opteron, or EM64T NUMA.
For 32-bit this is only needed on (rare) 32-bit-only platforms
that support NUMA topologies, such as NUMAQ / Summit, or if you
boot a 32-bit kernel on a 64-bit NUMA platform.
Otherwise, you should say N.
comment "NUMA (Summit) requires SMP, 64GB highmem support, ACPI"
depends on X86_32 && X86_SUMMIT && (!HIGHMEM64G || !ACPI)
config AMD_NUMA
def_bool y
prompt "Old style AMD Opteron NUMA detection"
depends on X86_64 && NUMA && PCI
---help---
Enable AMD NUMA node topology detection. You should say Y here if
you have a multi processor AMD system. This uses an old method to
read the NUMA configuration directly from the builtin Northbridge
of Opteron. It is recommended to use X86_64_ACPI_NUMA instead,
which also takes priority if both are compiled in.
config X86_64_ACPI_NUMA
def_bool y
prompt "ACPI NUMA detection"
depends on X86_64 && NUMA && ACPI && PCI
select ACPI_NUMA
---help---
Enable ACPI SRAT based node topology detection.
# Some NUMA nodes have memory ranges that span
# other nodes. Even though a pfn is valid and
# between a node's start and end pfns, it may not
# reside on that node. See memmap_init_zone()
# for details.
config NODES_SPAN_OTHER_NODES
def_bool y
depends on X86_64_ACPI_NUMA
config NUMA_EMU
bool "NUMA emulation"
depends on NUMA
---help---
Enable NUMA emulation. A flat machine will be split
into virtual nodes when booted with "numa=fake=N", where N is the
number of nodes. This is only useful for debugging.
config NODES_SHIFT
int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
range 1 10
default "10" if MAXSMP
default "6" if X86_64
default "4" if X86_NUMAQ
default "3"
depends on NEED_MULTIPLE_NODES
---help---
Specify the maximum number of NUMA Nodes available on the target
system. Increases memory reserved to accommodate various tables.
config ARCH_HAVE_MEMORY_PRESENT
def_bool y
depends on X86_32 && DISCONTIGMEM
config NEED_NODE_MEMMAP_SIZE
def_bool y
depends on X86_32 && (DISCONTIGMEM || SPARSEMEM)
config ARCH_FLATMEM_ENABLE
def_bool y
depends on X86_32 && !NUMA
config ARCH_DISCONTIGMEM_ENABLE
def_bool y
depends on NUMA && X86_32
config ARCH_DISCONTIGMEM_DEFAULT
def_bool y
depends on NUMA && X86_32
config ARCH_SPARSEMEM_ENABLE
def_bool y
depends on X86_64 || NUMA || X86_32 || X86_32_NON_STANDARD
select SPARSEMEM_STATIC if X86_32
select SPARSEMEM_VMEMMAP_ENABLE if X86_64
config ARCH_SPARSEMEM_DEFAULT
def_bool y
depends on X86_64
config ARCH_SELECT_MEMORY_MODEL
def_bool y
depends on ARCH_SPARSEMEM_ENABLE
config ARCH_MEMORY_PROBE
def_bool y
depends on X86_64 && MEMORY_HOTPLUG
config ARCH_PROC_KCORE_TEXT
def_bool y
depends on X86_64 && PROC_KCORE
config ILLEGAL_POINTER_VALUE
hex
default 0 if X86_32
default 0xdead000000000000 if X86_64
source "mm/Kconfig"
config HIGHPTE
bool "Allocate 3rd-level pagetables from highmem"
depends on HIGHMEM
---help---
The VM uses one page table entry for each page of physical memory.
For systems with a lot of RAM, this can be wasteful of precious
low memory. Setting this option will put user-space page table
entries in high memory.
config X86_CHECK_BIOS_CORRUPTION
bool "Check for low memory corruption"
---help---
Periodically check for memory corruption in low memory, which
is suspected to be caused by BIOS. Even when enabled in the
configuration, it is disabled at runtime. Enable it by
setting "memory_corruption_check=1" on the kernel command
line. By default it scans the low 64k of memory every 60
seconds; see the memory_corruption_check_size and
memory_corruption_check_period parameters in
Documentation/kernel-parameters.txt to adjust this.
When enabled with the default parameters, this option has
almost no overhead, as it reserves a relatively small amount
of memory and scans it infrequently. It both detects corruption
and prevents it from affecting the running system.
