kernel-fxtec-pro1x/drivers/ieee1394/sbp2.c
Stefan Richter a80614d1ad sbp2: update 36byte inquiry workaround (fix compatibility regression)
Since about Linux 2.6.14, sbp2's inquiry workaround did not work anymore
due to changes in the SCSI layer. Update it to become effective again.
Testing one of the two known affected bridges has shown that skip_ms_page_8
is required as well.

Also, make force_inquiry_hack tunable via /sys/module/sbp2/parameters.

Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
Signed-off-by: Jody McIntyre <scjody@modernduck.com>
(cherry picked from 99496037c6744fd938ffb8ccfc8fc91762322ff8 commit)
2006-02-23 00:29:31 -05:00

2663 lines
77 KiB
C

/*
* sbp2.c - SBP-2 protocol driver for IEEE-1394
*
* Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
* jamesg@filanet.com (JSG)
*
* Copyright (C) 2003 Ben Collins <bcollins@debian.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
* Brief Description:
*
* This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
* under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
* driver. It also registers as a SCSI lower-level driver in order to accept
* SCSI commands for transport using SBP-2.
*
* You may access any attached SBP-2 storage devices as if they were SCSI
* devices (e.g. mount /dev/sda1, fdisk, mkfs, etc.).
*
* Current Issues:
*
* - Error Handling: SCSI aborts and bus reset requests are handled somewhat
* but the code needs additional debugging.
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/fs.h>
#include <linux/poll.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/blkdev.h>
#include <linux/smp_lock.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <asm/current.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/scatterlist.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include "csr1212.h"
#include "ieee1394.h"
#include "ieee1394_types.h"
#include "ieee1394_core.h"
#include "nodemgr.h"
#include "hosts.h"
#include "highlevel.h"
#include "ieee1394_transactions.h"
#include "sbp2.h"
/*
* Module load parameter definitions
*/
/*
* Change max_speed on module load if you have a bad IEEE-1394
* controller that has trouble running 2KB packets at 400mb.
*
* NOTE: On certain OHCI parts I have seen short packets on async transmit
* (probably due to PCI latency/throughput issues with the part). You can
* bump down the speed if you are running into problems.
*/
static int max_speed = IEEE1394_SPEED_MAX;
module_param(max_speed, int, 0644);
MODULE_PARM_DESC(max_speed, "Force max speed (3 = 800mb, 2 = 400mb, 1 = 200mb, 0 = 100mb)");
/*
* Set serialize_io to 1 if you'd like only one scsi command sent
* down to us at a time (debugging). This might be necessary for very
* badly behaved sbp2 devices.
*
* TODO: Make this configurable per device.
*/
static int serialize_io = 1;
module_param(serialize_io, int, 0444);
MODULE_PARM_DESC(serialize_io, "Serialize I/O coming from scsi drivers (default = 1, faster = 0)");
/*
* Bump up max_sectors if you'd like to support very large sized
* transfers. Please note that some older sbp2 bridge chips are broken for
* transfers greater or equal to 128KB. Default is a value of 255
* sectors, or just under 128KB (at 512 byte sector size). I can note that
* the Oxsemi sbp2 chipsets have no problems supporting very large
* transfer sizes.
*/
static int max_sectors = SBP2_MAX_SECTORS;
module_param(max_sectors, int, 0444);
MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported (default = 255)");
/*
* Exclusive login to sbp2 device? In most cases, the sbp2 driver should
* do an exclusive login, as it's generally unsafe to have two hosts
* talking to a single sbp2 device at the same time (filesystem coherency,
* etc.). If you're running an sbp2 device that supports multiple logins,
* and you're either running read-only filesystems or some sort of special
* filesystem supporting multiple hosts (one such filesystem is OpenGFS,
* see opengfs.sourceforge.net for more info), then set exclusive_login
* to zero. Note: The Oxsemi OXFW911 sbp2 chipset supports up to four
* concurrent logins.
*/
static int exclusive_login = 1;
module_param(exclusive_login, int, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device (default = 1)");
/*
* SCSI inquiry hack for really badly behaved sbp2 devices. Turn this on
* if your sbp2 device is not properly handling the SCSI inquiry command.
* This hack makes the inquiry look more like a typical MS Windows inquiry
* by enforcing 36 byte inquiry and avoiding access to mode_sense page 8.
*
* If force_inquiry_hack=1 is required for your device to work,
* please submit the logged sbp2_firmware_revision value of this device to
* the linux1394-devel mailing list.
*/
static int force_inquiry_hack;
module_param(force_inquiry_hack, int, 0644);
MODULE_PARM_DESC(force_inquiry_hack, "Force SCSI inquiry hack (default = 0)");
/*
* Export information about protocols/devices supported by this driver.
*/
static struct ieee1394_device_id sbp2_id_table[] = {
{
.match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
.version = SBP2_SW_VERSION_ENTRY & 0xffffff},
{}
};
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
/*
* Debug levels, configured via kernel config, or enable here.
*/
#define CONFIG_IEEE1394_SBP2_DEBUG 0
/* #define CONFIG_IEEE1394_SBP2_DEBUG_ORBS */
/* #define CONFIG_IEEE1394_SBP2_DEBUG_DMA */
/* #define CONFIG_IEEE1394_SBP2_DEBUG 1 */
/* #define CONFIG_IEEE1394_SBP2_DEBUG 2 */
/* #define CONFIG_IEEE1394_SBP2_PACKET_DUMP */
#ifdef CONFIG_IEEE1394_SBP2_DEBUG_ORBS
#define SBP2_ORB_DEBUG(fmt, args...) HPSB_ERR("sbp2(%s): "fmt, __FUNCTION__, ## args)
static u32 global_outstanding_command_orbs = 0;
#define outstanding_orb_incr global_outstanding_command_orbs++
#define outstanding_orb_decr global_outstanding_command_orbs--
#else
#define SBP2_ORB_DEBUG(fmt, args...)
#define outstanding_orb_incr
#define outstanding_orb_decr
#endif
#ifdef CONFIG_IEEE1394_SBP2_DEBUG_DMA
#define SBP2_DMA_ALLOC(fmt, args...) \
HPSB_ERR("sbp2(%s)alloc(%d): "fmt, __FUNCTION__, \
++global_outstanding_dmas, ## args)
#define SBP2_DMA_FREE(fmt, args...) \
HPSB_ERR("sbp2(%s)free(%d): "fmt, __FUNCTION__, \
--global_outstanding_dmas, ## args)
static u32 global_outstanding_dmas = 0;
#else
#define SBP2_DMA_ALLOC(fmt, args...)
#define SBP2_DMA_FREE(fmt, args...)
#endif
#if CONFIG_IEEE1394_SBP2_DEBUG >= 2
#define SBP2_DEBUG(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
#define SBP2_INFO(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
#define SBP2_NOTICE(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
#define SBP2_WARN(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
#elif CONFIG_IEEE1394_SBP2_DEBUG == 1
#define SBP2_DEBUG(fmt, args...) HPSB_DEBUG("sbp2: "fmt, ## args)
#define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
#define SBP2_NOTICE(fmt, args...) HPSB_NOTICE("sbp2: "fmt, ## args)
#define SBP2_WARN(fmt, args...) HPSB_WARN("sbp2: "fmt, ## args)
#else
#define SBP2_DEBUG(fmt, args...)
#define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
#define SBP2_NOTICE(fmt, args...) HPSB_NOTICE("sbp2: "fmt, ## args)
#define SBP2_WARN(fmt, args...) HPSB_WARN("sbp2: "fmt, ## args)
#endif
#define SBP2_ERR(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
/*
* Globals
*/
static void sbp2scsi_complete_all_commands(struct scsi_id_instance_data *scsi_id,
u32 status);
static void sbp2scsi_complete_command(struct scsi_id_instance_data *scsi_id,
u32 scsi_status, struct scsi_cmnd *SCpnt,
void (*done)(struct scsi_cmnd *));
static struct scsi_host_template scsi_driver_template;
static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC };
static void sbp2_host_reset(struct hpsb_host *host);
static int sbp2_probe(struct device *dev);
static int sbp2_remove(struct device *dev);
static int sbp2_update(struct unit_directory *ud);
static struct hpsb_highlevel sbp2_highlevel = {
.name = SBP2_DEVICE_NAME,
.host_reset = sbp2_host_reset,
};
static struct hpsb_address_ops sbp2_ops = {
.write = sbp2_handle_status_write
};
#ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
static struct hpsb_address_ops sbp2_physdma_ops = {
.read = sbp2_handle_physdma_read,
.write = sbp2_handle_physdma_write,
};
#endif
static struct hpsb_protocol_driver sbp2_driver = {
.name = "SBP2 Driver",
.id_table = sbp2_id_table,
.update = sbp2_update,
.driver = {
.name = SBP2_DEVICE_NAME,
.bus = &ieee1394_bus_type,
.probe = sbp2_probe,
.remove = sbp2_remove,
},
};
/*
* List of device firmwares that require the inquiry hack.
* Yields a few false positives but did not break other devices so far.
*/
static u32 sbp2_broken_inquiry_list[] = {
0x00002800, /* Stefan Richter <stefanr@s5r6.in-berlin.de> */
/* DViCO Momobay CX-1 */
0x00000200 /* Andreas Plesch <plesch@fas.harvard.edu> */
/* QPS Fire DVDBurner */
};
/**************************************
* General utility functions
**************************************/
#ifndef __BIG_ENDIAN
/*
* Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
*/
static __inline__ void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
{
u32 *temp = buffer;
for (length = (length >> 2); length--; )
temp[length] = be32_to_cpu(temp[length]);
return;
}
/*
* Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
*/
static __inline__ void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
{
u32 *temp = buffer;
for (length = (length >> 2); length--; )
temp[length] = cpu_to_be32(temp[length]);
return;
}
#else /* BIG_ENDIAN */
/* Why waste the cpu cycles? */
#define sbp2util_be32_to_cpu_buffer(x,y)
#define sbp2util_cpu_to_be32_buffer(x,y)
#endif
#ifdef CONFIG_IEEE1394_SBP2_PACKET_DUMP
/*
* Debug packet dump routine. Length is in bytes.
