kernel-fxtec-pro1x/drivers/isdn/hisax/elsa_ser.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

659 lines
17 KiB
C

/* $Id: elsa_ser.c,v 2.14.2.3 2004/02/11 13:21:33 keil Exp $
*
* stuff for the serial modem on ELSA cards
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
*/
#include <linux/serial.h>
#include <linux/serial_reg.h>
#include <linux/slab.h>
#define MAX_MODEM_BUF 256
#define WAKEUP_CHARS (MAX_MODEM_BUF/2)
#define RS_ISR_PASS_LIMIT 256
#define BASE_BAUD ( 1843200 / 16 )
//#define SERIAL_DEBUG_OPEN 1
//#define SERIAL_DEBUG_INTR 1
//#define SERIAL_DEBUG_FLOW 1
#undef SERIAL_DEBUG_OPEN
#undef SERIAL_DEBUG_INTR
#undef SERIAL_DEBUG_FLOW
#undef SERIAL_DEBUG_REG
//#define SERIAL_DEBUG_REG 1
#ifdef SERIAL_DEBUG_REG
static u_char deb[32];
const char *ModemIn[] = {"RBR","IER","IIR","LCR","MCR","LSR","MSR","SCR"};
const char *ModemOut[] = {"THR","IER","FCR","LCR","MCR","LSR","MSR","SCR"};
#endif
static char *MInit_1 = "AT&F&C1E0&D2\r\0";
static char *MInit_2 = "ATL2M1S64=13\r\0";
static char *MInit_3 = "AT+FCLASS=0\r\0";
static char *MInit_4 = "ATV1S2=128X1\r\0";
static char *MInit_5 = "AT\\V8\\N3\r\0";
static char *MInit_6 = "ATL0M0&G0%E1\r\0";
static char *MInit_7 = "AT%L1%M0%C3\r\0";
static char *MInit_speed28800 = "AT%G0%B28800\r\0";
static char *MInit_dialout = "ATs7=60 x1 d\r\0";
static char *MInit_dialin = "ATs7=60 x1 a\r\0";
static inline unsigned int serial_in(struct IsdnCardState *cs, int offset)
{
#ifdef SERIAL_DEBUG_REG
u_int val = inb(cs->hw.elsa.base + 8 + offset);
debugl1(cs,"in %s %02x",ModemIn[offset], val);
return(val);
#else
return inb(cs->hw.elsa.base + 8 + offset);
#endif
}
static inline unsigned int serial_inp(struct IsdnCardState *cs, int offset)
{
#ifdef SERIAL_DEBUG_REG
#ifdef ELSA_SERIAL_NOPAUSE_IO
u_int val = inb(cs->hw.elsa.base + 8 + offset);
debugl1(cs,"inp %s %02x",ModemIn[offset], val);
#else
u_int val = inb_p(cs->hw.elsa.base + 8 + offset);
debugl1(cs,"inP %s %02x",ModemIn[offset], val);
#endif
return(val);
#else
#ifdef ELSA_SERIAL_NOPAUSE_IO
return inb(cs->hw.elsa.base + 8 + offset);
#else
return inb_p(cs->hw.elsa.base + 8 + offset);
#endif
#endif
}
static inline void serial_out(struct IsdnCardState *cs, int offset, int value)
{
#ifdef SERIAL_DEBUG_REG
debugl1(cs,"out %s %02x",ModemOut[offset], value);
#endif
outb(value, cs->hw.elsa.base + 8 + offset);
}
static inline void serial_outp(struct IsdnCardState *cs, int offset,
int value)
{
#ifdef SERIAL_DEBUG_REG
#ifdef ELSA_SERIAL_NOPAUSE_IO
debugl1(cs,"outp %s %02x",ModemOut[offset], value);
#else
debugl1(cs,"outP %s %02x",ModemOut[offset], value);
#endif
#endif
#ifdef ELSA_SERIAL_NOPAUSE_IO
outb(value, cs->hw.elsa.base + 8 + offset);
#else
outb_p(value, cs->hw.elsa.base + 8 + offset);
#endif
}
/*
* This routine is called to set the UART divisor registers to match
* the specified baud rate for a serial port.