It is, however, intended as a diagnostic tool; if repeatable
BIOS-originated corruption always affects the same memory,
you can use memmap= to prevent the kernel from using that
memory.
config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
bool "Set the default setting of memory_corruption_check"
depends on X86_CHECK_BIOS_CORRUPTION
default y
---help---
Set whether the default state of memory_corruption_check is
on or off.
config X86_RESERVE_LOW
int "Amount of low memory, in kilobytes, to reserve for the BIOS"
default 64
range 4 640
---help---
Specify the amount of low memory to reserve for the BIOS.
The first page contains BIOS data structures that the kernel
must not use, so that page must always be reserved.
By default we reserve the first 64K of physical RAM, as a
number of BIOSes are known to corrupt that memory range
during events such as suspend/resume or monitor cable
insertion, so it must not be used by the kernel.
You can set this to 4 if you are absolutely sure that you
trust the BIOS to get all its memory reservations and usages
right. If you know your BIOS have problems beyond the
default 64K area, you can set this to 640 to avoid using the
entire low memory range.
If you have doubts about the BIOS (e.g. suspend/resume does
not work or there's kernel crashes after certain hardware
hotplug events) then you might want to enable
X86_CHECK_BIOS_CORRUPTION=y to allow the kernel to check
typical corruption patterns.
Leave this to the default value of 64 if you are unsure.
config MATH_EMULATION
bool
prompt "Math emulation" if X86_32
---help---
Linux can emulate a math coprocessor (used for floating point
operations) if you don't have one. 486DX and Pentium processors have
a math coprocessor built in, 486SX and 386 do not, unless you added
a 487DX or 387, respectively. (The messages during boot time can
give you some hints here ["man dmesg"].) Everyone needs either a
coprocessor or this emulation.
If you don't have a math coprocessor, you need to say Y here; if you
say Y here even though you have a coprocessor, the coprocessor will
be used nevertheless. (This behavior can be changed with the kernel
command line option "no387", which comes handy if your coprocessor
is broken. Try "man bootparam" or see the documentation of your boot
loader (lilo or loadlin) about how to pass options to the kernel at
boot time.) This means that it is a good idea to say Y here if you
intend to use this kernel on different machines.
More information about the internals of the Linux math coprocessor
emulation can be found in <file:arch/x86/math-emu/README>.
If you are not sure, say Y; apart from resulting in a 66 KB bigger
kernel, it won't hurt.
config MTRR
def_bool y
prompt "MTRR (Memory Type Range Register) support" if EXPERT
---help---
On Intel P6 family processors (Pentium Pro, Pentium II and later)
the Memory Type Range Registers (MTRRs) may be used to control
processor access to memory ranges. This is most useful if you have
a video (VGA) card on a PCI or AGP bus. Enabling write-combining
allows bus write transfers to be combined into a larger transfer
before bursting over the PCI/AGP bus. This can increase performance
of image write operations 2.5 times or more. Saying Y here creates a
/proc/mtrr file which may be used to manipulate your processor's
MTRRs. Typically the X server should use this.
This code has a reasonably generic interface so that similar
control registers on other processors can be easily supported
as well:
The Cyrix 6x86, 6x86MX and M II processors have Address Range
Registers (ARRs) which provide a similar functionality to MTRRs. For
these, the ARRs are used to emulate the MTRRs.
The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
write-combining. All of these processors are supported by this code
and it makes sense to say Y here if you have one of them.
Saying Y here also fixes a problem with buggy SMP BIOSes which only
set the MTRRs for the boot CPU and not for the secondary CPUs. This
can lead to all sorts of problems, so it's good to say Y here.
You can safely say Y even if your machine doesn't have MTRRs, you'll
just add about 9 KB to your kernel.
See <file:Documentation/x86/mtrr.txt> for more information.
config MTRR_SANITIZER
def_bool y
prompt "MTRR cleanup support"
depends on MTRR
---help---
Convert MTRR layout from continuous to discrete, so X drivers can
add writeback entries.
Can be disabled with disable_mtrr_cleanup on the kernel command line.
The largest mtrr entry size for a continuous block can be set with
mtrr_chunk_size.