*/
static void sbp2util_packet_dump(void *buffer, int length, char *dump_name,
u32 dump_phys_addr)
{
int i;
unsigned char *dump = buffer;
if (!dump || !length || !dump_name)
return;
if (dump_phys_addr)
printk("[%s, 0x%x]", dump_name, dump_phys_addr);
else
printk("[%s]", dump_name);
for (i = 0; i < length; i++) {
if (i > 0x3f) {
printk("\n ...");
break;
}
if ((i & 0x3) == 0)
printk(" ");
if ((i & 0xf) == 0)
printk("\n ");
printk("%02x ", (int)dump[i]);
}
printk("\n");
return;
}
#else
#define sbp2util_packet_dump(w,x,y,z)
#endif
/*
* Goofy routine that basically does a down_timeout function.
*/
static int sbp2util_down_timeout(atomic_t *done, int timeout)
{
int i;
for (i = timeout; (i > 0 && atomic_read(done) == 0); i-= HZ/10) {
if (msleep_interruptible(100)) /* 100ms */
return 1;
}
return (i > 0) ? 0 : 1;
}
/* Free's an allocated packet */
static void sbp2_free_packet(struct hpsb_packet *packet)
{
hpsb_free_tlabel(packet);
hpsb_free_packet(packet);
}
/* This is much like hpsb_node_write(), except it ignores the response
* subaction and returns immediately. Can be used from interrupts.
*/
static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
quadlet_t *buffer, size_t length)
{
struct hpsb_packet *packet;
packet = hpsb_make_writepacket(ne->host, ne->nodeid,
addr, buffer, length);
if (!packet)
return -ENOMEM;
hpsb_set_packet_complete_task(packet,
(void (*)(void *))sbp2_free_packet,
packet);
hpsb_node_fill_packet(ne, packet);
if (hpsb_send_packet(packet) < 0) {
sbp2_free_packet(packet);
return -EIO;
}
return 0;
}
/*
* This function is called to create a pool of command orbs used for
* command processing. It is called when a new sbp2 device is detected.
*/
static int sbp2util_create_command_orb_pool(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
int i;
unsigned long flags, orbs;
struct sbp2_command_info *command;
orbs = serialize_io ? 2 : SBP2_MAX_CMDS;
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
for (i = 0; i < orbs; i++) {
command = kzalloc(sizeof(*command), GFP_ATOMIC);
if (!command) {
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock,
flags);
return -ENOMEM;
}
command->command_orb_dma =
pci_map_single(hi->host->pdev, &command->command_orb,
sizeof(struct sbp2_command_orb),
PCI_DMA_BIDIRECTIONAL);
SBP2_DMA_ALLOC("single command orb DMA");
command->sge_dma =
pci_map_single(hi->host->pdev,
&command->scatter_gather_element,
sizeof(command->scatter_gather_element),
PCI_DMA_BIDIRECTIONAL);
SBP2_DMA_ALLOC("scatter_gather_element");
INIT_LIST_HEAD(&command->list);
list_add_tail(&command->list, &scsi_id->sbp2_command_orb_completed);
}
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
return 0;
}
/*
* This function is called to delete a pool of command orbs.
*/
static void sbp2util_remove_command_orb_pool(struct scsi_id_instance_data *scsi_id)
{
struct hpsb_host *host = scsi_id->hi->host;
struct list_head *lh, *next;
struct sbp2_command_info *command;
unsigned long flags;
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
if (!list_empty(&scsi_id->sbp2_command_orb_completed)) {
list_for_each_safe(lh, next, &scsi_id->sbp2_command_orb_completed) {
command = list_entry(lh, struct sbp2_command_info, list);
/* Release our generic DMA's */
pci_unmap_single(host->pdev, command->command_orb_dma,
sizeof(struct sbp2_command_orb),
PCI_DMA_BIDIRECTIONAL);
SBP2_DMA_FREE("single command orb DMA");
pci_unmap_single(host->pdev, command->sge_dma,
sizeof(command->scatter_gather_element),
PCI_DMA_BIDIRECTIONAL);
SBP2_DMA_FREE("scatter_gather_element");
kfree(command);
}
}
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
return;
}
/*
* This function finds the sbp2_command for a given outstanding command
* orb.Only looks at the inuse list.
*/
static struct sbp2_command_info *sbp2util_find_command_for_orb(
struct scsi_id_instance_data *scsi_id, dma_addr_t orb)
{
struct sbp2_command_info *command;
unsigned long flags;
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
if (!list_empty(&scsi_id->sbp2_command_orb_inuse)) {
list_for_each_entry(command, &scsi_id->sbp2_command_orb_inuse, list) {
if (command->command_orb_dma == orb) {
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
return command;
}
}
}
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
SBP2_ORB_DEBUG("could not match command orb %x", (unsigned int)orb);
return NULL;
}
/*
* This function finds the sbp2_command for a given outstanding SCpnt.
* Only looks at the inuse list.
*/
static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(struct scsi_id_instance_data *scsi_id, void *SCpnt)
{
struct sbp2_command_info *command;
unsigned long flags;
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
if (!list_empty(&scsi_id->sbp2_command_orb_inuse)) {
list_for_each_entry(command, &scsi_id->sbp2_command_orb_inuse, list) {
if (command->Current_SCpnt == SCpnt) {
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
return command;
}
}
}
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
return NULL;
}
/*
* This function allocates a command orb used to send a scsi command.
*/
static struct sbp2_command_info *sbp2util_allocate_command_orb(
struct scsi_id_instance_data *scsi_id,
struct scsi_cmnd *Current_SCpnt,
void (*Current_done)(struct scsi_cmnd *))
{
struct list_head *lh;
struct sbp2_command_info *command = NULL;
unsigned long flags;
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
if (!list_empty(&scsi_id->sbp2_command_orb_completed)) {
lh = scsi_id->sbp2_command_orb_completed.next;
list_del(lh);
command = list_entry(lh, struct sbp2_command_info, list);
command->Current_done = Current_done;
command->Current_SCpnt = Current_SCpnt;
list_add_tail(&command->list, &scsi_id->sbp2_command_orb_inuse);
} else {
SBP2_ERR("sbp2util_allocate_command_orb - No orbs available!");
}
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
return command;
}
/* Free our DMA's */
static void sbp2util_free_command_dma(struct sbp2_command_info *command)
{
struct scsi_id_instance_data *scsi_id =
(struct scsi_id_instance_data *)command->Current_SCpnt->device->host->hostdata[0];
struct hpsb_host *host;
if (!scsi_id) {
printk(KERN_ERR "%s: scsi_id == NULL\n", __FUNCTION__);
return;
}
host = scsi_id->ud->ne->host;
if (command->cmd_dma) {
if (command->dma_type == CMD_DMA_SINGLE) {
pci_unmap_single(host->pdev, command->cmd_dma,
command->dma_size, command->dma_dir);
SBP2_DMA_FREE("single bulk");
} else if (command->dma_type == CMD_DMA_PAGE) {
pci_unmap_page(host->pdev, command->cmd_dma,
command->dma_size, command->dma_dir);
SBP2_DMA_FREE("single page");
} /* XXX: Check for CMD_DMA_NONE bug */
command->dma_type = CMD_DMA_NONE;
command->cmd_dma = 0;
}
if (command->sge_buffer) {
pci_unmap_sg(host->pdev, command->sge_buffer,
command->dma_size, command->dma_dir);
SBP2_DMA_FREE("scatter list");
command->sge_buffer = NULL;
}
}
/*
* This function moves a command to the completed orb list.
*/
static void sbp2util_mark_command_completed(struct scsi_id_instance_data *scsi_id,
struct sbp2_command_info *command)
{
unsigned long flags;
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
list_del(&command->list);
sbp2util_free_command_dma(command);
list_add_tail(&command->list, &scsi_id->sbp2_command_orb_completed);
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
}
/*
* Is scsi_id valid? Is the 1394 node still present?
*/
static inline int sbp2util_node_is_available(struct scsi_id_instance_data *scsi_id)
{
return scsi_id && scsi_id->ne && !scsi_id->ne->in_limbo;
}
/*********************************************
* IEEE-1394 core driver stack related section
*********************************************/
static struct scsi_id_instance_data *sbp2_alloc_device(struct unit_directory *ud);
static int sbp2_probe(struct device *dev)
{
struct unit_directory *ud;
struct scsi_id_instance_data *scsi_id;
SBP2_DEBUG("sbp2_probe");
ud = container_of(dev, struct unit_directory, device);
/* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
* instead. */
if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
return -ENODEV;
scsi_id = sbp2_alloc_device(ud);
if (!scsi_id)
return -ENOMEM;
sbp2_parse_unit_directory(scsi_id, ud);
return sbp2_start_device(scsi_id);
}
static int sbp2_remove(struct device *dev)
{
struct unit_directory *ud;
struct scsi_id_instance_data *scsi_id;
struct scsi_device *sdev;
SBP2_DEBUG("sbp2_remove");
ud = container_of(dev, struct unit_directory, device);
scsi_id = ud->device.driver_data;
if (!scsi_id)
return 0;
if (scsi_id->scsi_host) {
/* Get rid of enqueued commands if there is no chance to
* send them. */
if (!sbp2util_node_is_available(scsi_id))
sbp2scsi_complete_all_commands(scsi_id, DID_NO_CONNECT);
/* scsi_remove_device() will trigger shutdown functions of SCSI
* highlevel drivers which would deadlock if blocked. */
scsi_unblock_requests(scsi_id->scsi_host);
}
sdev = scsi_id->sdev;
if (sdev) {
scsi_id->sdev = NULL;
scsi_remove_device(sdev);
}
sbp2_logout_device(scsi_id);
sbp2_remove_device(scsi_id);
return 0;
}
static int sbp2_update(struct unit_directory *ud)
{
struct scsi_id_instance_data *scsi_id = ud->device.driver_data;
SBP2_DEBUG("sbp2_update");
if (sbp2_reconnect_device(scsi_id)) {
/*
* Ok, reconnect has failed. Perhaps we didn't
* reconnect fast enough. Try doing a regular login, but
* first do a logout just in case of any weirdness.