*/
static void change_speed(struct IsdnCardState *cs, int baud)
{
int quot = 0, baud_base;
unsigned cval, fcr = 0;
int bits;
/* byte size and parity */
cval = 0x03; bits = 10;
/* Determine divisor based on baud rate */
baud_base = BASE_BAUD;
quot = baud_base / baud;
/* If the quotient is ever zero, default to 9600 bps */
if (!quot)
quot = baud_base / 9600;
/* Set up FIFO's */
if ((baud_base / quot) < 2400)
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_1;
else
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_8;
serial_outp(cs, UART_FCR, fcr);
/* CTS flow control flag and modem status interrupts */
cs->hw.elsa.IER &= ~UART_IER_MSI;
cs->hw.elsa.IER |= UART_IER_MSI;
serial_outp(cs, UART_IER, cs->hw.elsa.IER);
debugl1(cs,"modem quot=0x%x", quot);
serial_outp(cs, UART_LCR, cval | UART_LCR_DLAB);/* set DLAB */
serial_outp(cs, UART_DLL, quot & 0xff); /* LS of divisor */
serial_outp(cs, UART_DLM, quot >> 8); /* MS of divisor */
serial_outp(cs, UART_LCR, cval); /* reset DLAB */
serial_inp(cs, UART_RX);
}
static int mstartup(struct IsdnCardState *cs)
{
int retval=0;
/*
* Clear the FIFO buffers and disable them
* (they will be reenabled in change_speed())
*/
serial_outp(cs, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT));
/*
* At this point there's no way the LSR could still be 0xFF;
* if it is, then bail out, because there's likely no UART
* here.
*/
if (serial_inp(cs, UART_LSR) == 0xff) {
retval = -ENODEV;
goto errout;
}
/*
* Clear the interrupt registers.
*/
(void) serial_inp(cs, UART_RX);
(void) serial_inp(cs, UART_IIR);
(void) serial_inp(cs, UART_MSR);
/*
* Now, initialize the UART
*/
serial_outp(cs, UART_LCR, UART_LCR_WLEN8); /* reset DLAB */
cs->hw.elsa.MCR = 0;
cs->hw.elsa.MCR = UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2;
serial_outp(cs, UART_MCR, cs->hw.elsa.MCR);
/*
* Finally, enable interrupts
*/
cs->hw.elsa.IER = UART_IER_MSI | UART_IER_RLSI | UART_IER_RDI;
serial_outp(cs, UART_IER, cs->hw.elsa.IER); /* enable interrupts */
/*
* And clear the interrupt registers again for luck.
*/
(void)serial_inp(cs, UART_LSR);
(void)serial_inp(cs, UART_RX);
(void)serial_inp(cs, UART_IIR);
(void)serial_inp(cs, UART_MSR);
cs->hw.elsa.transcnt = cs->hw.elsa.transp = 0;
cs->hw.elsa.rcvcnt = cs->hw.elsa.rcvp =0;
/*
* and set the speed of the serial port
*/
change_speed(cs, BASE_BAUD);
cs->hw.elsa.MFlag = 1;
errout:
return retval;
}
/*
* This routine will shutdown a serial port; interrupts are disabled, and
* DTR is dropped if the hangup on close termio flag is on.