If unsure, say Y.
config MTRR_SANITIZER_ENABLE_DEFAULT
int "MTRR cleanup enable value (0-1)"
range 0 1
default "0"
depends on MTRR_SANITIZER
---help---
Enable mtrr cleanup default value
config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
int "MTRR cleanup spare reg num (0-7)"
range 0 7
default "1"
depends on MTRR_SANITIZER
---help---
mtrr cleanup spare entries default, it can be changed via
mtrr_spare_reg_nr=N on the kernel command line.
config X86_PAT
def_bool y
prompt "x86 PAT support" if EXPERT
depends on MTRR
---help---
Use PAT attributes to setup page level cache control.
PATs are the modern equivalents of MTRRs and are much more
flexible than MTRRs.
Say N here if you see bootup problems (boot crash, boot hang,
spontaneous reboots) or a non-working video driver.
If unsure, say Y.
config ARCH_USES_PG_UNCACHED
def_bool y
depends on X86_PAT
config ARCH_RANDOM
def_bool y
prompt "x86 architectural random number generator" if EXPERT
---help---
Enable the x86 architectural RDRAND instruction
(Intel Bull Mountain technology) to generate random numbers.
If supported, this is a high bandwidth, cryptographically
secure hardware random number generator.
config X86_SMAP
def_bool y
prompt "Supervisor Mode Access Prevention" if EXPERT
---help---
Supervisor Mode Access Prevention (SMAP) is a security
feature in newer Intel processors. There is a small
performance cost if this enabled and turned on; there is
also a small increase in the kernel size if this is enabled.
If unsure, say Y.
config EFI
bool "EFI runtime service support"
depends on ACPI
select UCS2_STRING
---help---
This enables the kernel to use EFI runtime services that are
available (such as the EFI variable services).
This option is only useful on systems that have EFI firmware.
In addition, you should use the latest ELILO loader available
at <http://elilo.sourceforge.net> in order to take advantage
of EFI runtime services. However, even with this option, the
resultant kernel should continue to boot on existing non-EFI
platforms.
config EFI_STUB
bool "EFI stub support"
depends on EFI
---help---
This kernel feature allows a bzImage to be loaded directly
by EFI firmware without the use of a bootloader.
See Documentation/x86/efi-stub.txt for more information.
config SECCOMP
def_bool y
prompt "Enable seccomp to safely compute untrusted bytecode"
---help---
This kernel feature is useful for number crunching applications
that may need to compute untrusted bytecode during their
execution. By using pipes or other transports made available to
the process as file descriptors supporting the read/write
syscalls, it's possible to isolate those applications in
their own address space using seccomp. Once seccomp is
enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
and the task is only allowed to execute a few safe syscalls
defined by each seccomp mode.
If unsure, say Y. Only embedded should say N here.
config CC_STACKPROTECTOR
bool "Enable -fstack-protector buffer overflow detection"
---help---
This option turns on the -fstack-protector GCC feature. This
feature puts, at the beginning of functions, a canary value on
the stack just before the return address, and validates
the value just before actually returning. Stack based buffer
overflows (that need to overwrite this return address) now also
overwrite the canary, which gets detected and the attack is then
neutralized via a kernel panic.
This feature requires gcc version 4.2 or above, or a distribution
gcc with the feature backported. Older versions are automatically
detected and for those versions, this configuration option is
ignored. (and a warning is printed during bootup)
source kernel/Kconfig.hz
config KEXEC
bool "kexec system call"
---help---
kexec is a system call that implements the ability to shutdown your
current kernel, and to start another kernel. It is like a reboot
but it is independent of the system firmware. And like a reboot
you can start any kernel with it, not just Linux.
The name comes from the similarity to the exec system call.
It is an ongoing process to be certain the hardware in a machine
is properly shutdown, so do not be surprised if this code does not
initially work for you. It may help to enable device hotplugging
support. As of this writing the exact hardware interface is
strongly in flux, so no good recommendation can be made.
config CRASH_DUMP
bool "kernel crash dumps"
depends on X86_64 || (X86_32 && HIGHMEM)
---help---
Generate crash dump after being started by kexec.
This should be normally only set in special crash dump kernels
which are loaded in the main kernel with kexec-tools into
a specially reserved region and then later executed after
a crash by kdump/kexec. The crash dump kernel must be compiled
to a memory address not used by the main kernel or BIOS using
PHYSICAL_START, or it must be built as a relocatable image
(CONFIG_RELOCATABLE=y).