*/
sbp2_logout_device(scsi_id);
if (sbp2_login_device(scsi_id)) {
/* Login failed too, just fail, and the backend
* will call our sbp2_remove for us */
SBP2_ERR("Failed to reconnect to sbp2 device!");
return -EBUSY;
}
}
/* Set max retries to something large on the device. */
sbp2_set_busy_timeout(scsi_id);
/* Do a SBP-2 fetch agent reset. */
sbp2_agent_reset(scsi_id, 1);
/* Get the max speed and packet size that we can use. */
sbp2_max_speed_and_size(scsi_id);
/* Complete any pending commands with busy (so they get
* retried) and remove them from our queue
*/
sbp2scsi_complete_all_commands(scsi_id, DID_BUS_BUSY);
/* Make sure we unblock requests (since this is likely after a bus
* reset). */
scsi_unblock_requests(scsi_id->scsi_host);
return 0;
}
/* This functions is called by the sbp2_probe, for each new device. We now
* allocate one scsi host for each scsi_id (unit directory). */
static struct scsi_id_instance_data *sbp2_alloc_device(struct unit_directory *ud)
{
struct sbp2scsi_host_info *hi;
struct Scsi_Host *scsi_host = NULL;
struct scsi_id_instance_data *scsi_id = NULL;
SBP2_DEBUG("sbp2_alloc_device");
scsi_id = kzalloc(sizeof(*scsi_id), GFP_KERNEL);
if (!scsi_id) {
SBP2_ERR("failed to create scsi_id");
goto failed_alloc;
}
scsi_id->ne = ud->ne;
scsi_id->ud = ud;
scsi_id->speed_code = IEEE1394_SPEED_100;
scsi_id->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
atomic_set(&scsi_id->sbp2_login_complete, 0);
INIT_LIST_HEAD(&scsi_id->sbp2_command_orb_inuse);
INIT_LIST_HEAD(&scsi_id->sbp2_command_orb_completed);
INIT_LIST_HEAD(&scsi_id->scsi_list);
spin_lock_init(&scsi_id->sbp2_command_orb_lock);
scsi_id->sbp2_lun = 0;
ud->device.driver_data = scsi_id;
hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
if (!hi) {
hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host, sizeof(*hi));
if (!hi) {
SBP2_ERR("failed to allocate hostinfo");
goto failed_alloc;
}
SBP2_DEBUG("sbp2_alloc_device: allocated hostinfo");
hi->host = ud->ne->host;
INIT_LIST_HEAD(&hi->scsi_ids);
#ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
/* Handle data movement if physical dma is not
* enabled/supportedon host controller */
hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host, &sbp2_physdma_ops,
0x0ULL, 0xfffffffcULL);
#endif
}
scsi_id->hi = hi;
list_add_tail(&scsi_id->scsi_list, &hi->scsi_ids);
/* Register the status FIFO address range. We could use the same FIFO
* for targets at different nodes. However we need different FIFOs per
* target in order to support multi-unit devices. */
scsi_id->status_fifo_addr = hpsb_allocate_and_register_addrspace(
&sbp2_highlevel, ud->ne->host, &sbp2_ops,
sizeof(struct sbp2_status_block), sizeof(quadlet_t),
~0ULL, ~0ULL);
if (!scsi_id->status_fifo_addr) {
SBP2_ERR("failed to allocate status FIFO address range");
goto failed_alloc;
}
/* Register our host with the SCSI stack. */
scsi_host = scsi_host_alloc(&scsi_driver_template,
sizeof(unsigned long));
if (!scsi_host) {
SBP2_ERR("failed to register scsi host");
goto failed_alloc;
}
scsi_host->hostdata[0] = (unsigned long)scsi_id;
if (!scsi_add_host(scsi_host, &ud->device)) {
scsi_id->scsi_host = scsi_host;
return scsi_id;
}
SBP2_ERR("failed to add scsi host");
scsi_host_put(scsi_host);
failed_alloc:
sbp2_remove_device(scsi_id);
return NULL;
}
static void sbp2_host_reset(struct hpsb_host *host)
{
struct sbp2scsi_host_info *hi;
struct scsi_id_instance_data *scsi_id;
hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
if (hi) {
list_for_each_entry(scsi_id, &hi->scsi_ids, scsi_list)
scsi_block_requests(scsi_id->scsi_host);
}
}
/*
* This function is where we first pull the node unique ids, and then
* allocate memory and register a SBP-2 device.
*/
static int sbp2_start_device(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
int error;
SBP2_DEBUG("sbp2_start_device");
/* Login FIFO DMA */
scsi_id->login_response =
pci_alloc_consistent(hi->host->pdev,
sizeof(struct sbp2_login_response),
&scsi_id->login_response_dma);
if (!scsi_id->login_response)
goto alloc_fail;
SBP2_DMA_ALLOC("consistent DMA region for login FIFO");
/* Query logins ORB DMA */
scsi_id->query_logins_orb =
pci_alloc_consistent(hi->host->pdev,
sizeof(struct sbp2_query_logins_orb),
&scsi_id->query_logins_orb_dma);
if (!scsi_id->query_logins_orb)
goto alloc_fail;
SBP2_DMA_ALLOC("consistent DMA region for query logins ORB");
/* Query logins response DMA */
scsi_id->query_logins_response =
pci_alloc_consistent(hi->host->pdev,
sizeof(struct sbp2_query_logins_response),
&scsi_id->query_logins_response_dma);
if (!scsi_id->query_logins_response)
goto alloc_fail;
SBP2_DMA_ALLOC("consistent DMA region for query logins response");
/* Reconnect ORB DMA */
scsi_id->reconnect_orb =
pci_alloc_consistent(hi->host->pdev,
sizeof(struct sbp2_reconnect_orb),
&scsi_id->reconnect_orb_dma);
if (!scsi_id->reconnect_orb)
goto alloc_fail;
SBP2_DMA_ALLOC("consistent DMA region for reconnect ORB");
/* Logout ORB DMA */
scsi_id->logout_orb =
pci_alloc_consistent(hi->host->pdev,
sizeof(struct sbp2_logout_orb),
&scsi_id->logout_orb_dma);
if (!scsi_id->logout_orb)
goto alloc_fail;
SBP2_DMA_ALLOC("consistent DMA region for logout ORB");
/* Login ORB DMA */
scsi_id->login_orb =
pci_alloc_consistent(hi->host->pdev,
sizeof(struct sbp2_login_orb),
&scsi_id->login_orb_dma);
if (!scsi_id->login_orb)
goto alloc_fail;
SBP2_DMA_ALLOC("consistent DMA region for login ORB");
SBP2_DEBUG("New SBP-2 device inserted, SCSI ID = %x", scsi_id->ud->id);
/*
* Create our command orb pool
*/
if (sbp2util_create_command_orb_pool(scsi_id)) {
SBP2_ERR("sbp2util_create_command_orb_pool failed!");
sbp2_remove_device(scsi_id);
return -ENOMEM;
}
/* Schedule a timeout here. The reason is that we may be so close
* to a bus reset, that the device is not available for logins.
* This can happen when the bus reset is caused by the host
* connected to the sbp2 device being removed. That host would
* have a certain amount of time to relogin before the sbp2 device
* allows someone else to login instead. One second makes sense. */
msleep_interruptible(1000);
if (signal_pending(current)) {
SBP2_WARN("aborting sbp2_start_device due to event");
sbp2_remove_device(scsi_id);
return -EINTR;
}
/*
* Login to the sbp-2 device
*/
if (sbp2_login_device(scsi_id)) {
/* Login failed, just remove the device. */
sbp2_remove_device(scsi_id);
return -EBUSY;
}
/*
* Set max retries to something large on the device
*/
sbp2_set_busy_timeout(scsi_id);
/*
* Do a SBP-2 fetch agent reset
*/
sbp2_agent_reset(scsi_id, 1);
/*
* Get the max speed and packet size that we can use
*/
sbp2_max_speed_and_size(scsi_id);
/* Add this device to the scsi layer now */
error = scsi_add_device(scsi_id->scsi_host, 0, scsi_id->ud->id, 0);
if (error) {
SBP2_ERR("scsi_add_device failed");
sbp2_logout_device(scsi_id);
sbp2_remove_device(scsi_id);
return error;
}
return 0;
alloc_fail:
SBP2_ERR("Could not allocate memory for scsi_id");
sbp2_remove_device(scsi_id);
return -ENOMEM;
}
/*
* This function removes an sbp2 device from the sbp2scsi_host_info struct.
*/
static void sbp2_remove_device(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi;
SBP2_DEBUG("sbp2_remove_device");
if (!scsi_id)
return;
hi = scsi_id->hi;
/* This will remove our scsi device aswell */
if (scsi_id->scsi_host) {
scsi_remove_host(scsi_id->scsi_host);
scsi_host_put(scsi_id->scsi_host);
}
sbp2util_remove_command_orb_pool(scsi_id);
list_del(&scsi_id->scsi_list);
if (scsi_id->login_response) {
pci_free_consistent(hi->host->pdev,
sizeof(struct sbp2_login_response),
scsi_id->login_response,
scsi_id->login_response_dma);
SBP2_DMA_FREE("single login FIFO");
}
if (scsi_id->login_orb) {
pci_free_consistent(hi->host->pdev,
sizeof(struct sbp2_login_orb),
scsi_id->login_orb,
scsi_id->login_orb_dma);
SBP2_DMA_FREE("single login ORB");
}
if (scsi_id->reconnect_orb) {
pci_free_consistent(hi->host->pdev,
sizeof(struct sbp2_reconnect_orb),
scsi_id->reconnect_orb,
scsi_id->reconnect_orb_dma);
SBP2_DMA_FREE("single reconnect orb");
}
if (scsi_id->logout_orb) {
pci_free_consistent(hi->host->pdev,
sizeof(struct sbp2_logout_orb),
scsi_id->logout_orb,
scsi_id->logout_orb_dma);
SBP2_DMA_FREE("single logout orb");
}
if (scsi_id->query_logins_orb) {
pci_free_consistent(hi->host->pdev,
sizeof(struct sbp2_query_logins_orb),
scsi_id->query_logins_orb,
scsi_id->query_logins_orb_dma);
SBP2_DMA_FREE("single query logins orb");
}
if (scsi_id->query_logins_response) {
pci_free_consistent(hi->host->pdev,
sizeof(struct sbp2_query_logins_response),
scsi_id->query_logins_response,
scsi_id->query_logins_response_dma);
SBP2_DMA_FREE("single query logins data");
}
if (scsi_id->status_fifo_addr)
hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
scsi_id->status_fifo_addr);
scsi_id->ud->device.driver_data = NULL;
SBP2_DEBUG("SBP-2 device removed, SCSI ID = %d", scsi_id->ud->id);
kfree(scsi_id);
}
#ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
/*
* This function deals with physical dma write requests (for adapters that do not support
* physical dma in hardware). Mostly just here for debugging...
