kernel-fxtec-pro1x/crypto/algif_aead.c
Linus Torvalds a11e1d432b Revert changes to convert to ->poll_mask() and aio IOCB_CMD_POLL
The poll() changes were not well thought out, and completely
unexplained.  They also caused a huge performance regression, because
"->poll()" was no longer a trivial file operation that just called down
to the underlying file operations, but instead did at least two indirect
calls.

Indirect calls are sadly slow now with the Spectre mitigation, but the
performance problem could at least be largely mitigated by changing the
"->get_poll_head()" operation to just have a per-file-descriptor pointer
to the poll head instead.  That gets rid of one of the new indirections.

But that doesn't fix the new complexity that is completely unwarranted
for the regular case.  The (undocumented) reason for the poll() changes
was some alleged AIO poll race fixing, but we don't make the common case
slower and more complex for some uncommon special case, so this all
really needs way more explanations and most likely a fundamental
redesign.

[ This revert is a revert of about 30 different commits, not reverted
  individually because that would just be unnecessarily messy  - Linus ]

Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-28 10:40:47 -07:00

621 lines
16 KiB
C

/*
* algif_aead: User-space interface for AEAD algorithms
*
* Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
*
* This file provides the user-space API for AEAD ciphers.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* The following concept of the memory management is used:
*
* The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
* filled by user space with the data submitted via sendpage/sendmsg. Filling
* up the TX SGL does not cause a crypto operation -- the data will only be
* tracked by the kernel. Upon receipt of one recvmsg call, the caller must
* provide a buffer which is tracked with the RX SGL.
*
* During the processing of the recvmsg operation, the cipher request is
* allocated and prepared. As part of the recvmsg operation, the processed
* TX buffers are extracted from the TX SGL into a separate SGL.
*
* After the completion of the crypto operation, the RX SGL and the cipher
* request is released. The extracted TX SGL parts are released together with
* the RX SGL release.
*/
#include <crypto/internal/aead.h>
#include <crypto/scatterwalk.h>
#include <crypto/if_alg.h>
#include <crypto/skcipher.h>
#include <crypto/null.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/net.h>
#include <net/sock.h>
struct aead_tfm {
struct crypto_aead *aead;
struct crypto_skcipher *null_tfm;
};
static inline bool aead_sufficient_data(struct sock *sk)
{
struct alg_sock *ask = alg_sk(sk);
struct sock *psk = ask->parent;
struct alg_sock *pask = alg_sk(psk);
struct af_alg_ctx *ctx = ask->private;
struct aead_tfm *aeadc = pask->private;
struct crypto_aead *tfm = aeadc->aead;
unsigned int as = crypto_aead_authsize(tfm);
/*
* The minimum amount of memory needed for an AEAD cipher is
* the AAD and in case of decryption the tag.
*/
return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as);
}
static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
{
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
struct sock *psk = ask->parent;
struct alg_sock *pask = alg_sk(psk);
struct aead_tfm *aeadc = pask->private;
struct crypto_aead *tfm = aeadc->aead;
unsigned int ivsize = crypto_aead_ivsize(tfm);
return af_alg_sendmsg(sock, msg, size, ivsize);
}
static int crypto_aead_copy_sgl(struct crypto_skcipher *null_tfm,
struct scatterlist *src,
struct scatterlist *dst, unsigned int len)
{
SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm);
skcipher_request_set_tfm(skreq, null_tfm);
skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_BACKLOG,
NULL, NULL);
skcipher_request_set_crypt(skreq, src, dst, len, NULL);
return crypto_skcipher_encrypt(skreq);
}
static int _aead_recvmsg(struct socket *sock, struct msghdr *msg,
size_t ignored, int flags)
{
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
struct sock *psk = ask->parent;
struct alg_sock *pask = alg_sk(psk);
struct af_alg_ctx *ctx = ask->private;
struct aead_tfm *aeadc = pask->private;
struct crypto_aead *tfm = aeadc->aead;
struct crypto_skcipher *null_tfm = aeadc->null_tfm;
unsigned int i, as = crypto_aead_authsize(tfm);
struct af_alg_async_req *areq;
struct af_alg_tsgl *tsgl, *tmp;
struct scatterlist *rsgl_src, *tsgl_src = NULL;
int err = 0;
size_t used = 0; /* [in] TX bufs to be en/decrypted */
size_t outlen = 0; /* [out] RX bufs produced by kernel */
size_t usedpages = 0; /* [in] RX bufs to be used from user */
size_t processed = 0; /* [in] TX bufs to be consumed */
if (!ctx->used) {
err = af_alg_wait_for_data(sk, flags);
if (err)
return err;
}
/*
* Data length provided by caller via sendmsg/sendpage that has not
* yet been processed.