For more details see Documentation/kdump/kdump.txt
config KEXEC_JUMP
bool "kexec jump"
depends on KEXEC && HIBERNATION
---help---
Jump between original kernel and kexeced kernel and invoke
code in physical address mode via KEXEC
config PHYSICAL_START
hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP)
default "0x1000000"
---help---
This gives the physical address where the kernel is loaded.
If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
bzImage will decompress itself to above physical address and
run from there. Otherwise, bzImage will run from the address where
it has been loaded by the boot loader and will ignore above physical
address.
In normal kdump cases one does not have to set/change this option
as now bzImage can be compiled as a completely relocatable image
(CONFIG_RELOCATABLE=y) and be used to load and run from a different
address. This option is mainly useful for the folks who don't want
to use a bzImage for capturing the crash dump and want to use a
vmlinux instead. vmlinux is not relocatable hence a kernel needs
to be specifically compiled to run from a specific memory area
(normally a reserved region) and this option comes handy.
So if you are using bzImage for capturing the crash dump,
leave the value here unchanged to 0x1000000 and set
CONFIG_RELOCATABLE=y. Otherwise if you plan to use vmlinux
for capturing the crash dump change this value to start of
the reserved region. In other words, it can be set based on
the "X" value as specified in the "crashkernel=YM@XM"
command line boot parameter passed to the panic-ed
kernel. Please take a look at Documentation/kdump/kdump.txt
for more details about crash dumps.
Usage of bzImage for capturing the crash dump is recommended as
one does not have to build two kernels. Same kernel can be used
as production kernel and capture kernel. Above option should have
gone away after relocatable bzImage support is introduced. But it
is present because there are users out there who continue to use
vmlinux for dump capture. This option should go away down the
line.
Don't change this unless you know what you are doing.
config RELOCATABLE
bool "Build a relocatable kernel"
default y
---help---
This builds a kernel image that retains relocation information
so it can be loaded someplace besides the default 1MB.
The relocations tend to make the kernel binary about 10% larger,
but are discarded at runtime.
One use is for the kexec on panic case where the recovery kernel
must live at a different physical address than the primary
kernel.
Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
it has been loaded at and the compile time physical address
(CONFIG_PHYSICAL_START) is ignored.
# Relocation on x86-32 needs some additional build support
config X86_NEED_RELOCS
def_bool y
depends on X86_32 && RELOCATABLE
config PHYSICAL_ALIGN
hex "Alignment value to which kernel should be aligned" if X86_32
default "0x1000000"
range 0x2000 0x1000000
---help---
This value puts the alignment restrictions on physical address
where kernel is loaded and run from. Kernel is compiled for an
address which meets above alignment restriction.
If bootloader loads the kernel at a non-aligned address and
CONFIG_RELOCATABLE is set, kernel will move itself to nearest
address aligned to above value and run from there.
If bootloader loads the kernel at a non-aligned address and
CONFIG_RELOCATABLE is not set, kernel will ignore the run time
load address and decompress itself to the address it has been
compiled for and run from there. The address for which kernel is
compiled already meets above alignment restrictions. Hence the
end result is that kernel runs from a physical address meeting
above alignment restrictions.
Don't change this unless you know what you are doing.
config HOTPLUG_CPU
bool "Support for hot-pluggable CPUs"
depends on SMP
---help---
Say Y here to allow turning CPUs off and on. CPUs can be
controlled through /sys/devices/system/cpu.
( Note: power management support will enable this option
automatically on SMP systems. )
Say N if you want to disable CPU hotplug.
config BOOTPARAM_HOTPLUG_CPU0
bool "Set default setting of cpu0_hotpluggable"
default n
depends on HOTPLUG_CPU
---help---
Set whether default state of cpu0_hotpluggable is on or off.
Say Y here to enable CPU0 hotplug by default. If this switch
is turned on, there is no need to give cpu0_hotplug kernel
parameter and the CPU0 hotplug feature is enabled by default.
Please note: there are two known CPU0 dependencies if you want
to enable the CPU0 hotplug feature either by this switch or by
cpu0_hotplug kernel parameter.
First, resume from hibernate or suspend always starts from CPU0.
So hibernate and suspend are prevented if CPU0 is offline.
Second dependency is PIC interrupts always go to CPU0. CPU0 can not
offline if any interrupt can not migrate out of CPU0. There may
be other CPU0 dependencies.
Please make sure the dependencies are under your control before
you enable this feature.
Say N if you don't want to enable CPU0 hotplug feature by default.