*/
static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
int destid, quadlet_t *data, u64 addr,
size_t length, u16 flags)
{
/*
* Manually put the data in the right place.
*/
memcpy(bus_to_virt((u32) addr), data, length);
sbp2util_packet_dump(data, length, "sbp2 phys dma write by device",
(u32) addr);
return RCODE_COMPLETE;
}
/*
* This function deals with physical dma read requests (for adapters that do not support
* physical dma in hardware). Mostly just here for debugging...
*/
static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
quadlet_t *data, u64 addr, size_t length,
u16 flags)
{
/*
* Grab data from memory and send a read response.
*/
memcpy(data, bus_to_virt((u32) addr), length);
sbp2util_packet_dump(data, length, "sbp2 phys dma read by device",
(u32) addr);
return RCODE_COMPLETE;
}
#endif
/**************************************
* SBP-2 protocol related section
**************************************/
/*
* This function queries the device for the maximum concurrent logins it
* supports.
*/
static int sbp2_query_logins(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
quadlet_t data[2];
int max_logins;
int active_logins;
SBP2_DEBUG("sbp2_query_logins");
scsi_id->query_logins_orb->reserved1 = 0x0;
scsi_id->query_logins_orb->reserved2 = 0x0;
scsi_id->query_logins_orb->query_response_lo = scsi_id->query_logins_response_dma;
scsi_id->query_logins_orb->query_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
SBP2_DEBUG("sbp2_query_logins: query_response_hi/lo initialized");
scsi_id->query_logins_orb->lun_misc = ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
scsi_id->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
scsi_id->query_logins_orb->lun_misc |= ORB_SET_LUN(scsi_id->sbp2_lun);
SBP2_DEBUG("sbp2_query_logins: lun_misc initialized");
scsi_id->query_logins_orb->reserved_resp_length =
ORB_SET_QUERY_LOGINS_RESP_LENGTH(sizeof(struct sbp2_query_logins_response));
SBP2_DEBUG("sbp2_query_logins: reserved_resp_length initialized");
scsi_id->query_logins_orb->status_fifo_hi =
ORB_SET_STATUS_FIFO_HI(scsi_id->status_fifo_addr, hi->host->node_id);
scsi_id->query_logins_orb->status_fifo_lo =
ORB_SET_STATUS_FIFO_LO(scsi_id->status_fifo_addr);
sbp2util_cpu_to_be32_buffer(scsi_id->query_logins_orb, sizeof(struct sbp2_query_logins_orb));
SBP2_DEBUG("sbp2_query_logins: orb byte-swapped");
sbp2util_packet_dump(scsi_id->query_logins_orb, sizeof(struct sbp2_query_logins_orb),
"sbp2 query logins orb", scsi_id->query_logins_orb_dma);
memset(scsi_id->query_logins_response, 0, sizeof(struct sbp2_query_logins_response));
memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block));
SBP2_DEBUG("sbp2_query_logins: query_logins_response/status FIFO memset");
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
data[1] = scsi_id->query_logins_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
atomic_set(&scsi_id->sbp2_login_complete, 0);
SBP2_DEBUG("sbp2_query_logins: prepared to write");
hpsb_node_write(scsi_id->ne, scsi_id->sbp2_management_agent_addr, data, 8);
SBP2_DEBUG("sbp2_query_logins: written");
if (sbp2util_down_timeout(&scsi_id->sbp2_login_complete, 2*HZ)) {
SBP2_INFO("Error querying logins to SBP-2 device - timed out");
return -EIO;
}
if (scsi_id->status_block.ORB_offset_lo != scsi_id->query_logins_orb_dma) {
SBP2_INFO("Error querying logins to SBP-2 device - timed out");
return -EIO;
}
if (STATUS_GET_RESP(scsi_id->status_block.ORB_offset_hi_misc) ||
STATUS_GET_DEAD_BIT(scsi_id->status_block.ORB_offset_hi_misc) ||
STATUS_GET_SBP_STATUS(scsi_id->status_block.ORB_offset_hi_misc)) {
SBP2_INFO("Error querying logins to SBP-2 device - timed out");
return -EIO;
}
sbp2util_cpu_to_be32_buffer(scsi_id->query_logins_response, sizeof(struct sbp2_query_logins_response));
SBP2_DEBUG("length_max_logins = %x",
(unsigned int)scsi_id->query_logins_response->length_max_logins);
SBP2_DEBUG("Query logins to SBP-2 device successful");
max_logins = RESPONSE_GET_MAX_LOGINS(scsi_id->query_logins_response->length_max_logins);
SBP2_DEBUG("Maximum concurrent logins supported: %d", max_logins);
active_logins = RESPONSE_GET_ACTIVE_LOGINS(scsi_id->query_logins_response->length_max_logins);
SBP2_DEBUG("Number of active logins: %d", active_logins);
if (active_logins >= max_logins) {
return -EIO;
}
return 0;
}
/*
* This function is called in order to login to a particular SBP-2 device,
* after a bus reset.
*/
static int sbp2_login_device(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
quadlet_t data[2];
SBP2_DEBUG("sbp2_login_device");
if (!scsi_id->login_orb) {
SBP2_DEBUG("sbp2_login_device: login_orb not alloc'd!");
return -EIO;
}
if (!exclusive_login) {
if (sbp2_query_logins(scsi_id)) {
SBP2_INFO("Device does not support any more concurrent logins");
return -EIO;
}
}
/* Set-up login ORB, assume no password */
scsi_id->login_orb->password_hi = 0;
scsi_id->login_orb->password_lo = 0;
SBP2_DEBUG("sbp2_login_device: password_hi/lo initialized");
scsi_id->login_orb->login_response_lo = scsi_id->login_response_dma;
scsi_id->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
SBP2_DEBUG("sbp2_login_device: login_response_hi/lo initialized");
scsi_id->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
scsi_id->login_orb->lun_misc |= ORB_SET_RECONNECT(0); /* One second reconnect time */
scsi_id->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(exclusive_login); /* Exclusive access to device */
scsi_id->login_orb->lun_misc |= ORB_SET_NOTIFY(1); /* Notify us of login complete */
scsi_id->login_orb->lun_misc |= ORB_SET_LUN(scsi_id->sbp2_lun);
SBP2_DEBUG("sbp2_login_device: lun_misc initialized");
scsi_id->login_orb->passwd_resp_lengths =
ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
SBP2_DEBUG("sbp2_login_device: passwd_resp_lengths initialized");
scsi_id->login_orb->status_fifo_hi =
ORB_SET_STATUS_FIFO_HI(scsi_id->status_fifo_addr, hi->host->node_id);
scsi_id->login_orb->status_fifo_lo =
ORB_SET_STATUS_FIFO_LO(scsi_id->status_fifo_addr);
/*
* Byte swap ORB if necessary
*/
sbp2util_cpu_to_be32_buffer(scsi_id->login_orb, sizeof(struct sbp2_login_orb));
SBP2_DEBUG("sbp2_login_device: orb byte-swapped");
sbp2util_packet_dump(scsi_id->login_orb, sizeof(struct sbp2_login_orb),
"sbp2 login orb", scsi_id->login_orb_dma);
/*
* Initialize login response and status fifo
*/
memset(scsi_id->login_response, 0, sizeof(struct sbp2_login_response));
memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block));
SBP2_DEBUG("sbp2_login_device: login_response/status FIFO memset");
/*
* Ok, let's write to the target's management agent register
*/
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
data[1] = scsi_id->login_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
atomic_set(&scsi_id->sbp2_login_complete, 0);
SBP2_DEBUG("sbp2_login_device: prepared to write to %08x",
(unsigned int)scsi_id->sbp2_management_agent_addr);
hpsb_node_write(scsi_id->ne, scsi_id->sbp2_management_agent_addr, data, 8);
SBP2_DEBUG("sbp2_login_device: written");
/*
* Wait for login status (up to 20 seconds)...
*/
if (sbp2util_down_timeout(&scsi_id->sbp2_login_complete, 20*HZ)) {
SBP2_ERR("Error logging into SBP-2 device - login timed-out");
return -EIO;
}
/*
* Sanity. Make sure status returned matches login orb.
*/
if (scsi_id->status_block.ORB_offset_lo != scsi_id->login_orb_dma) {
SBP2_ERR("Error logging into SBP-2 device - login timed-out");
return -EIO;
}
/*
* Check status
*/
if (STATUS_GET_RESP(scsi_id->status_block.ORB_offset_hi_misc) ||
STATUS_GET_DEAD_BIT(scsi_id->status_block.ORB_offset_hi_misc) ||
STATUS_GET_SBP_STATUS(scsi_id->status_block.ORB_offset_hi_misc)) {
SBP2_ERR("Error logging into SBP-2 device - login failed");
return -EIO;
}
/*
* Byte swap the login response, for use when reconnecting or
* logging out.
*/
sbp2util_cpu_to_be32_buffer(scsi_id->login_response, sizeof(struct sbp2_login_response));
/*
* Grab our command block agent address from the login response.
*/
SBP2_DEBUG("command_block_agent_hi = %x",
(unsigned int)scsi_id->login_response->command_block_agent_hi);
SBP2_DEBUG("command_block_agent_lo = %x",
(unsigned int)scsi_id->login_response->command_block_agent_lo);
scsi_id->sbp2_command_block_agent_addr =
((u64)scsi_id->login_response->command_block_agent_hi) << 32;
scsi_id->sbp2_command_block_agent_addr |= ((u64)scsi_id->login_response->command_block_agent_lo);
scsi_id->sbp2_command_block_agent_addr &= 0x0000ffffffffffffULL;
SBP2_INFO("Logged into SBP-2 device");
return 0;
}
/*
* This function is called in order to logout from a particular SBP-2
* device, usually called during driver unload.
