kernel-fxtec-pro1x/arch/x86_64/mm/fault.c
Andi Kleen 9e43e1b7c7 [PATCH] x86_64: Remove CONFIG_CHECKING and add command line option for pagefault tracing
CONFIG_CHECKING covered some debugging code used in the early times
of the port. But it wasn't even SMP safe for quite some time
and the bugs it checked for seem to be gone.

This patch removes all the code to verify GS at kernel entry. There
haven't been any new bugs in this area for a long time.

Previously it also covered the sysctl for the page fault tracing.
That didn't make much sense because that code was unconditionally
compiled in. I made that a boot option now because it is typically
only useful at boot.

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-14 19:55:17 -08:00

568 lines
15 KiB
C

/*
* linux/arch/x86-64/mm/fault.c
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
*/
#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/tty.h>
#include <linux/vt_kern.h> /* For unblank_screen() */
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/kprobes.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgalloc.h>
#include <asm/smp.h>
#include <asm/tlbflush.h>
#include <asm/proto.h>
#include <asm/kdebug.h>
#include <asm-generic/sections.h>
#include <asm/kdebug.h>
void bust_spinlocks(int yes)
{
int loglevel_save = console_loglevel;
if (yes) {
oops_in_progress = 1;
} else {
#ifdef CONFIG_VT
unblank_screen();
#endif
oops_in_progress = 0;
/*
* OK, the message is on the console. Now we call printk()
* without oops_in_progress set so that printk will give klogd
* a poke. Hold onto your hats...
*/
console_loglevel = 15; /* NMI oopser may have shut the console up */
printk(" ");
console_loglevel = loglevel_save;
}
}
/* Sometimes the CPU reports invalid exceptions on prefetch.
Check that here and ignore.
Opcode checker based on code by Richard Brunner */
static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
unsigned long error_code)
{
unsigned char *instr;
int scan_more = 1;
int prefetch = 0;
unsigned char *max_instr;
/* If it was a exec fault ignore */
if (error_code & (1<<4))
return 0;
instr = (unsigned char *)convert_rip_to_linear(current, regs);
max_instr = instr + 15;
if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
return 0;
while (scan_more && instr < max_instr) {
unsigned char opcode;
unsigned char instr_hi;
unsigned char instr_lo;
if (__get_user(opcode, instr))
break;
instr_hi = opcode & 0xf0;
instr_lo = opcode & 0x0f;
instr++;
switch (instr_hi) {
case 0x20:
case 0x30:
/* Values 0x26,0x2E,0x36,0x3E are valid x86
prefixes. In long mode, the CPU will signal
invalid opcode if some of these prefixes are
present so we will never get here anyway */
scan_more = ((instr_lo & 7) == 0x6);
break;
case 0x40:
/* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
Need to figure out under what instruction mode the
instruction was issued ... */
/* Could check the LDT for lm, but for now it's good
enough to assume that long mode only uses well known
segments or kernel. */
scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
break;
case 0x60:
/* 0x64 thru 0x67 are valid prefixes in all modes. */
scan_more = (instr_lo & 0xC) == 0x4;
break;
case 0xF0:
/* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
scan_more = !instr_lo || (instr_lo>>1) == 1;
break;
case 0x00:
/* Prefetch instruction is 0x0F0D or 0x0F18 */
scan_more = 0;
if (__get_user(opcode, instr))
break;
prefetch = (instr_lo == 0xF) &&
(opcode == 0x0D || opcode == 0x18);
break;
default:
scan_more = 0;
break;
}
}
return prefetch;
}
static int bad_address(void *p)
{
unsigned long dummy;
return __get_user(dummy, (unsigned long *)p);
}
void dump_pagetable(unsigned long address)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
asm("movq %%cr3,%0" : "=r" (pgd));
pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
pgd += pgd_index(address);
printk("PGD %lx ", pgd_val(*pgd));
if (bad_address(pgd)) goto bad;
if (!pgd_present(*pgd)) goto ret;
pud = __pud_offset_k((pud_t *)pgd_page(*pgd), address);
if (bad_address(pud)) goto bad;
printk("PUD %lx ", pud_val(*pud));
if (!pud_present(*pud)) goto ret;
pmd = pmd_offset(pud, address);
if (bad_address(pmd)) goto bad;
printk("PMD %lx ", pmd_val(*pmd));
if (!pmd_present(*pmd)) goto ret;
pte = pte_offset_kernel(pmd, address);
if (bad_address(pte)) goto bad;
printk("PTE %lx", pte_val(*pte));
ret:
printk("\n");
return;
bad:
printk("BAD\n");
}
static const char errata93_warning[] =
KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
KERN_ERR "******* Please consider a BIOS update.\n"
KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
/* Workaround for K8 erratum #93 & buggy BIOS.
BIOS SMM functions are required to use a specific workaround
to avoid corruption of the 64bit RIP register on C stepping K8.
A lot of BIOS that didn't get tested properly miss this.