You still can enable the CPU0 hotplug feature at boot by kernel
parameter cpu0_hotplug.
config DEBUG_HOTPLUG_CPU0
def_bool n
prompt "Debug CPU0 hotplug"
depends on HOTPLUG_CPU
---help---
Enabling this option offlines CPU0 (if CPU0 can be offlined) as
soon as possible and boots up userspace with CPU0 offlined. User
can online CPU0 back after boot time.
To debug CPU0 hotplug, you need to enable CPU0 offline/online
feature by either turning on CONFIG_BOOTPARAM_HOTPLUG_CPU0 during
compilation or giving cpu0_hotplug kernel parameter at boot.
If unsure, say N.
config COMPAT_VDSO
def_bool y
prompt "Compat VDSO support"
depends on X86_32 || IA32_EMULATION
---help---
Map the 32-bit VDSO to the predictable old-style address too.
Say N here if you are running a sufficiently recent glibc
version (2.3.3 or later), to remove the high-mapped
VDSO mapping and to exclusively use the randomized VDSO.
If unsure, say Y.
config CMDLINE_BOOL
bool "Built-in kernel command line"
---help---
Allow for specifying boot arguments to the kernel at
build time. On some systems (e.g. embedded ones), it is
necessary or convenient to provide some or all of the
kernel boot arguments with the kernel itself (that is,
to not rely on the boot loader to provide them.)
To compile command line arguments into the kernel,
set this option to 'Y', then fill in the
the boot arguments in CONFIG_CMDLINE.
Systems with fully functional boot loaders (i.e. non-embedded)
should leave this option set to 'N'.
config CMDLINE
string "Built-in kernel command string"
depends on CMDLINE_BOOL
default ""
---help---
Enter arguments here that should be compiled into the kernel
image and used at boot time. If the boot loader provides a
command line at boot time, it is appended to this string to
form the full kernel command line, when the system boots.
However, you can use the CONFIG_CMDLINE_OVERRIDE option to
change this behavior.
In most cases, the command line (whether built-in or provided
by the boot loader) should specify the device for the root
file system.
config CMDLINE_OVERRIDE
bool "Built-in command line overrides boot loader arguments"
depends on CMDLINE_BOOL
---help---
Set this option to 'Y' to have the kernel ignore the boot loader
command line, and use ONLY the built-in command line.
This is used to work around broken boot loaders. This should
be set to 'N' under normal conditions.
endmenu
config ARCH_ENABLE_MEMORY_HOTPLUG
def_bool y
depends on X86_64 || (X86_32 && HIGHMEM)
config ARCH_ENABLE_MEMORY_HOTREMOVE
def_bool y
depends on MEMORY_HOTPLUG
config USE_PERCPU_NUMA_NODE_ID
def_bool y
depends on NUMA
menu "Power management and ACPI options"
config ARCH_HIBERNATION_HEADER
def_bool y
depends on X86_64 && HIBERNATION
source "kernel/power/Kconfig"
source "drivers/acpi/Kconfig"
source "drivers/sfi/Kconfig"
config X86_APM_BOOT
def_bool y
depends on APM
menuconfig APM
tristate "APM (Advanced Power Management) BIOS support"
depends on X86_32 && PM_SLEEP
---help---
APM is a BIOS specification for saving power using several different
techniques. This is mostly useful for battery powered laptops with
APM compliant BIOSes. If you say Y here, the system time will be
reset after a RESUME operation, the /proc/apm device will provide
battery status information, and user-space programs will receive
notification of APM "events" (e.g. battery status change).
If you select "Y" here, you can disable actual use of the APM
BIOS by passing the "apm=off" option to the kernel at boot time.
Note that the APM support is almost completely disabled for
machines with more than one CPU.
In order to use APM, you will need supporting software. For location
and more information, read <file:Documentation/power/apm-acpi.txt>
and the Battery Powered Linux mini-HOWTO, available from
<http://www.tldp.org/docs.html#howto>.
This driver does not spin down disk drives (see the hdparm(8)
manpage ("man 8 hdparm") for that), and it doesn't turn off
VESA-compliant "green" monitors.
This driver does not support the TI 4000M TravelMate and the ACER
486/DX4/75 because they don't have compliant BIOSes. Many "green"
desktop machines also don't have compliant BIOSes, and this driver
may cause those machines to panic during the boot phase.