*/
static int sbp2_logout_device(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
quadlet_t data[2];
int error;
SBP2_DEBUG("sbp2_logout_device");
/*
* Set-up logout ORB
*/
scsi_id->logout_orb->reserved1 = 0x0;
scsi_id->logout_orb->reserved2 = 0x0;
scsi_id->logout_orb->reserved3 = 0x0;
scsi_id->logout_orb->reserved4 = 0x0;
scsi_id->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
scsi_id->logout_orb->login_ID_misc |= ORB_SET_LOGIN_ID(scsi_id->login_response->length_login_ID);
/* Notify us when complete */
scsi_id->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
scsi_id->logout_orb->reserved5 = 0x0;
scsi_id->logout_orb->status_fifo_hi =
ORB_SET_STATUS_FIFO_HI(scsi_id->status_fifo_addr, hi->host->node_id);
scsi_id->logout_orb->status_fifo_lo =
ORB_SET_STATUS_FIFO_LO(scsi_id->status_fifo_addr);
/*
* Byte swap ORB if necessary
*/
sbp2util_cpu_to_be32_buffer(scsi_id->logout_orb, sizeof(struct sbp2_logout_orb));
sbp2util_packet_dump(scsi_id->logout_orb, sizeof(struct sbp2_logout_orb),
"sbp2 logout orb", scsi_id->logout_orb_dma);
/*
* Ok, let's write to the target's management agent register
*/
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
data[1] = scsi_id->logout_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
atomic_set(&scsi_id->sbp2_login_complete, 0);
error = hpsb_node_write(scsi_id->ne,
scsi_id->sbp2_management_agent_addr, data, 8);
if (error)
return error;
/* Wait for device to logout...1 second. */
if (sbp2util_down_timeout(&scsi_id->sbp2_login_complete, HZ))
return -EIO;
SBP2_INFO("Logged out of SBP-2 device");
return 0;
}
/*
* This function is called in order to reconnect to a particular SBP-2
* device, after a bus reset.
*/
static int sbp2_reconnect_device(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
quadlet_t data[2];
int error;
SBP2_DEBUG("sbp2_reconnect_device");
/*
* Set-up reconnect ORB
*/
scsi_id->reconnect_orb->reserved1 = 0x0;
scsi_id->reconnect_orb->reserved2 = 0x0;
scsi_id->reconnect_orb->reserved3 = 0x0;
scsi_id->reconnect_orb->reserved4 = 0x0;
scsi_id->reconnect_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
scsi_id->reconnect_orb->login_ID_misc |=
ORB_SET_LOGIN_ID(scsi_id->login_response->length_login_ID);
/* Notify us when complete */
scsi_id->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
scsi_id->reconnect_orb->reserved5 = 0x0;
scsi_id->reconnect_orb->status_fifo_hi =
ORB_SET_STATUS_FIFO_HI(scsi_id->status_fifo_addr, hi->host->node_id);
scsi_id->reconnect_orb->status_fifo_lo =
ORB_SET_STATUS_FIFO_LO(scsi_id->status_fifo_addr);
/*
* Byte swap ORB if necessary
*/
sbp2util_cpu_to_be32_buffer(scsi_id->reconnect_orb, sizeof(struct sbp2_reconnect_orb));
sbp2util_packet_dump(scsi_id->reconnect_orb, sizeof(struct sbp2_reconnect_orb),
"sbp2 reconnect orb", scsi_id->reconnect_orb_dma);
/*
* Initialize status fifo
*/
memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block));
/*
* Ok, let's write to the target's management agent register
*/
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
data[1] = scsi_id->reconnect_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
atomic_set(&scsi_id->sbp2_login_complete, 0);
error = hpsb_node_write(scsi_id->ne,
scsi_id->sbp2_management_agent_addr, data, 8);
if (error)
return error;
/*
* Wait for reconnect status (up to 1 second)...
*/
if (sbp2util_down_timeout(&scsi_id->sbp2_login_complete, HZ)) {
SBP2_ERR("Error reconnecting to SBP-2 device - reconnect timed-out");
return -EIO;
}
/*
* Sanity. Make sure status returned matches reconnect orb.
*/
if (scsi_id->status_block.ORB_offset_lo != scsi_id->reconnect_orb_dma) {
SBP2_ERR("Error reconnecting to SBP-2 device - reconnect timed-out");
return -EIO;
}
/*
* Check status
*/
if (STATUS_GET_RESP(scsi_id->status_block.ORB_offset_hi_misc) ||
STATUS_GET_DEAD_BIT(scsi_id->status_block.ORB_offset_hi_misc) ||
STATUS_GET_SBP_STATUS(scsi_id->status_block.ORB_offset_hi_misc)) {
SBP2_ERR("Error reconnecting to SBP-2 device - reconnect failed");
return -EIO;
}
HPSB_DEBUG("Reconnected to SBP-2 device");
return 0;
}
/*
* This function is called in order to set the busy timeout (number of
* retries to attempt) on the sbp2 device.
*/
static int sbp2_set_busy_timeout(struct scsi_id_instance_data *scsi_id)
{
quadlet_t data;
SBP2_DEBUG("sbp2_set_busy_timeout");
/*
* Ok, let's write to the target's busy timeout register
*/
data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
if (hpsb_node_write(scsi_id->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4)) {
SBP2_ERR("sbp2_set_busy_timeout error");
}
return 0;
}
/*
* This function is called to parse sbp2 device's config rom unit
* directory. Used to determine things like sbp2 management agent offset,
* and command set used (SCSI or RBC).
*/
static void sbp2_parse_unit_directory(struct scsi_id_instance_data *scsi_id,
struct unit_directory *ud)
{
struct csr1212_keyval *kv;
struct csr1212_dentry *dentry;
u64 management_agent_addr;
u32 command_set_spec_id, command_set, unit_characteristics,
firmware_revision, workarounds;
int i;
SBP2_DEBUG("sbp2_parse_unit_directory");
management_agent_addr = 0x0;
command_set_spec_id = 0x0;
command_set = 0x0;
unit_characteristics = 0x0;
firmware_revision = 0x0;
/* Handle different fields in the unit directory, based on keys */
csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
switch (kv->key.id) {
case CSR1212_KV_ID_DEPENDENT_INFO:
if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET) {
/* Save off the management agent address */
management_agent_addr =
CSR1212_REGISTER_SPACE_BASE +
(kv->value.csr_offset << 2);
SBP2_DEBUG("sbp2_management_agent_addr = %x",
(unsigned int)management_agent_addr);
} else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) {
scsi_id->sbp2_lun =
ORB_SET_LUN(kv->value.immediate);
}
break;
case SBP2_COMMAND_SET_SPEC_ID_KEY:
/* Command spec organization */
command_set_spec_id = kv->value.immediate;
SBP2_DEBUG("sbp2_command_set_spec_id = %x",
(unsigned int)command_set_spec_id);
break;
case SBP2_COMMAND_SET_KEY:
/* Command set used by sbp2 device */
command_set = kv->value.immediate;
SBP2_DEBUG("sbp2_command_set = %x",
(unsigned int)command_set);
break;
case SBP2_UNIT_CHARACTERISTICS_KEY:
/*
* Unit characterisitcs (orb related stuff
* that I'm not yet paying attention to)
*/
unit_characteristics = kv->value.immediate;
SBP2_DEBUG("sbp2_unit_characteristics = %x",
(unsigned int)unit_characteristics);
break;
case SBP2_FIRMWARE_REVISION_KEY:
/* Firmware revision */
firmware_revision = kv->value.immediate;
if (force_inquiry_hack)
SBP2_INFO("sbp2_firmware_revision = %x",
(unsigned int)firmware_revision);
else
SBP2_DEBUG("sbp2_firmware_revision = %x",
(unsigned int)firmware_revision);
break;
default:
break;
}
}
/* This is the start of our broken device checking. We try to hack
* around oddities and known defects. */
workarounds = 0x0;
/* If the vendor id is 0xa0b8 (Symbios vendor id), then we have a
* bridge with 128KB max transfer size limitation. For sanity, we
* only voice this when the current max_sectors setting
* exceeds the 128k limit. By default, that is not the case.
*
* It would be really nice if we could detect this before the scsi
* host gets initialized. That way we can down-force the
* max_sectors to account for it. That is not currently
* possible. */
if ((firmware_revision & 0xffff00) ==
SBP2_128KB_BROKEN_FIRMWARE &&
(max_sectors * 512) > (128*1024)) {
SBP2_WARN("Node " NODE_BUS_FMT ": Bridge only supports 128KB max transfer size.",
NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid));
SBP2_WARN("WARNING: Current max_sectors setting is larger than 128KB (%d sectors)!",
max_sectors);
workarounds |= SBP2_BREAKAGE_128K_MAX_TRANSFER;
}
/* Check for a blacklisted set of devices that require us to force
* a 36 byte host inquiry. This can be overriden as a module param
* (to force all hosts). */
for (i = 0; i < ARRAY_SIZE(sbp2_broken_inquiry_list); i++) {
if ((firmware_revision & 0xffff00) ==
sbp2_broken_inquiry_list[i]) {
SBP2_WARN("Node " NODE_BUS_FMT ": Using 36byte inquiry workaround",
NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid));
workarounds |= SBP2_BREAKAGE_INQUIRY_HACK;
break; /* No need to continue. */
}
}
/* If this is a logical unit directory entry, process the parent
* to get the values. */
if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
struct unit_directory *parent_ud =
container_of(ud->device.parent, struct unit_directory, device);
sbp2_parse_unit_directory(scsi_id, parent_ud);
} else {
scsi_id->sbp2_management_agent_addr = management_agent_addr;
scsi_id->sbp2_command_set_spec_id = command_set_spec_id;
scsi_id->sbp2_command_set = command_set;
scsi_id->sbp2_unit_characteristics = unit_characteristics;
scsi_id->sbp2_firmware_revision = firmware_revision;
scsi_id->workarounds = workarounds;
if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
scsi_id->sbp2_lun = ORB_SET_LUN(ud->lun);
}
}
/*
* This function is called in order to determine the max speed and packet
* size we can use in our ORBs. Note, that we (the driver and host) only
* initiate the transaction. The SBP-2 device actually transfers the data
* (by reading from the DMA area we tell it). This means that the SBP-2
* device decides the actual maximum data it can transfer. We just tell it
* the speed that it needs to use, and the max_rec the host supports, and
* it takes care of the rest.
*/
static int sbp2_max_speed_and_size(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
SBP2_DEBUG("sbp2_max_speed_and_size");
/* Initial setting comes from the hosts speed map */
scsi_id->speed_code =
hi->host->speed_map[NODEID_TO_NODE(hi->host->node_id) * 64 +
NODEID_TO_NODE(scsi_id->ne->nodeid)];
/* Bump down our speed if the user requested it */
if (scsi_id->speed_code > max_speed) {
scsi_id->speed_code = max_speed;
SBP2_ERR("Forcing SBP-2 max speed down to %s",
hpsb_speedto_str[scsi_id->speed_code]);
}
/* Payload size is the lesser of what our speed supports and what
* our host supports. */
scsi_id->max_payload_size =
min(sbp2_speedto_max_payload[scsi_id->speed_code],
(u8) (hi->host->csr.max_rec - 1));
HPSB_DEBUG("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
NODE_BUS_ARGS(hi->host, scsi_id->ne->nodeid),
hpsb_speedto_str[scsi_id->speed_code],
1 << ((u32) scsi_id->max_payload_size + 2));
return 0;
}
/*
* This function is called in order to perform a SBP-2 agent reset.