*/
used = ctx->used;
/*
* Make sure sufficient data is present -- note, the same check is
* is also present in sendmsg/sendpage. The checks in sendpage/sendmsg
* shall provide an information to the data sender that something is
* wrong, but they are irrelevant to maintain the kernel integrity.
* We need this check here too in case user space decides to not honor
* the error message in sendmsg/sendpage and still call recvmsg. This
* check here protects the kernel integrity.
*/
if (!aead_sufficient_data(sk))
return -EINVAL;
/*
* Calculate the minimum output buffer size holding the result of the
* cipher operation. When encrypting data, the receiving buffer is
* larger by the tag length compared to the input buffer as the
* encryption operation generates the tag. For decryption, the input
* buffer provides the tag which is consumed resulting in only the
* plaintext without a buffer for the tag returned to the caller.
*/
if (ctx->enc)
outlen = used + as;
else
outlen = used - as;
/*
* The cipher operation input data is reduced by the associated data
* length as this data is processed separately later on.
*/
used -= ctx->aead_assoclen;
/* Allocate cipher request for current operation. */
areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
crypto_aead_reqsize(tfm));
if (IS_ERR(areq))
return PTR_ERR(areq);
/* convert iovecs of output buffers into RX SGL */
err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages);
if (err)
goto free;
/*
* Ensure output buffer is sufficiently large. If the caller provides
* less buffer space, only use the relative required input size. This
* allows AIO operation where the caller sent all data to be processed
* and the AIO operation performs the operation on the different chunks
* of the input data.
*/
if (usedpages < outlen) {
size_t less = outlen - usedpages;
if (used < less) {
err = -EINVAL;
goto free;
}
used -= less;
outlen -= less;
}
processed = used + ctx->aead_assoclen;
list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) {
for (i = 0; i < tsgl->cur; i++) {
struct scatterlist *process_sg = tsgl->sg + i;
if (!(process_sg->length) || !sg_page(process_sg))
continue;
tsgl_src = process_sg;
break;
}
if (tsgl_src)
break;
}
if (processed && !tsgl_src) {
err = -EFAULT;
goto free;
}
/*
* Copy of AAD from source to destination
*
* The AAD is copied to the destination buffer without change. Even
* when user space uses an in-place cipher operation, the kernel
* will copy the data as it does not see whether such in-place operation
* is initiated.
*
* To ensure efficiency, the following implementation ensure that the
* ciphers are invoked to perform a crypto operation in-place. This
* is achieved by memory management specified as follows.
*/
/* Use the RX SGL as source (and destination) for crypto op. */
rsgl_src = areq->first_rsgl.sgl.sg;
if (ctx->enc) {
/*
* Encryption operation - The in-place cipher operation is
* achieved by the following operation:
*
* TX SGL: AAD || PT
* | |
* | copy |
* v v
* RX SGL: AAD || PT || Tag
*/
err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
areq->first_rsgl.sgl.sg, processed);
if (err)
goto free;
af_alg_pull_tsgl(sk, processed, NULL, 0);
} else {
/*
* Decryption operation - To achieve an in-place cipher
* operation, the following SGL structure is used:
*
* TX SGL: AAD || CT || Tag
* | | ^
* | copy | | Create SGL link.