Generally, if you don't have a battery in your machine, there isn't
much point in using this driver and you should say N. If you get
random kernel OOPSes or reboots that don't seem to be related to
anything, try disabling/enabling this option (or disabling/enabling
APM in your BIOS).
Some other things you should try when experiencing seemingly random,
"weird" problems:
1) make sure that you have enough swap space and that it is
enabled.
2) pass the "no-hlt" option to the kernel
3) switch on floating point emulation in the kernel and pass
the "no387" option to the kernel
4) pass the "floppy=nodma" option to the kernel
5) pass the "mem=4M" option to the kernel (thereby disabling
all but the first 4 MB of RAM)
6) make sure that the CPU is not over clocked.
7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
8) disable the cache from your BIOS settings
9) install a fan for the video card or exchange video RAM
10) install a better fan for the CPU
11) exchange RAM chips
12) exchange the motherboard.
To compile this driver as a module, choose M here: the
module will be called apm.
if APM
config APM_IGNORE_USER_SUSPEND
bool "Ignore USER SUSPEND"
---help---
This option will ignore USER SUSPEND requests. On machines with a
compliant APM BIOS, you want to say N. However, on the NEC Versa M
series notebooks, it is necessary to say Y because of a BIOS bug.
config APM_DO_ENABLE
bool "Enable PM at boot time"
---help---
Enable APM features at boot time. From page 36 of the APM BIOS
specification: "When disabled, the APM BIOS does not automatically
power manage devices, enter the Standby State, enter the Suspend
State, or take power saving steps in response to CPU Idle calls."
This driver will make CPU Idle calls when Linux is idle (unless this
feature is turned off -- see "Do CPU IDLE calls", below). This
should always save battery power, but more complicated APM features
will be dependent on your BIOS implementation. You may need to turn
this option off if your computer hangs at boot time when using APM
support, or if it beeps continuously instead of suspending. Turn
this off if you have a NEC UltraLite Versa 33/C or a Toshiba
T400CDT. This is off by default since most machines do fine without
this feature.
config APM_CPU_IDLE
depends on CPU_IDLE
bool "Make CPU Idle calls when idle"
---help---
Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
On some machines, this can activate improved power savings, such as
a slowed CPU clock rate, when the machine is idle. These idle calls
are made after the idle loop has run for some length of time (e.g.,
333 mS). On some machines, this will cause a hang at boot time or
whenever the CPU becomes idle. (On machines with more than one CPU,
this option does nothing.)
config APM_DISPLAY_BLANK
bool "Enable console blanking using APM"
---help---
Enable console blanking using the APM. Some laptops can use this to
turn off the LCD backlight when the screen blanker of the Linux
virtual console blanks the screen. Note that this is only used by
the virtual console screen blanker, and won't turn off the backlight
when using the X Window system. This also doesn't have anything to
do with your VESA-compliant power-saving monitor. Further, this
option doesn't work for all laptops -- it might not turn off your
backlight at all, or it might print a lot of errors to the console,
especially if you are using gpm.
config APM_ALLOW_INTS
bool "Allow interrupts during APM BIOS calls"
---help---
Normally we disable external interrupts while we are making calls to
the APM BIOS as a measure to lessen the effects of a badly behaving
BIOS implementation. The BIOS should reenable interrupts if it
needs to. Unfortunately, some BIOSes do not -- especially those in
many of the newer IBM Thinkpads. If you experience hangs when you
suspend, try setting this to Y. Otherwise, say N.
endif # APM
source "drivers/cpufreq/Kconfig"
source "drivers/cpuidle/Kconfig"
source "drivers/idle/Kconfig"
endmenu
menu "Bus options (PCI etc.)"
config PCI
bool "PCI support"
default y
select ARCH_SUPPORTS_MSI if (X86_LOCAL_APIC && X86_IO_APIC)
---help---
Find out whether you have a PCI motherboard. PCI is the name of a
bus system, i.e. the way the CPU talks to the other stuff inside
your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
VESA. If you have PCI, say Y, otherwise N.
choice
prompt "PCI access mode"
depends on X86_32 && PCI
default PCI_GOANY
---help---
On PCI systems, the BIOS can be used to detect the PCI devices and
determine their configuration. However, some old PCI motherboards
have BIOS bugs and may crash if this is done. Also, some embedded
PCI-based systems don't have any BIOS at all. Linux can also try to
detect the PCI hardware directly without using the BIOS.