*/
static int sbp2_agent_reset(struct scsi_id_instance_data *scsi_id, int wait)
{
quadlet_t data;
u64 addr;
int retval;
SBP2_DEBUG("sbp2_agent_reset");
/*
* Ok, let's write to the target's management agent register
*/
data = ntohl(SBP2_AGENT_RESET_DATA);
addr = scsi_id->sbp2_command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
if (wait)
retval = hpsb_node_write(scsi_id->ne, addr, &data, 4);
else
retval = sbp2util_node_write_no_wait(scsi_id->ne, addr, &data, 4);
if (retval < 0) {
SBP2_ERR("hpsb_node_write failed.\n");
return -EIO;
}
/*
* Need to make sure orb pointer is written on next command
*/
scsi_id->last_orb = NULL;
return 0;
}
static void sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
struct sbp2scsi_host_info *hi,
struct sbp2_command_info *command,
unsigned int scsi_use_sg,
struct scatterlist *sgpnt,
u32 orb_direction,
enum dma_data_direction dma_dir)
{
command->dma_dir = dma_dir;
orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
orb->misc |= ORB_SET_DIRECTION(orb_direction);
/* Special case if only one element (and less than 64KB in size) */
if ((scsi_use_sg == 1) &&
(sgpnt[0].length <= SBP2_MAX_SG_ELEMENT_LENGTH)) {
SBP2_DEBUG("Only one s/g element");
command->dma_size = sgpnt[0].length;
command->dma_type = CMD_DMA_PAGE;
command->cmd_dma = pci_map_page(hi->host->pdev,
sgpnt[0].page,
sgpnt[0].offset,
command->dma_size,
command->dma_dir);
SBP2_DMA_ALLOC("single page scatter element");
orb->data_descriptor_lo = command->cmd_dma;
orb->misc |= ORB_SET_DATA_SIZE(command->dma_size);
} else {
struct sbp2_unrestricted_page_table *sg_element =
&command->scatter_gather_element[0];
u32 sg_count, sg_len;
dma_addr_t sg_addr;
int i, count = pci_map_sg(hi->host->pdev, sgpnt, scsi_use_sg,
dma_dir);
SBP2_DMA_ALLOC("scatter list");
command->dma_size = scsi_use_sg;
command->sge_buffer = sgpnt;
/* use page tables (s/g) */
orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
orb->data_descriptor_lo = command->sge_dma;
/*
* Loop through and fill out our sbp-2 page tables
* (and split up anything too large)
*/
for (i = 0, sg_count = 0 ; i < count; i++, sgpnt++) {
sg_len = sg_dma_len(sgpnt);
sg_addr = sg_dma_address(sgpnt);
while (sg_len) {
sg_element[sg_count].segment_base_lo = sg_addr;
if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
sg_element[sg_count].length_segment_base_hi =
PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
} else {
sg_element[sg_count].length_segment_base_hi =
PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
sg_len = 0;
}
sg_count++;
}
}
/* Number of page table (s/g) elements */
orb->misc |= ORB_SET_DATA_SIZE(sg_count);
sbp2util_packet_dump(sg_element,
(sizeof(struct sbp2_unrestricted_page_table)) * sg_count,
"sbp2 s/g list", command->sge_dma);
/* Byte swap page tables if necessary */
sbp2util_cpu_to_be32_buffer(sg_element,
(sizeof(struct sbp2_unrestricted_page_table)) *
sg_count);
}
}
static void sbp2_prep_command_orb_no_sg(struct sbp2_command_orb *orb,
struct sbp2scsi_host_info *hi,
struct sbp2_command_info *command,
struct scatterlist *sgpnt,
u32 orb_direction,
unsigned int scsi_request_bufflen,
void *scsi_request_buffer,
enum dma_data_direction dma_dir)
{
command->dma_dir = dma_dir;
command->dma_size = scsi_request_bufflen;
command->dma_type = CMD_DMA_SINGLE;
command->cmd_dma = pci_map_single(hi->host->pdev, scsi_request_buffer,
command->dma_size, command->dma_dir);
orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
orb->misc |= ORB_SET_DIRECTION(orb_direction);
SBP2_DMA_ALLOC("single bulk");
/*
* Handle case where we get a command w/o s/g enabled (but
* check for transfers larger than 64K)
*/
if (scsi_request_bufflen <= SBP2_MAX_SG_ELEMENT_LENGTH) {
orb->data_descriptor_lo = command->cmd_dma;
orb->misc |= ORB_SET_DATA_SIZE(scsi_request_bufflen);
} else {
struct sbp2_unrestricted_page_table *sg_element =
&command->scatter_gather_element[0];
u32 sg_count, sg_len;
dma_addr_t sg_addr;
/*
* Need to turn this into page tables, since the
* buffer is too large.
*/
orb->data_descriptor_lo = command->sge_dma;
/* Use page tables (s/g) */
orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
/*
* fill out our sbp-2 page tables (and split up
* the large buffer)
*/
sg_count = 0;
sg_len = scsi_request_bufflen;
sg_addr = command->cmd_dma;
while (sg_len) {
sg_element[sg_count].segment_base_lo = sg_addr;
if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
sg_element[sg_count].length_segment_base_hi =
PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
} else {
sg_element[sg_count].length_segment_base_hi =
PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
sg_len = 0;
}
sg_count++;
}
/* Number of page table (s/g) elements */
orb->misc |= ORB_SET_DATA_SIZE(sg_count);
sbp2util_packet_dump(sg_element,
(sizeof(struct sbp2_unrestricted_page_table)) * sg_count,
"sbp2 s/g list", command->sge_dma);
/* Byte swap page tables if necessary */
sbp2util_cpu_to_be32_buffer(sg_element,
(sizeof(struct sbp2_unrestricted_page_table)) *
sg_count);
}
}
/*
* This function is called to create the actual command orb and s/g list
* out of the scsi command itself.
*/
static void sbp2_create_command_orb(struct scsi_id_instance_data *scsi_id,
struct sbp2_command_info *command,
unchar *scsi_cmd,
unsigned int scsi_use_sg,
unsigned int scsi_request_bufflen,
void *scsi_request_buffer,
enum dma_data_direction dma_dir)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
struct scatterlist *sgpnt = (struct scatterlist *)scsi_request_buffer;
struct sbp2_command_orb *command_orb = &command->command_orb;
u32 orb_direction;
/*
* Set-up our command ORB..
*
* NOTE: We're doing unrestricted page tables (s/g), as this is
* best performance (at least with the devices I have). This means
* that data_size becomes the number of s/g elements, and
* page_size should be zero (for unrestricted).
*/
command_orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
command_orb->next_ORB_lo = 0x0;
command_orb->misc = ORB_SET_MAX_PAYLOAD(scsi_id->max_payload_size);
command_orb->misc |= ORB_SET_SPEED(scsi_id->speed_code);
command_orb->misc |= ORB_SET_NOTIFY(1); /* Notify us when complete */
if (dma_dir == DMA_NONE)
orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
else {
SBP2_WARN("Falling back to DMA_NONE");
orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
}
/* Set-up our pagetable stuff */
if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
SBP2_DEBUG("No data transfer");
command_orb->data_descriptor_hi = 0x0;
command_orb->data_descriptor_lo = 0x0;
command_orb->misc |= ORB_SET_DIRECTION(1);
} else if (scsi_use_sg) {
SBP2_DEBUG("Use scatter/gather");
sbp2_prep_command_orb_sg(command_orb, hi, command, scsi_use_sg,
sgpnt, orb_direction, dma_dir);
} else {
SBP2_DEBUG("No scatter/gather");
sbp2_prep_command_orb_no_sg(command_orb, hi, command, sgpnt,
orb_direction, scsi_request_bufflen,
scsi_request_buffer, dma_dir);
}
/* Byte swap command ORB if necessary */
sbp2util_cpu_to_be32_buffer(command_orb, sizeof(struct sbp2_command_orb));
/* Put our scsi command in the command ORB */
memset(command_orb->cdb, 0, 12);
memcpy(command_orb->cdb, scsi_cmd, COMMAND_SIZE(*scsi_cmd));
}
/*
* This function is called in order to begin a regular SBP-2 command.
*/
static int sbp2_link_orb_command(struct scsi_id_instance_data *scsi_id,
struct sbp2_command_info *command)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
struct sbp2_command_orb *command_orb = &command->command_orb;
struct node_entry *ne = scsi_id->ne;
u64 addr;
outstanding_orb_incr;
SBP2_ORB_DEBUG("sending command orb %p, total orbs = %x",
command_orb, global_outstanding_command_orbs);
pci_dma_sync_single_for_device(hi->host->pdev, command->command_orb_dma,
sizeof(struct sbp2_command_orb),
PCI_DMA_BIDIRECTIONAL);
pci_dma_sync_single_for_device(hi->host->pdev, command->sge_dma,
sizeof(command->scatter_gather_element),
PCI_DMA_BIDIRECTIONAL);
/*
* Check to see if there are any previous orbs to use
*/
if (scsi_id->last_orb == NULL) {
quadlet_t data[2];
/*
* Ok, let's write to the target's management agent register
*/
addr = scsi_id->sbp2_command_block_agent_addr + SBP2_ORB_POINTER_OFFSET;
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
data[1] = command->command_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
SBP2_ORB_DEBUG("write command agent, command orb %p", command_orb);
if (sbp2util_node_write_no_wait(ne, addr, data, 8) < 0) {
SBP2_ERR("sbp2util_node_write_no_wait failed.\n");
return -EIO;
}
SBP2_ORB_DEBUG("write command agent complete");
scsi_id->last_orb = command_orb;
scsi_id->last_orb_dma = command->command_orb_dma;
} else {
quadlet_t data;
/*
* We have an orb already sent (maybe or maybe not
* processed) that we can append this orb to. So do so,
* and ring the doorbell. Have to be very careful
* modifying these next orb pointers, as they are accessed
* both by the sbp2 device and us.