*/
static void mshutdown(struct IsdnCardState *cs)
{
#ifdef SERIAL_DEBUG_OPEN
printk(KERN_DEBUG"Shutting down serial ....");
#endif
/*
* clear delta_msr_wait queue to avoid mem leaks: we may free the irq
* here so the queue might never be waken up
*/
cs->hw.elsa.IER = 0;
serial_outp(cs, UART_IER, 0x00); /* disable all intrs */
cs->hw.elsa.MCR &= ~UART_MCR_OUT2;
/* disable break condition */
serial_outp(cs, UART_LCR, serial_inp(cs, UART_LCR) & ~UART_LCR_SBC);
cs->hw.elsa.MCR &= ~(UART_MCR_DTR|UART_MCR_RTS);
serial_outp(cs, UART_MCR, cs->hw.elsa.MCR);
/* disable FIFO's */
serial_outp(cs, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT));
serial_inp(cs, UART_RX); /* read data port to reset things */
#ifdef SERIAL_DEBUG_OPEN
printk(" done\n");
#endif
}
static inline int
write_modem(struct BCState *bcs) {
int ret=0;
struct IsdnCardState *cs = bcs->cs;
int count, len, fp;
if (!bcs->tx_skb)
return 0;
if (bcs->tx_skb->len <= 0)
return 0;
len = bcs->tx_skb->len;
if (len > MAX_MODEM_BUF - cs->hw.elsa.transcnt)
len = MAX_MODEM_BUF - cs->hw.elsa.transcnt;
fp = cs->hw.elsa.transcnt + cs->hw.elsa.transp;
fp &= (MAX_MODEM_BUF -1);
count = len;
if (count > MAX_MODEM_BUF - fp) {
count = MAX_MODEM_BUF - fp;
skb_copy_from_linear_data(bcs->tx_skb,
cs->hw.elsa.transbuf + fp, count);
skb_pull(bcs->tx_skb, count);
cs->hw.elsa.transcnt += count;
ret = count;
count = len - count;
fp = 0;
}
skb_copy_from_linear_data(bcs->tx_skb,
cs->hw.elsa.transbuf + fp, count);
skb_pull(bcs->tx_skb, count);
cs->hw.elsa.transcnt += count;
ret += count;
if (cs->hw.elsa.transcnt &&
!(cs->hw.elsa.IER & UART_IER_THRI)) {
cs->hw.elsa.IER |= UART_IER_THRI;
serial_outp(cs, UART_IER, cs->hw.elsa.IER);
}
return(ret);
}
static inline void
modem_fill(struct BCState *bcs) {
if (bcs->tx_skb) {
if (bcs->tx_skb->len) {
write_modem(bcs);
return;
} else {
if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->hw.hscx.count;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
}
}
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
bcs->hw.hscx.count = 0;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
write_modem(bcs);
} else {
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
schedule_event(bcs, B_XMTBUFREADY);
}
}
static inline void receive_chars(struct IsdnCardState *cs,
int *status)
{
unsigned char ch;
struct sk_buff *skb;
do {
ch = serial_in(cs, UART_RX);
if (cs->hw.elsa.rcvcnt >= MAX_MODEM_BUF)
break;
cs->hw.elsa.rcvbuf[cs->hw.elsa.rcvcnt++] = ch;
#ifdef SERIAL_DEBUG_INTR
printk("DR%02x:%02x...", ch, *status);
#endif
if (*status & (UART_LSR_BI | UART_LSR_PE |
UART_LSR_FE | UART_LSR_OE)) {
#ifdef SERIAL_DEBUG_INTR
printk("handling exept....");
#endif
}
*status = serial_inp(cs, UART_LSR);
} while (*status & UART_LSR_DR);
if (cs->hw.elsa.MFlag == 2) {
if (!(skb = dev_alloc_skb(cs->hw.elsa.rcvcnt)))
printk(KERN_WARNING "ElsaSER: receive out of memory\n");
else {
memcpy(skb_put(skb, cs->hw.elsa.rcvcnt), cs->hw.elsa.rcvbuf,
cs->hw.elsa.rcvcnt);
skb_queue_tail(& cs->hw.elsa.bcs->rqueue, skb);
}
schedule_event(cs->hw.elsa.bcs, B_RCVBUFREADY);
} else {
char tmp[128];
char *t = tmp;
t += sprintf(t, "modem read cnt %d", cs->hw.elsa.rcvcnt);
QuickHex(t, cs->hw.elsa.rcvbuf, cs->hw.elsa.rcvcnt);
debugl1(cs, tmp);
}
cs->hw.elsa.rcvcnt = 0;
}
static inline void transmit_chars(struct IsdnCardState *cs, int *intr_done)
{
int count;
debugl1(cs, "transmit_chars: p(%x) cnt(%x)", cs->hw.elsa.transp,