With this option, you can specify how Linux should detect the
PCI devices. If you choose "BIOS", the BIOS will be used,
if you choose "Direct", the BIOS won't be used, and if you
choose "MMConfig", then PCI Express MMCONFIG will be used.
If you choose "Any", the kernel will try MMCONFIG, then the
direct access method and falls back to the BIOS if that doesn't
work. If unsure, go with the default, which is "Any".
config PCI_GOBIOS
bool "BIOS"
config PCI_GOMMCONFIG
bool "MMConfig"
config PCI_GODIRECT
bool "Direct"
config PCI_GOOLPC
bool "OLPC XO-1"
depends on OLPC
config PCI_GOANY
bool "Any"
endchoice
config PCI_BIOS
def_bool y
depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
# x86-64 doesn't support PCI BIOS access from long mode so always go direct.
config PCI_DIRECT
def_bool y
depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC || PCI_GOMMCONFIG))
config PCI_MMCONFIG
def_bool y
depends on X86_32 && PCI && (ACPI || SFI) && (PCI_GOMMCONFIG || PCI_GOANY)
config PCI_OLPC
def_bool y
depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
config PCI_XEN
def_bool y
depends on PCI && XEN
select SWIOTLB_XEN
config PCI_DOMAINS
def_bool y
depends on PCI
config PCI_MMCONFIG
bool "Support mmconfig PCI config space access"
depends on X86_64 && PCI && ACPI
config PCI_CNB20LE_QUIRK
bool "Read CNB20LE Host Bridge Windows" if EXPERT
depends on PCI
help
Read the PCI windows out of the CNB20LE host bridge. This allows
PCI hotplug to work on systems with the CNB20LE chipset which do
not have ACPI.
There's no public spec for this chipset, and this functionality
is known to be incomplete.
You should say N unless you know you need this.
source "drivers/pci/pcie/Kconfig"
source "drivers/pci/Kconfig"
# x86_64 have no ISA slots, but can have ISA-style DMA.
config ISA_DMA_API
bool "ISA-style DMA support" if (X86_64 && EXPERT)
default y
help
Enables ISA-style DMA support for devices requiring such controllers.
If unsure, say Y.
if X86_32
config ISA
bool "ISA support"
---help---
Find out whether you have ISA slots on your motherboard. ISA is the
name of a bus system, i.e. the way the CPU talks to the other stuff
inside your box. Other bus systems are PCI, EISA, MicroChannel
(MCA) or VESA. ISA is an older system, now being displaced by PCI;
newer boards don't support it. If you have ISA, say Y, otherwise N.
config EISA
bool "EISA support"
depends on ISA
---help---
The Extended Industry Standard Architecture (EISA) bus was
developed as an open alternative to the IBM MicroChannel bus.
The EISA bus provided some of the features of the IBM MicroChannel
bus while maintaining backward compatibility with cards made for
the older ISA bus. The EISA bus saw limited use between 1988 and
1995 when it was made obsolete by the PCI bus.
Say Y here if you are building a kernel for an EISA-based machine.
Otherwise, say N.
source "drivers/eisa/Kconfig"
config SCx200
tristate "NatSemi SCx200 support"
---help---
This provides basic support for National Semiconductor's
(now AMD's) Geode processors. The driver probes for the
PCI-IDs of several on-chip devices, so its a good dependency
for other scx200_* drivers.
If compiled as a module, the driver is named scx200.
config SCx200HR_TIMER
tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
depends on SCx200
default y
---help---
This driver provides a clocksource built upon the on-chip
27MHz high-resolution timer. Its also a workaround for
NSC Geode SC-1100's buggy TSC, which loses time when the
processor goes idle (as is done by the scheduler). The
other workaround is idle=poll boot option.
config OLPC
bool "One Laptop Per Child support"
depends on !X86_PAE
select GPIOLIB
select OF
select OF_PROMTREE
select IRQ_DOMAIN
---help---
Add support for detecting the unique features of the OLPC
XO hardware.
config OLPC_XO1_PM
bool "OLPC XO-1 Power Management"
depends on OLPC && MFD_CS5535 && PM_SLEEP
select MFD_CORE
---help---
Add support for poweroff and suspend of the OLPC XO-1 laptop.
config OLPC_XO1_RTC
bool "OLPC XO-1 Real Time Clock"
depends on OLPC_XO1_PM && RTC_DRV_CMOS
---help---
Add support for the XO-1 real time clock, which can be used as a
programmable wakeup source.
