kernel-fxtec-pro1x/drivers/ssb/driver_extif.c
Michael Buesch 53521d8c90 ssb: Make the GPIO API reentrancy safe
This fixes the GPIO API to be reentrancy safe.

Signed-off-by: Michael Buesch <mb@bu3sch.de>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-02-20 20:11:49 -05:00

146 lines
3.7 KiB
C

/*
* Sonics Silicon Backplane
* Broadcom EXTIF core driver
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
* Copyright 2006, 2007, Felix Fietkau <nbd@openwrt.org>
* Copyright 2007, Aurelien Jarno <aurelien@aurel32.net>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/serial_reg.h>
#include "ssb_private.h"
static inline u32 extif_read32(struct ssb_extif *extif, u16 offset)
{
return ssb_read32(extif->dev, offset);
}
static inline void extif_write32(struct ssb_extif *extif, u16 offset, u32 value)
{
ssb_write32(extif->dev, offset, value);
}
static inline u32 extif_write32_masked(struct ssb_extif *extif, u16 offset,
u32 mask, u32 value)
{
value &= mask;
value |= extif_read32(extif, offset) & ~mask;
extif_write32(extif, offset, value);
return value;
}
#ifdef CONFIG_SSB_SERIAL
static bool serial_exists(u8 *regs)
{
u8 save_mcr, msr = 0;
if (regs) {
save_mcr = regs[UART_MCR];
regs[UART_MCR] = (UART_MCR_LOOP | UART_MCR_OUT2 | UART_MCR_RTS);
msr = regs[UART_MSR] & (UART_MSR_DCD | UART_MSR_RI
| UART_MSR_CTS | UART_MSR_DSR);
regs[UART_MCR] = save_mcr;
}
return (msr == (UART_MSR_DCD | UART_MSR_CTS));
}
int ssb_extif_serial_init(struct ssb_extif *extif, struct ssb_serial_port *ports)
{
u32 i, nr_ports = 0;
/* Disable GPIO interrupt initially */
extif_write32(extif, SSB_EXTIF_GPIO_INTPOL, 0);
extif_write32(extif, SSB_EXTIF_GPIO_INTMASK, 0);
for (i = 0; i < 2; i++) {
void __iomem *uart_regs;
uart_regs = ioremap_nocache(SSB_EUART, 16);
if (uart_regs) {
uart_regs += (i * 8);
if (serial_exists(uart_regs) && ports) {
extif_write32(extif, SSB_EXTIF_GPIO_INTMASK, 2);
nr_ports++;
ports[i].regs = uart_regs;
ports[i].irq = 2;
ports[i].baud_base = 13500000;
ports[i].reg_shift = 0;
}
iounmap(uart_regs);
}
}
return nr_ports;
}
#endif /* CONFIG_SSB_SERIAL */
void ssb_extif_timing_init(struct ssb_extif *extif, unsigned long ns)
{
u32 tmp;
/* Initialize extif so we can get to the LEDs and external UART */
extif_write32(extif, SSB_EXTIF_PROG_CFG, SSB_EXTCFG_EN);
/* Set timing for the flash */
tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT;
tmp |= DIV_ROUND_UP(40, ns) << SSB_PROG_WCNT_1_SHIFT;
tmp |= DIV_ROUND_UP(120, ns);
extif_write32(extif, SSB_EXTIF_PROG_WAITCNT, tmp);
/* Set programmable interface timing for external uart */
tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT;
tmp |= DIV_ROUND_UP(20, ns) << SSB_PROG_WCNT_2_SHIFT;
tmp |= DIV_ROUND_UP(100, ns) << SSB_PROG_WCNT_1_SHIFT;
tmp |= DIV_ROUND_UP(120, ns);
extif_write32(extif, SSB_EXTIF_PROG_WAITCNT, tmp);
}
void ssb_extif_get_clockcontrol(struct ssb_extif *extif,
u32 *pll_type, u32 *n, u32 *m)
{
*pll_type = SSB_PLLTYPE_1;
*n = extif_read32(extif, SSB_EXTIF_CLOCK_N);
*m = extif_read32(extif, SSB_EXTIF_CLOCK_SB);
}
void ssb_extif_watchdog_timer_set(struct ssb_extif *extif,
u32 ticks)
{
extif_write32(extif, SSB_EXTIF_WATCHDOG, ticks);
}
u32 ssb_extif_gpio_in(struct ssb_extif *extif, u32 mask)
{
return extif_read32(extif, SSB_EXTIF_GPIO_IN) & mask;
}
u32 ssb_extif_gpio_out(struct ssb_extif *extif, u32 mask, u32 value)
{
return extif_write32_masked(extif, SSB_EXTIF_GPIO_OUT(0),
mask, value);
}
u32 ssb_extif_gpio_outen(struct ssb_extif *extif, u32 mask, u32 value)
{
return extif_write32_masked(extif, SSB_EXTIF_GPIO_OUTEN(0),
mask, value);
}
u32 ssb_extif_gpio_polarity(struct ssb_extif *extif, u32 mask, u32 value)
{
return extif_write32_masked(extif, SSB_EXTIF_GPIO_INTPOL, mask, value);
}
u32 ssb_extif_gpio_intmask(struct ssb_extif *extif, u32 mask, u32 value)
{
return extif_write32_masked(extif, SSB_EXTIF_GPIO_INTMASK, mask, value);
}