The OS sees this as a page fault with the upper 32bits of RIP cleared.
Try to work around it here.
Note we only handle faults in kernel here. */
static int is_errata93(struct pt_regs *regs, unsigned long address)
{
static int warned;
if (address != regs->rip)
return 0;
if ((address >> 32) != 0)
return 0;
address |= 0xffffffffUL << 32;
if ((address >= (u64)_stext && address <= (u64)_etext) ||
(address >= MODULES_VADDR && address <= MODULES_END)) {
if (!warned) {
printk(errata93_warning);
warned = 1;
}
regs->rip = address;
return 1;
}
return 0;
}
int unhandled_signal(struct task_struct *tsk, int sig)
{
if (tsk->pid == 1)
return 1;
if (tsk->ptrace & PT_PTRACED)
return 0;
return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
(tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
}
static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
unsigned long error_code)
{
unsigned long flags = oops_begin();
printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
current->comm, address);
dump_pagetable(address);
__die("Bad pagetable", regs, error_code);
oops_end(flags);
do_exit(SIGKILL);
}
/*
* Handle a fault on the vmalloc or module mapping area
*
* This assumes no large pages in there.
*/
static int vmalloc_fault(unsigned long address)
{
pgd_t *pgd, *pgd_ref;
pud_t *pud, *pud_ref;
pmd_t *pmd, *pmd_ref;
pte_t *pte, *pte_ref;
/* Copy kernel mappings over when needed. This can also
happen within a race in page table update. In the later
case just flush. */
pgd = pgd_offset(current->mm ?: &init_mm, address);
pgd_ref = pgd_offset_k(address);
if (pgd_none(*pgd_ref))
return -1;
if (pgd_none(*pgd))
set_pgd(pgd, *pgd_ref);
/* Below here mismatches are bugs because these lower tables
are shared */
pud = pud_offset(pgd, address);
pud_ref = pud_offset(pgd_ref, address);
if (pud_none(*pud_ref))
return -1;
if (pud_none(*pud) || pud_page(*pud) != pud_page(*pud_ref))
BUG();
pmd = pmd_offset(pud, address);
pmd_ref = pmd_offset(pud_ref, address);
if (pmd_none(*pmd_ref))
return -1;
if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
BUG();
pte_ref = pte_offset_kernel(pmd_ref, address);
if (!pte_present(*pte_ref))
return -1;
pte = pte_offset_kernel(pmd, address);
/* Don't use pte_page here, because the mappings can point
outside mem_map, and the NUMA hash lookup cannot handle
that. */
if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
BUG();
__flush_tlb_all();
return 0;
}
int page_fault_trace = 0;
int exception_trace = 1;
/*
* This routine handles page faults. It determines the address,
* and the problem, and then passes it off to one of the appropriate
* routines.
*
* error_code:
* bit 0 == 0 means no page found, 1 means protection fault
* bit 1 == 0 means read, 1 means write
* bit 2 == 0 means kernel, 1 means user-mode
* bit 3 == 1 means fault was an instruction fetch
*/
asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
unsigned long error_code)
{
struct task_struct *tsk;
struct mm_struct *mm;
struct vm_area_struct * vma;
unsigned long address;
const struct exception_table_entry *fixup;
int write;
unsigned long flags;
siginfo_t info;
/* get the address */
__asm__("movq %%cr2,%0":"=r" (address));
if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
SIGSEGV) == NOTIFY_STOP)
return;
if (likely(regs->eflags & X86_EFLAGS_IF))
local_irq_enable();
if (unlikely(page_fault_trace))
printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n",
regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code);
tsk = current;
mm = tsk->mm;
info.si_code = SEGV_MAPERR;
/*
* We fault-in kernel-space virtual memory on-demand. The
* 'reference' page table is init_mm.pgd.
*
* NOTE! We MUST NOT take any locks for this case. We may
* be in an interrupt or a critical region, and should
* only copy the information from the master page table,
* nothing more.
*
* This verifies that the fault happens in kernel space
* (error_code & 4) == 0, and that the fault was not a
* protection error (error_code & 1) == 0.
*/
if (unlikely(address >= TASK_SIZE64)) {
if (!(error_code & 5) &&
((address >= VMALLOC_START && address < VMALLOC_END) ||
(address >= MODULES_VADDR && address < MODULES_END))) {
if (vmalloc_fault(address) < 0)
goto bad_area_nosemaphore;
return;
}
/*
* Don't take the mm semaphore here. If we fixup a prefetch
* fault we could otherwise deadlock.
*/
goto bad_area_nosemaphore;
}
if (unlikely(error_code & (1 << 3)))
pgtable_bad(address, regs, error_code);
/*
* If we're in an interrupt or have no user
* context, we must not take the fault..
*/
if (unlikely(in_atomic() || !mm))
goto bad_area_nosemaphore;
again:
/* When running in the kernel we expect faults to occur only to
* addresses in user space. All other faults represent errors in the
* kernel and should generate an OOPS. Unfortunatly, in the case of an