*/
scsi_id->last_orb->next_ORB_lo =
cpu_to_be32(command->command_orb_dma);
/* Tells hardware that this pointer is valid */
scsi_id->last_orb->next_ORB_hi = 0x0;
pci_dma_sync_single_for_device(hi->host->pdev,
scsi_id->last_orb_dma,
sizeof(struct sbp2_command_orb),
PCI_DMA_BIDIRECTIONAL);
/*
* Ring the doorbell
*/
data = cpu_to_be32(command->command_orb_dma);
addr = scsi_id->sbp2_command_block_agent_addr + SBP2_DOORBELL_OFFSET;
SBP2_ORB_DEBUG("ring doorbell, command orb %p", command_orb);
if (sbp2util_node_write_no_wait(ne, addr, &data, 4) < 0) {
SBP2_ERR("sbp2util_node_write_no_wait failed");
return -EIO;
}
scsi_id->last_orb = command_orb;
scsi_id->last_orb_dma = command->command_orb_dma;
}
return 0;
}
/*
* This function is called in order to begin a regular SBP-2 command.
*/
static int sbp2_send_command(struct scsi_id_instance_data *scsi_id,
struct scsi_cmnd *SCpnt,
void (*done)(struct scsi_cmnd *))
{
unchar *cmd = (unchar *) SCpnt->cmnd;
unsigned int request_bufflen = SCpnt->request_bufflen;
struct sbp2_command_info *command;
SBP2_DEBUG("sbp2_send_command");
#if (CONFIG_IEEE1394_SBP2_DEBUG >= 2) || defined(CONFIG_IEEE1394_SBP2_PACKET_DUMP)
printk("[scsi command]\n ");
scsi_print_command(SCpnt);
#endif
SBP2_DEBUG("SCSI transfer size = %x", request_bufflen);
SBP2_DEBUG("SCSI s/g elements = %x", (unsigned int)SCpnt->use_sg);
/*
* Allocate a command orb and s/g structure
*/
command = sbp2util_allocate_command_orb(scsi_id, SCpnt, done);
if (!command) {
return -EIO;
}
/*
* Now actually fill in the comamnd orb and sbp2 s/g list
*/
sbp2_create_command_orb(scsi_id, command, cmd, SCpnt->use_sg,
request_bufflen, SCpnt->request_buffer,
SCpnt->sc_data_direction);
sbp2util_packet_dump(&command->command_orb, sizeof(struct sbp2_command_orb),
"sbp2 command orb", command->command_orb_dma);
/*
* Initialize status fifo
*/
memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block));
/*
* Link up the orb, and ring the doorbell if needed
*/
sbp2_link_orb_command(scsi_id, command);
return 0;
}
/*
* Translates SBP-2 status into SCSI sense data for check conditions
*/
static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status, unchar *sense_data)
{
SBP2_DEBUG("sbp2_status_to_sense_data");
/*
* Ok, it's pretty ugly... ;-)
*/
sense_data[0] = 0x70;
sense_data[1] = 0x0;
sense_data[2] = sbp2_status[9];
sense_data[3] = sbp2_status[12];
sense_data[4] = sbp2_status[13];
sense_data[5] = sbp2_status[14];
sense_data[6] = sbp2_status[15];
sense_data[7] = 10;
sense_data[8] = sbp2_status[16];
sense_data[9] = sbp2_status[17];
sense_data[10] = sbp2_status[18];
sense_data[11] = sbp2_status[19];
sense_data[12] = sbp2_status[10];
sense_data[13] = sbp2_status[11];
sense_data[14] = sbp2_status[20];
sense_data[15] = sbp2_status[21];
return sbp2_status[8] & 0x3f; /* return scsi status */
}
/*
* This function is called after a command is completed, in order to do any necessary SBP-2
* response data translations for the SCSI stack
*/
static void sbp2_check_sbp2_response(struct scsi_id_instance_data *scsi_id,
struct scsi_cmnd *SCpnt)
{
u8 *scsi_buf = SCpnt->request_buffer;
SBP2_DEBUG("sbp2_check_sbp2_response");
if (SCpnt->cmnd[0] == INQUIRY && (SCpnt->cmnd[1] & 3) == 0) {
/*
* Make sure data length is ok. Minimum length is 36 bytes
*/
if (scsi_buf[4] == 0) {
scsi_buf[4] = 36 - 5;
}
/*
* Fix ansi revision and response data format
*/
scsi_buf[2] |= 2;
scsi_buf[3] = (scsi_buf[3] & 0xf0) | 2;
}
}
/*
* This function deals with status writes from the SBP-2 device
*/
static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid, int destid,
quadlet_t *data, u64 addr, size_t length, u16 fl)
{
struct sbp2scsi_host_info *hi;
struct scsi_id_instance_data *scsi_id = NULL, *scsi_id_tmp;
struct scsi_cmnd *SCpnt = NULL;
u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
struct sbp2_command_info *command;
unsigned long flags;
SBP2_DEBUG("sbp2_handle_status_write");
sbp2util_packet_dump(data, length, "sbp2 status write by device", (u32)addr);
if (!host) {
SBP2_ERR("host is NULL - this is bad!");
return RCODE_ADDRESS_ERROR;
}
hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
if (!hi) {
SBP2_ERR("host info is NULL - this is bad!");
return RCODE_ADDRESS_ERROR;
}
/*
* Find our scsi_id structure by looking at the status fifo address
* written to by the sbp2 device.
*/
list_for_each_entry(scsi_id_tmp, &hi->scsi_ids, scsi_list) {
if (scsi_id_tmp->ne->nodeid == nodeid &&
scsi_id_tmp->status_fifo_addr == addr) {
scsi_id = scsi_id_tmp;
break;
}
}
if (!scsi_id) {
SBP2_ERR("scsi_id is NULL - device is gone?");
return RCODE_ADDRESS_ERROR;
}
/*
* Put response into scsi_id status fifo...
*/
memcpy(&scsi_id->status_block, data, length);
/*
* Byte swap first two quadlets (8 bytes) of status for processing
*/
sbp2util_be32_to_cpu_buffer(&scsi_id->status_block, 8);
/*
* Handle command ORB status here if necessary. First, need to match status with command.
*/
command = sbp2util_find_command_for_orb(scsi_id, scsi_id->status_block.ORB_offset_lo);
if (command) {
SBP2_DEBUG("Found status for command ORB");
pci_dma_sync_single_for_cpu(hi->host->pdev, command->command_orb_dma,
sizeof(struct sbp2_command_orb),
PCI_DMA_BIDIRECTIONAL);
pci_dma_sync_single_for_cpu(hi->host->pdev, command->sge_dma,
sizeof(command->scatter_gather_element),
PCI_DMA_BIDIRECTIONAL);
SBP2_ORB_DEBUG("matched command orb %p", &command->command_orb);
outstanding_orb_decr;
/*
* Matched status with command, now grab scsi command pointers and check status
*/
SCpnt = command->Current_SCpnt;
sbp2util_mark_command_completed(scsi_id, command);
if (SCpnt) {
/*
* See if the target stored any scsi status information
*/
if (STATUS_GET_LENGTH(scsi_id->status_block.ORB_offset_hi_misc) > 1) {
/*
* Translate SBP-2 status to SCSI sense data
*/
SBP2_DEBUG("CHECK CONDITION");
scsi_status = sbp2_status_to_sense_data((unchar *)&scsi_id->status_block, SCpnt->sense_buffer);
}
/*
* Check to see if the dead bit is set. If so, we'll have to initiate
* a fetch agent reset.
*/
if (STATUS_GET_DEAD_BIT(scsi_id->status_block.ORB_offset_hi_misc)) {
/*
* Initiate a fetch agent reset.
*/
SBP2_DEBUG("Dead bit set - initiating fetch agent reset");
sbp2_agent_reset(scsi_id, 0);
}
SBP2_ORB_DEBUG("completing command orb %p", &command->command_orb);
}
/*
* Check here to see if there are no commands in-use. If there are none, we can
* null out last orb so that next time around we write directly to the orb pointer...
* Quick start saves one 1394 bus transaction.
*/
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
if (list_empty(&scsi_id->sbp2_command_orb_inuse)) {
scsi_id->last_orb = NULL;
}
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
} else {
/*
* It's probably a login/logout/reconnect status.
*/
if ((scsi_id->login_orb_dma == scsi_id->status_block.ORB_offset_lo) ||
(scsi_id->query_logins_orb_dma == scsi_id->status_block.ORB_offset_lo) ||
(scsi_id->reconnect_orb_dma == scsi_id->status_block.ORB_offset_lo) ||
(scsi_id->logout_orb_dma == scsi_id->status_block.ORB_offset_lo)) {
atomic_set(&scsi_id->sbp2_login_complete, 1);
}
}
if (SCpnt) {
/* Complete the SCSI command. */
SBP2_DEBUG("Completing SCSI command");
sbp2scsi_complete_command(scsi_id, scsi_status, SCpnt,
command->Current_done);
SBP2_ORB_DEBUG("command orb completed");
}
return RCODE_COMPLETE;
}
/**************************************
* SCSI interface related section
**************************************/
/*
* This routine is the main request entry routine for doing I/O. It is
* called from the scsi stack directly.
*/
static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
void (*done)(struct scsi_cmnd *))
{
struct scsi_id_instance_data *scsi_id =
(struct scsi_id_instance_data *)SCpnt->device->host->hostdata[0];
struct sbp2scsi_host_info *hi;
int result = DID_NO_CONNECT << 16;
SBP2_DEBUG("sbp2scsi_queuecommand");
if (!sbp2util_node_is_available(scsi_id))
goto done;
hi = scsi_id->hi;
if (!hi) {
SBP2_ERR("sbp2scsi_host_info is NULL - this is bad!");
goto done;
}
/*
* Until we handle multiple luns, just return selection time-out
* to any IO directed at non-zero LUNs
*/
if (SCpnt->device->lun)
goto done;
/*
* Check for request sense command, and handle it here
* (autorequest sense)
*/
if (SCpnt->cmnd[0] == REQUEST_SENSE) {
SBP2_DEBUG("REQUEST_SENSE");
memcpy(SCpnt->request_buffer, SCpnt->sense_buffer, SCpnt->request_bufflen);
memset(SCpnt->sense_buffer, 0, sizeof(SCpnt->sense_buffer));
sbp2scsi_complete_command(scsi_id, SBP2_SCSI_STATUS_GOOD, SCpnt, done);
return 0;
}
/*
* Check to see if we are in the middle of a bus reset.