cs->hw.elsa.transcnt);
if (cs->hw.elsa.transcnt <= 0) {
cs->hw.elsa.IER &= ~UART_IER_THRI;
serial_out(cs, UART_IER, cs->hw.elsa.IER);
return;
}
count = 16;
do {
serial_outp(cs, UART_TX, cs->hw.elsa.transbuf[cs->hw.elsa.transp++]);
if (cs->hw.elsa.transp >= MAX_MODEM_BUF)
cs->hw.elsa.transp=0;
if (--cs->hw.elsa.transcnt <= 0)
break;
} while (--count > 0);
if ((cs->hw.elsa.transcnt < WAKEUP_CHARS) && (cs->hw.elsa.MFlag==2))
modem_fill(cs->hw.elsa.bcs);
#ifdef SERIAL_DEBUG_INTR
printk("THRE...");
#endif
if (intr_done)
*intr_done = 0;
if (cs->hw.elsa.transcnt <= 0) {
cs->hw.elsa.IER &= ~UART_IER_THRI;
serial_outp(cs, UART_IER, cs->hw.elsa.IER);
}
}
static void rs_interrupt_elsa(struct IsdnCardState *cs)
{
int status, iir, msr;
int pass_counter = 0;
#ifdef SERIAL_DEBUG_INTR
printk(KERN_DEBUG "rs_interrupt_single(%d)...", cs->irq);
#endif
do {
status = serial_inp(cs, UART_LSR);
debugl1(cs,"rs LSR %02x", status);
#ifdef SERIAL_DEBUG_INTR
printk("status = %x...", status);
#endif
if (status & UART_LSR_DR)
receive_chars(cs, &status);
if (status & UART_LSR_THRE)
transmit_chars(cs, NULL);
if (pass_counter++ > RS_ISR_PASS_LIMIT) {
printk("rs_single loop break.\n");
break;
}
iir = serial_inp(cs, UART_IIR);
debugl1(cs,"rs IIR %02x", iir);
if ((iir & 0xf) == 0) {
msr = serial_inp(cs, UART_MSR);
debugl1(cs,"rs MSR %02x", msr);
}
} while (!(iir & UART_IIR_NO_INT));
#ifdef SERIAL_DEBUG_INTR
printk("end.\n");
#endif
}
extern int open_hscxstate(struct IsdnCardState *cs, struct BCState *bcs);
extern void modehscx(struct BCState *bcs, int mode, int bc);
extern void hscx_l2l1(struct PStack *st, int pr, void *arg);
static void
close_elsastate(struct BCState *bcs)
{
modehscx(bcs, 0, bcs->channel);
if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
if (bcs->hw.hscx.rcvbuf) {
if (bcs->mode != L1_MODE_MODEM)
kfree(bcs->hw.hscx.rcvbuf);
bcs->hw.hscx.rcvbuf = NULL;
}
skb_queue_purge(&bcs->rqueue);
skb_queue_purge(&bcs->squeue);
if (bcs->tx_skb) {
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
}
static void
modem_write_cmd(struct IsdnCardState *cs, u_char *buf, int len) {
int count, fp;
u_char *msg = buf;
if (!len)
return;
if (len > (MAX_MODEM_BUF - cs->hw.elsa.transcnt)) {
return;
}
fp = cs->hw.elsa.transcnt + cs->hw.elsa.transp;
fp &= (MAX_MODEM_BUF -1);
count = len;
if (count > MAX_MODEM_BUF - fp) {
count = MAX_MODEM_BUF - fp;
memcpy(cs->hw.elsa.transbuf + fp, msg, count);
cs->hw.elsa.transcnt += count;
msg += count;
count = len - count;
fp = 0;
}
memcpy(cs->hw.elsa.transbuf + fp, msg, count);
cs->hw.elsa.transcnt += count;
if (cs->hw.elsa.transcnt &&
!(cs->hw.elsa.IER & UART_IER_THRI)) {
cs->hw.elsa.IER |= UART_IER_THRI;
serial_outp(cs, UART_IER, cs->hw.elsa.IER);
}
}
static void
modem_set_init(struct IsdnCardState *cs) {
int timeout;
#define RCV_DELAY 20
modem_write_cmd(cs, MInit_1, strlen(MInit_1));
timeout = 1000;
while(timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
modem_write_cmd(cs, MInit_2, strlen(MInit_2));
timeout = 1000;
while(timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
modem_write_cmd(cs, MInit_3, strlen(MInit_3));
timeout = 1000;
while(timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
modem_write_cmd(cs, MInit_4, strlen(MInit_4));
timeout = 1000;
while(timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
modem_write_cmd(cs, MInit_5, strlen(MInit_5));
timeout = 1000;
while(timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