* erroneous fault occuring in a code path which already holds mmap_sem
* we will deadlock attempting to validate the fault against the
* address space. Luckily the kernel only validly references user
* space from well defined areas of code, which are listed in the
* exceptions table.
*
* As the vast majority of faults will be valid we will only perform
* the source reference check when there is a possibilty of a deadlock.
* Attempt to lock the address space, if we cannot we then validate the
* source. If this is invalid we can skip the address space check,
* thus avoiding the deadlock.
*/
if (!down_read_trylock(&mm->mmap_sem)) {
if ((error_code & 4) == 0 &&
!search_exception_tables(regs->rip))
goto bad_area_nosemaphore;
down_read(&mm->mmap_sem);
}
vma = find_vma(mm, address);
if (!vma)
goto bad_area;
if (likely(vma->vm_start <= address))
goto good_area;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto bad_area;
if (error_code & 4) {
// XXX: align red zone size with ABI
if (address + 128 < regs->rsp)
goto bad_area;
}
if (expand_stack(vma, address))
goto bad_area;
/*
* Ok, we have a good vm_area for this memory access, so
* we can handle it..
*/
good_area:
info.si_code = SEGV_ACCERR;
write = 0;
switch (error_code & 3) {
default: /* 3: write, present */
/* fall through */
case 2: /* write, not present */
if (!(vma->vm_flags & VM_WRITE))
goto bad_area;
write++;
break;
case 1: /* read, present */
goto bad_area;
case 0: /* read, not present */
if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
goto bad_area;
}
/*
* If for any reason at all we couldn't handle the fault,
* make sure we exit gracefully rather than endlessly redo
* the fault.
*/
switch (handle_mm_fault(mm, vma, address, write)) {
case VM_FAULT_MINOR:
tsk->min_flt++;
break;
case VM_FAULT_MAJOR:
tsk->maj_flt++;
break;
case VM_FAULT_SIGBUS:
goto do_sigbus;
default:
goto out_of_memory;
}
up_read(&mm->mmap_sem);
return;
/*
* Something tried to access memory that isn't in our memory map..
* Fix it, but check if it's kernel or user first..
*/
bad_area:
up_read(&mm->mmap_sem);
bad_area_nosemaphore:
/* User mode accesses just cause a SIGSEGV */
if (error_code & 4) {
if (is_prefetch(regs, address, error_code))
return;
/* Work around K8 erratum #100 K8 in compat mode
occasionally jumps to illegal addresses >4GB. We
catch this here in the page fault handler because
these addresses are not reachable. Just detect this
case and return. Any code segment in LDT is
compatibility mode. */
if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
(address >> 32))
return;
if (exception_trace && unhandled_signal(tsk, SIGSEGV)) {
printk(
"%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n",
tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
tsk->comm, tsk->pid, address, regs->rip,
regs->rsp, error_code);
}
tsk->thread.cr2 = address;
/* Kernel addresses are always protection faults */
tsk->thread.error_code = error_code | (address >= TASK_SIZE);
tsk->thread.trap_no = 14;
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* info.si_code has been set above */
info.si_addr = (void __user *)address;
force_sig_info(SIGSEGV, &info, tsk);
return;
}
no_context:
/* Are we prepared to handle this kernel fault? */
fixup = search_exception_tables(regs->rip);
if (fixup) {
regs->rip = fixup->fixup;
return;
}
/*
* Hall of shame of CPU/BIOS bugs.
*/
if (is_prefetch(regs, address, error_code))
return;
if (is_errata93(regs, address))
return;
/*
* Oops. The kernel tried to access some bad page. We'll have to
* terminate things with extreme prejudice.
*/
flags = oops_begin();
if (address < PAGE_SIZE)
printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
else
printk(KERN_ALERT "Unable to handle kernel paging request");
printk(" at %016lx RIP: \n" KERN_ALERT,address);
printk_address(regs->rip);
printk("\n");
dump_pagetable(address);
__die("Oops", regs, error_code);
/* Executive summary in case the body of the oops scrolled away */
printk(KERN_EMERG "CR2: %016lx\n", address);
oops_end(flags);
do_exit(SIGKILL);
/*
* We ran out of memory, or some other thing happened to us that made
* us unable to handle the page fault gracefully.
*/
out_of_memory:
up_read(&mm->mmap_sem);
if (current->pid == 1) {
yield();
goto again;
}
printk("VM: killing process %s\n", tsk->comm);
if (error_code & 4)
do_exit(SIGKILL);
goto no_context;
do_sigbus:
up_read(&mm->mmap_sem);
/* Kernel mode? Handle exceptions or die */
if (!(error_code & 4))
goto no_context;
tsk->thread.cr2 = address;
tsk->thread.error_code = error_code;
tsk->thread.trap_no = 14;
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRERR;
info.si_addr = (void __user *)address;
force_sig_info(SIGBUS, &info, tsk);
return;
}
static int __init enable_pagefaulttrace(char *str)
{
page_fault_trace = 1;
return 0;
}
__setup("pagefaulttrace", enable_pagefaulttrace);