*/
if (!hpsb_node_entry_valid(scsi_id->ne)) {
SBP2_ERR("Bus reset in progress - rejecting command");
result = DID_BUS_BUSY << 16;
goto done;
}
/*
* Bidirectional commands are not yet implemented,
* and unknown transfer direction not handled.
*/
if (SCpnt->sc_data_direction == DMA_BIDIRECTIONAL) {
SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
result = DID_ERROR << 16;
goto done;
}
/*
* Try and send our SCSI command
*/
if (sbp2_send_command(scsi_id, SCpnt, done)) {
SBP2_ERR("Error sending SCSI command");
sbp2scsi_complete_command(scsi_id, SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
SCpnt, done);
}
return 0;
done:
SCpnt->result = result;
done(SCpnt);
return 0;
}
/*
* This function is called in order to complete all outstanding SBP-2
* commands (in case of resets, etc.).
*/
static void sbp2scsi_complete_all_commands(struct scsi_id_instance_data *scsi_id,
u32 status)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
struct list_head *lh;
struct sbp2_command_info *command;
unsigned long flags;
SBP2_DEBUG("sbp2scsi_complete_all_commands");
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
while (!list_empty(&scsi_id->sbp2_command_orb_inuse)) {
SBP2_DEBUG("Found pending command to complete");
lh = scsi_id->sbp2_command_orb_inuse.next;
command = list_entry(lh, struct sbp2_command_info, list);
pci_dma_sync_single_for_cpu(hi->host->pdev, command->command_orb_dma,
sizeof(struct sbp2_command_orb),
PCI_DMA_BIDIRECTIONAL);
pci_dma_sync_single_for_cpu(hi->host->pdev, command->sge_dma,
sizeof(command->scatter_gather_element),
PCI_DMA_BIDIRECTIONAL);
sbp2util_mark_command_completed(scsi_id, command);
if (command->Current_SCpnt) {
command->Current_SCpnt->result = status << 16;
command->Current_done(command->Current_SCpnt);
}
}
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
return;
}
/*
* This function is called in order to complete a regular SBP-2 command.
*
* This can be called in interrupt context.
*/
static void sbp2scsi_complete_command(struct scsi_id_instance_data *scsi_id,
u32 scsi_status, struct scsi_cmnd *SCpnt,
void (*done)(struct scsi_cmnd *))
{
SBP2_DEBUG("sbp2scsi_complete_command");
/*
* Sanity
*/
if (!SCpnt) {
SBP2_ERR("SCpnt is NULL");
return;
}
/*
* If a bus reset is in progress and there was an error, don't
* complete the command, just let it get retried at the end of the
* bus reset.
*/
if (!hpsb_node_entry_valid(scsi_id->ne)
&& (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
SBP2_ERR("Bus reset in progress - retry command later");
return;
}
/*
* Switch on scsi status
*/
switch (scsi_status) {
case SBP2_SCSI_STATUS_GOOD:
SCpnt->result = DID_OK;
break;
case SBP2_SCSI_STATUS_BUSY:
SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
SCpnt->result = DID_BUS_BUSY << 16;
break;
case SBP2_SCSI_STATUS_CHECK_CONDITION:
SBP2_DEBUG("SBP2_SCSI_STATUS_CHECK_CONDITION");
SCpnt->result = CHECK_CONDITION << 1;
/*
* Debug stuff
*/
#if CONFIG_IEEE1394_SBP2_DEBUG >= 1
scsi_print_command(SCpnt);
scsi_print_sense("bh", SCpnt);
#endif
break;
case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
SCpnt->result = DID_NO_CONNECT << 16;
scsi_print_command(SCpnt);
break;
case SBP2_SCSI_STATUS_CONDITION_MET:
case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
SBP2_ERR("Bad SCSI status = %x", scsi_status);
SCpnt->result = DID_ERROR << 16;
scsi_print_command(SCpnt);
break;
default:
SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
SCpnt->result = DID_ERROR << 16;
}
/*
* Take care of any sbp2 response data mucking here (RBC stuff, etc.)
*/
if (SCpnt->result == DID_OK) {
sbp2_check_sbp2_response(scsi_id, SCpnt);
}
/*
* If a bus reset is in progress and there was an error, complete
* the command as busy so that it will get retried.
*/
if (!hpsb_node_entry_valid(scsi_id->ne)
&& (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
SBP2_ERR("Completing command with busy (bus reset)");
SCpnt->result = DID_BUS_BUSY << 16;
}
/*
* If a unit attention occurs, return busy status so it gets
* retried... it could have happened because of a 1394 bus reset
* or hot-plug...
*/
#if 0
if ((scsi_status == SBP2_SCSI_STATUS_CHECK_CONDITION) &&
(SCpnt->sense_buffer[2] == UNIT_ATTENTION)) {
SBP2_DEBUG("UNIT ATTENTION - return busy");
SCpnt->result = DID_BUS_BUSY << 16;
}
#endif
/*
* Tell scsi stack that we're done with this command
*/
done(SCpnt);
}
static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
{
struct scsi_id_instance_data *scsi_id =
(struct scsi_id_instance_data *)sdev->host->hostdata[0];
scsi_id->sdev = sdev;
if (force_inquiry_hack ||
scsi_id->workarounds & SBP2_BREAKAGE_INQUIRY_HACK) {
sdev->inquiry_len = 36;
sdev->skip_ms_page_8 = 1;
}
return 0;
}
static int sbp2scsi_slave_configure(struct scsi_device *sdev)
{
blk_queue_dma_alignment(sdev->request_queue, (512 - 1));
sdev->use_10_for_rw = 1;
sdev->use_10_for_ms = 1;
return 0;
}
static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
{
((struct scsi_id_instance_data *)sdev->host->hostdata[0])->sdev = NULL;
return;
}
/*
* Called by scsi stack when something has really gone wrong. Usually
* called when a command has timed-out for some reason.
*/
static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
{
struct scsi_id_instance_data *scsi_id =
(struct scsi_id_instance_data *)SCpnt->device->host->hostdata[0];
struct sbp2scsi_host_info *hi = scsi_id->hi;
struct sbp2_command_info *command;
SBP2_ERR("aborting sbp2 command");
scsi_print_command(SCpnt);
if (sbp2util_node_is_available(scsi_id)) {
/*
* Right now, just return any matching command structures
* to the free pool.
*/
command = sbp2util_find_command_for_SCpnt(scsi_id, SCpnt);
if (command) {
SBP2_DEBUG("Found command to abort");
pci_dma_sync_single_for_cpu(hi->host->pdev,
command->command_orb_dma,
sizeof(struct sbp2_command_orb),
PCI_DMA_BIDIRECTIONAL);
pci_dma_sync_single_for_cpu(hi->host->pdev,
command->sge_dma,
sizeof(command->scatter_gather_element),
PCI_DMA_BIDIRECTIONAL);
sbp2util_mark_command_completed(scsi_id, command);
if (command->Current_SCpnt) {
command->Current_SCpnt->result = DID_ABORT << 16;
command->Current_done(command->Current_SCpnt);
}
}
/*
* Initiate a fetch agent reset.
*/
sbp2_agent_reset(scsi_id, 0);
sbp2scsi_complete_all_commands(scsi_id, DID_BUS_BUSY);
}
return SUCCESS;
}
/*
* Called by scsi stack when something has really gone wrong.
*/
static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
{
struct scsi_id_instance_data *scsi_id =
(struct scsi_id_instance_data *)SCpnt->device->host->hostdata[0];
SBP2_ERR("reset requested");
if (sbp2util_node_is_available(scsi_id)) {
SBP2_ERR("Generating sbp2 fetch agent reset");
sbp2_agent_reset(scsi_id, 0);
}
return SUCCESS;
}
static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev;
struct scsi_id_instance_data *scsi_id;
int lun;
if (!(sdev = to_scsi_device(dev)))
return 0;
if (!(scsi_id = (struct scsi_id_instance_data *)sdev->host->hostdata[0]))
return 0;
lun = ORB_SET_LUN(scsi_id->sbp2_lun);
return sprintf(buf, "%016Lx:%d:%d\n", (unsigned long long)scsi_id->ne->guid,
scsi_id->ud->id, lun);
}
static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
&dev_attr_ieee1394_id,
NULL
};
MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
MODULE_LICENSE("GPL");
/* SCSI host template */
static struct scsi_host_template scsi_driver_template = {
.module = THIS_MODULE,
.name = "SBP-2 IEEE-1394",
.proc_name = SBP2_DEVICE_NAME,
.queuecommand = sbp2scsi_queuecommand,
.eh_abort_handler = sbp2scsi_abort,
.eh_device_reset_handler = sbp2scsi_reset,
.slave_alloc = sbp2scsi_slave_alloc,
.slave_configure = sbp2scsi_slave_configure,
.slave_destroy = sbp2scsi_slave_destroy,
.this_id = -1,
.sg_tablesize = SG_ALL,
.use_clustering = ENABLE_CLUSTERING,
.cmd_per_lun = SBP2_MAX_CMDS,
.can_queue = SBP2_MAX_CMDS,
.emulated = 1,
.sdev_attrs = sbp2_sysfs_sdev_attrs,
};
static int sbp2_module_init(void)
{
int ret;
SBP2_DEBUG("sbp2_module_init");
/* Module load debug option to force one command at a time (serializing I/O) */
if (serialize_io) {
SBP2_INFO("Driver forced to serialize I/O (serialize_io=1)");
SBP2_INFO("Try serialize_io=0 for better performance");
scsi_driver_template.can_queue = 1;
scsi_driver_template.cmd_per_lun = 1;
}
/* Set max sectors (module load option). Default is 255 sectors. */
scsi_driver_template.max_sectors = max_sectors;
/* Register our high level driver with 1394 stack */
hpsb_register_highlevel(&sbp2_highlevel);
ret = hpsb_register_protocol(&sbp2_driver);
if (ret) {
SBP2_ERR("Failed to register protocol");
hpsb_unregister_highlevel(&sbp2_highlevel);
return ret;
}
return 0;
}
static void __exit sbp2_module_exit(void)
{
SBP2_DEBUG("sbp2_module_exit");
hpsb_unregister_protocol(&sbp2_driver);
hpsb_unregister_highlevel(&sbp2_highlevel);
}
module_init(sbp2_module_init);
module_exit(sbp2_module_exit);