* v v |
* RX SGL: AAD || CT ----+
*/
/* Copy AAD || CT to RX SGL buffer for in-place operation. */
err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
areq->first_rsgl.sgl.sg, outlen);
if (err)
goto free;
/* Create TX SGL for tag and chain it to RX SGL. */
areq->tsgl_entries = af_alg_count_tsgl(sk, processed,
processed - as);
if (!areq->tsgl_entries)
areq->tsgl_entries = 1;
areq->tsgl = sock_kmalloc(sk, array_size(sizeof(*areq->tsgl),
areq->tsgl_entries),
GFP_KERNEL);
if (!areq->tsgl) {
err = -ENOMEM;
goto free;
}
sg_init_table(areq->tsgl, areq->tsgl_entries);
/* Release TX SGL, except for tag data and reassign tag data. */
af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as);
/* chain the areq TX SGL holding the tag with RX SGL */
if (usedpages) {
/* RX SGL present */
struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl;
sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1);
sg_chain(sgl_prev->sg, sgl_prev->npages + 1,
areq->tsgl);
} else
/* no RX SGL present (e.g. authentication only) */
rsgl_src = areq->tsgl;
}
/* Initialize the crypto operation */
aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src,
areq->first_rsgl.sgl.sg, used, ctx->iv);
aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen);
aead_request_set_tfm(&areq->cra_u.aead_req, tfm);
if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
/* AIO operation */
sock_hold(sk);
areq->iocb = msg->msg_iocb;
/* Remember output size that will be generated. */
areq->outlen = outlen;
aead_request_set_callback(&areq->cra_u.aead_req,
CRYPTO_TFM_REQ_MAY_BACKLOG,
af_alg_async_cb, areq);
err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) :
crypto_aead_decrypt(&areq->cra_u.aead_req);
/* AIO operation in progress */
if (err == -EINPROGRESS || err == -EBUSY)
return -EIOCBQUEUED;
sock_put(sk);
} else {
/* Synchronous operation */
aead_request_set_callback(&areq->cra_u.aead_req,
CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &ctx->wait);
err = crypto_wait_req(ctx->enc ?
crypto_aead_encrypt(&areq->cra_u.aead_req) :
crypto_aead_decrypt(&areq->cra_u.aead_req),
&ctx->wait);
}
free:
af_alg_free_resources(areq);
return err ? err : outlen;
}
static int aead_recvmsg(struct socket *sock, struct msghdr *msg,
size_t ignored, int flags)
{
struct sock *sk = sock->sk;
int ret = 0;
lock_sock(sk);
while (msg_data_left(msg)) {
int err = _aead_recvmsg(sock, msg, ignored, flags);
/*
* This error covers -EIOCBQUEUED which implies that we can
* only handle one AIO request. If the caller wants to have
* multiple AIO requests in parallel, he must make multiple
* separate AIO calls.
*
* Also return the error if no data has been processed so far.
*/
if (err <= 0) {
if (err == -EIOCBQUEUED || err == -EBADMSG || !ret)
ret = err;
goto out;
}
ret += err;
}
out:
af_alg_wmem_wakeup(sk);
release_sock(sk);
return ret;
}
static struct proto_ops algif_aead_ops = {
.family = PF_ALG,
.connect = sock_no_connect,
.socketpair = sock_no_socketpair,
.getname = sock_no_getname,
.ioctl = sock_no_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.getsockopt = sock_no_getsockopt,
.mmap = sock_no_mmap,
.bind = sock_no_bind,
.accept = sock_no_accept,
.setsockopt = sock_no_setsockopt,
.release = af_alg_release,
.sendmsg = aead_sendmsg,
.sendpage = af_alg_sendpage,
.recvmsg = aead_recvmsg,
.poll = af_alg_poll,
};
static int aead_check_key(struct socket *sock)
{
int err = 0;
struct sock *psk;
struct alg_sock *pask;
struct aead_tfm *tfm;
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
lock_sock(sk);
if (ask->refcnt)
goto unlock_child;
psk = ask->parent;
pask = alg_sk(ask->parent);
tfm = pask->private;
err = -ENOKEY;
lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
goto unlock;
if (!pask->refcnt++)
sock_hold(psk);
ask->refcnt = 1;
sock_put(psk);
err = 0;
unlock:
release_sock(psk);
unlock_child:
release_sock(sk);
return err;
}
static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
size_t size)
{
int err;
err = aead_check_key(sock);
if (err)
return err;
return aead_sendmsg(sock, msg, size);