modem_write_cmd(cs, MInit_6, strlen(MInit_6));
timeout = 1000;
while(timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
modem_write_cmd(cs, MInit_7, strlen(MInit_7));
timeout = 1000;
while(timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
}
static void
modem_set_dial(struct IsdnCardState *cs, int outgoing) {
int timeout;
#define RCV_DELAY 20
modem_write_cmd(cs, MInit_speed28800, strlen(MInit_speed28800));
timeout = 1000;
while(timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
if (outgoing)
modem_write_cmd(cs, MInit_dialout, strlen(MInit_dialout));
else
modem_write_cmd(cs, MInit_dialin, strlen(MInit_dialin));
timeout = 1000;
while(timeout-- && cs->hw.elsa.transcnt)
udelay(1000);
debugl1(cs, "msi tout=%d", timeout);
mdelay(RCV_DELAY);
}
static void
modem_l2l1(struct PStack *st, int pr, void *arg)
{
struct BCState *bcs = st->l1.bcs;
struct sk_buff *skb = arg;
u_long flags;
if (pr == (PH_DATA | REQUEST)) {
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
skb_queue_tail(&bcs->squeue, skb);
} else {
bcs->tx_skb = skb;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->hw.hscx.count = 0;
write_modem(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
} else if (pr == (PH_ACTIVATE | REQUEST)) {
test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
set_arcofi(bcs->cs, st->l1.bc);
mstartup(bcs->cs);
modem_set_dial(bcs->cs, test_bit(FLG_ORIG, &st->l2.flag));
bcs->cs->hw.elsa.MFlag=2;
} else if (pr == (PH_DEACTIVATE | REQUEST)) {
test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
bcs->cs->dc.isac.arcofi_bc = st->l1.bc;
arcofi_fsm(bcs->cs, ARCOFI_START, &ARCOFI_XOP_0);
interruptible_sleep_on(&bcs->cs->dc.isac.arcofi_wait);
bcs->cs->hw.elsa.MFlag=1;
} else {
printk(KERN_WARNING"ElsaSer: unknown pr %x\n", pr);
}
}
static int
setstack_elsa(struct PStack *st, struct BCState *bcs)
{
bcs->channel = st->l1.bc;
switch (st->l1.mode) {
case L1_MODE_HDLC:
case L1_MODE_TRANS:
if (open_hscxstate(st->l1.hardware, bcs))
return (-1);
st->l2.l2l1 = hscx_l2l1;
break;
case L1_MODE_MODEM:
bcs->mode = L1_MODE_MODEM;
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
bcs->hw.hscx.rcvbuf = bcs->cs->hw.elsa.rcvbuf;
skb_queue_head_init(&bcs->rqueue);
skb_queue_head_init(&bcs->squeue);
}
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->event = 0;
bcs->hw.hscx.rcvidx = 0;
bcs->tx_cnt = 0;
bcs->cs->hw.elsa.bcs = bcs;
st->l2.l2l1 = modem_l2l1;
break;
}
st->l1.bcs = bcs;
setstack_manager(st);
bcs->st = st;
setstack_l1_B(st);
return (0);
}
static void
init_modem(struct IsdnCardState *cs) {
cs->bcs[0].BC_SetStack = setstack_elsa;
cs->bcs[1].BC_SetStack = setstack_elsa;
cs->bcs[0].BC_Close = close_elsastate;
cs->bcs[1].BC_Close = close_elsastate;
if (!(cs->hw.elsa.rcvbuf = kmalloc(MAX_MODEM_BUF,
GFP_ATOMIC))) {
printk(KERN_WARNING
"Elsa: No modem mem hw.elsa.rcvbuf\n");
return;
}
if (!(cs->hw.elsa.transbuf = kmalloc(MAX_MODEM_BUF,
GFP_ATOMIC))) {
printk(KERN_WARNING
"Elsa: No modem mem hw.elsa.transbuf\n");
kfree(cs->hw.elsa.rcvbuf);
cs->hw.elsa.rcvbuf = NULL;
return;
}
if (mstartup(cs)) {
printk(KERN_WARNING "Elsa: problem startup modem\n");
}
modem_set_init(cs);
}
static void
release_modem(struct IsdnCardState *cs) {
cs->hw.elsa.MFlag = 0;
if (cs->hw.elsa.transbuf) {
if (cs->hw.elsa.rcvbuf) {
mshutdown(cs);
kfree(cs->hw.elsa.rcvbuf);
cs->hw.elsa.rcvbuf = NULL;
}
kfree(cs->hw.elsa.transbuf);
cs->hw.elsa.transbuf = NULL;
}
}