config OLPC_XO1_SCI
bool "OLPC XO-1 SCI extras"
depends on OLPC && OLPC_XO1_PM
depends on INPUT=y
select POWER_SUPPLY
select GPIO_CS5535
select MFD_CORE
---help---
Add support for SCI-based features of the OLPC XO-1 laptop:
- EC-driven system wakeups
- Power button
- Ebook switch
- Lid switch
- AC adapter status updates
- Battery status updates
config OLPC_XO15_SCI
bool "OLPC XO-1.5 SCI extras"
depends on OLPC && ACPI
select POWER_SUPPLY
---help---
Add support for SCI-based features of the OLPC XO-1.5 laptop:
- EC-driven system wakeups
- AC adapter status updates
- Battery status updates
config ALIX
bool "PCEngines ALIX System Support (LED setup)"
select GPIOLIB
---help---
This option enables system support for the PCEngines ALIX.
At present this just sets up LEDs for GPIO control on
ALIX2/3/6 boards. However, other system specific setup should
get added here.
Note: You must still enable the drivers for GPIO and LED support
(GPIO_CS5535 & LEDS_GPIO) to actually use the LEDs
Note: You have to set alix.force=1 for boards with Award BIOS.
config NET5501
bool "Soekris Engineering net5501 System Support (LEDS, GPIO, etc)"
select GPIOLIB
---help---
This option enables system support for the Soekris Engineering net5501.
config GEOS
bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)"
select GPIOLIB
depends on DMI
---help---
This option enables system support for the Traverse Technologies GEOS.
config TS5500
bool "Technologic Systems TS-5500 platform support"
depends on MELAN
select CHECK_SIGNATURE
select NEW_LEDS
select LEDS_CLASS
---help---
This option enables system support for the Technologic Systems TS-5500.
endif # X86_32
config AMD_NB
def_bool y
depends on CPU_SUP_AMD && PCI
source "drivers/pcmcia/Kconfig"
source "drivers/pci/hotplug/Kconfig"
config RAPIDIO
tristate "RapidIO support"
depends on PCI
default n
help
If enabled this option will include drivers and the core
infrastructure code to support RapidIO interconnect devices.
source "drivers/rapidio/Kconfig"
endmenu
menu "Executable file formats / Emulations"
source "fs/Kconfig.binfmt"
config IA32_EMULATION
bool "IA32 Emulation"
depends on X86_64
select BINFMT_ELF
select COMPAT_BINFMT_ELF
select HAVE_UID16
---help---
Include code to run legacy 32-bit programs under a
64-bit kernel. You should likely turn this on, unless you're
100% sure that you don't have any 32-bit programs left.
config IA32_AOUT
tristate "IA32 a.out support"
depends on IA32_EMULATION
---help---
Support old a.out binaries in the 32bit emulation.
config X86_X32
bool "x32 ABI for 64-bit mode"
depends on X86_64 && IA32_EMULATION
---help---
Include code to run binaries for the x32 native 32-bit ABI
for 64-bit processors. An x32 process gets access to the
full 64-bit register file and wide data path while leaving
pointers at 32 bits for smaller memory footprint.
You will need a recent binutils (2.22 or later) with
elf32_x86_64 support enabled to compile a kernel with this
option set.
config COMPAT
def_bool y
depends on IA32_EMULATION || X86_X32
select ARCH_WANT_OLD_COMPAT_IPC
if COMPAT
config COMPAT_FOR_U64_ALIGNMENT
def_bool y
config SYSVIPC_COMPAT
def_bool y
depends on SYSVIPC
config KEYS_COMPAT
def_bool y
depends on KEYS
endif
endmenu
config HAVE_ATOMIC_IOMAP
def_bool y
depends on X86_32
config HAVE_TEXT_POKE_SMP
bool
select STOP_MACHINE if SMP
config X86_DEV_DMA_OPS
bool
depends on X86_64 || STA2X11
config X86_DMA_REMAP
bool
depends on STA2X11
source "net/Kconfig"
source "drivers/Kconfig"
source "drivers/firmware/Kconfig"
source "fs/Kconfig"
source "arch/x86/Kconfig.debug"
source "security/Kconfig"
source "crypto/Kconfig"
source "arch/x86/kvm/Kconfig"
source "lib/Kconfig"