}
static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page,
int offset, size_t size, int flags)
{
int err;
err = aead_check_key(sock);
if (err)
return err;
return af_alg_sendpage(sock, page, offset, size, flags);
}
static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
size_t ignored, int flags)
{
int err;
err = aead_check_key(sock);
if (err)
return err;
return aead_recvmsg(sock, msg, ignored, flags);
}
static struct proto_ops algif_aead_ops_nokey = {
.family = PF_ALG,
.connect = sock_no_connect,
.socketpair = sock_no_socketpair,
.getname = sock_no_getname,
.ioctl = sock_no_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.getsockopt = sock_no_getsockopt,
.mmap = sock_no_mmap,
.bind = sock_no_bind,
.accept = sock_no_accept,
.setsockopt = sock_no_setsockopt,
.release = af_alg_release,
.sendmsg = aead_sendmsg_nokey,
.sendpage = aead_sendpage_nokey,
.recvmsg = aead_recvmsg_nokey,
.poll = af_alg_poll,
};
static void *aead_bind(const char *name, u32 type, u32 mask)
{
struct aead_tfm *tfm;
struct crypto_aead *aead;
struct crypto_skcipher *null_tfm;
tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
if (!tfm)
return ERR_PTR(-ENOMEM);
aead = crypto_alloc_aead(name, type, mask);
if (IS_ERR(aead)) {
kfree(tfm);
return ERR_CAST(aead);
}
null_tfm = crypto_get_default_null_skcipher();
if (IS_ERR(null_tfm)) {
crypto_free_aead(aead);
kfree(tfm);
return ERR_CAST(null_tfm);
}
tfm->aead = aead;
tfm->null_tfm = null_tfm;
return tfm;
}
static void aead_release(void *private)
{
struct aead_tfm *tfm = private;
crypto_free_aead(tfm->aead);
crypto_put_default_null_skcipher();
kfree(tfm);
}
static int aead_setauthsize(void *private, unsigned int authsize)
{
struct aead_tfm *tfm = private;
return crypto_aead_setauthsize(tfm->aead, authsize);
}
static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
{
struct aead_tfm *tfm = private;
return crypto_aead_setkey(tfm->aead, key, keylen);
}
static void aead_sock_destruct(struct sock *sk)
{
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct sock *psk = ask->parent;
struct alg_sock *pask = alg_sk(psk);
struct aead_tfm *aeadc = pask->private;
struct crypto_aead *tfm = aeadc->aead;
unsigned int ivlen = crypto_aead_ivsize(tfm);
af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
sock_kzfree_s(sk, ctx->iv, ivlen);
sock_kfree_s(sk, ctx, ctx->len);
af_alg_release_parent(sk);
}
static int aead_accept_parent_nokey(void *private, struct sock *sk)
{
struct af_alg_ctx *ctx;
struct alg_sock *ask = alg_sk(sk);
struct aead_tfm *tfm = private;
struct crypto_aead *aead = tfm->aead;
unsigned int len = sizeof(*ctx);
unsigned int ivlen = crypto_aead_ivsize(aead);
ctx = sock_kmalloc(sk, len, GFP_KERNEL);
if (!ctx)
return -ENOMEM;
memset(ctx, 0, len);
ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
if (!ctx->iv) {
sock_kfree_s(sk, ctx, len);
return -ENOMEM;
}
memset(ctx->iv, 0, ivlen);
INIT_LIST_HEAD(&ctx->tsgl_list);
ctx->len = len;
ctx->used = 0;
atomic_set(&ctx->rcvused, 0);
ctx->more = 0;
ctx->merge = 0;
ctx->enc = 0;
ctx->aead_assoclen = 0;
crypto_init_wait(&ctx->wait);
ask->private = ctx;
sk->sk_destruct = aead_sock_destruct;
return 0;
}
static int aead_accept_parent(void *private, struct sock *sk)
{
struct aead_tfm *tfm = private;
if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
return -ENOKEY;
return aead_accept_parent_nokey(private, sk);
}
static const struct af_alg_type algif_type_aead = {
.bind = aead_bind,
.release = aead_release,
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.accept = aead_accept_parent,
.accept_nokey = aead_accept_parent_nokey,
.ops = &algif_aead_ops,
.ops_nokey = &algif_aead_ops_nokey,
.name = "aead",
.owner = THIS_MODULE
};
static int __init algif_aead_init(void)
{
return af_alg_register_type(&algif_type_aead);
}
static void __exit algif_aead_exit(void)
{
int err = af_alg_unregister_type(&algif_type_aead);
BUG_ON(err);
}
module_init(algif_aead_init);
module_exit(algif_aead_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");