kernel-fxtec-pro1x/drivers/mtd/inftlmount.c
Mariusz Kozlowski d67d1d7fc3 [MTD] drivers/mtd/inftlmount.c: kmalloc + memset conversion to kcalloc
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2007-08-01 11:02:40 +01:00

817 lines
23 KiB
C

/*
* inftlmount.c -- INFTL mount code with extensive checks.
*
* Author: Greg Ungerer (gerg@snapgear.com)
* (C) Copyright 2002-2003, Greg Ungerer (gerg@snapgear.com)
*
* Based heavily on the nftlmount.c code which is:
* Author: Fabrice Bellard (fabrice.bellard@netgem.com)
* Copyright (C) 2000 Netgem S.A.
*
* $Id: inftlmount.c,v 1.18 2005/11/07 11:14:20 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <linux/miscdevice.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nftl.h>
#include <linux/mtd/inftl.h>
#include <linux/mtd/compatmac.h>
char inftlmountrev[]="$Revision: 1.18 $";
extern int inftl_read_oob(struct mtd_info *mtd, loff_t offs, size_t len,
size_t *retlen, uint8_t *buf);
extern int inftl_write_oob(struct mtd_info *mtd, loff_t offs, size_t len,
size_t *retlen, uint8_t *buf);
/*
* find_boot_record: Find the INFTL Media Header and its Spare copy which
* contains the various device information of the INFTL partition and
* Bad Unit Table. Update the PUtable[] table according to the Bad
* Unit Table. PUtable[] is used for management of Erase Unit in
* other routines in inftlcore.c and inftlmount.c.
*/
static int find_boot_record(struct INFTLrecord *inftl)
{
struct inftl_unittail h1;
//struct inftl_oob oob;
unsigned int i, block;
u8 buf[SECTORSIZE];
struct INFTLMediaHeader *mh = &inftl->MediaHdr;
struct mtd_info *mtd = inftl->mbd.mtd;
struct INFTLPartition *ip;
size_t retlen;
DEBUG(MTD_DEBUG_LEVEL3, "INFTL: find_boot_record(inftl=%p)\n", inftl);
/*
* Assume logical EraseSize == physical erasesize for starting the
* scan. We'll sort it out later if we find a MediaHeader which says
* otherwise.
*/
inftl->EraseSize = inftl->mbd.mtd->erasesize;
inftl->nb_blocks = inftl->mbd.mtd->size / inftl->EraseSize;
inftl->MediaUnit = BLOCK_NIL;
/* Search for a valid boot record */
for (block = 0; block < inftl->nb_blocks; block++) {
int ret;
/*
* Check for BNAND header first. Then whinge if it's found
* but later checks fail.
*/
ret = mtd->read(mtd, block * inftl->EraseSize,
SECTORSIZE, &retlen, buf);
/* We ignore ret in case the ECC of the MediaHeader is invalid
(which is apparently acceptable) */
if (retlen != SECTORSIZE) {
static int warncount = 5;
if (warncount) {
printk(KERN_WARNING "INFTL: block read at 0x%x "
"of mtd%d failed: %d\n",
block * inftl->EraseSize,
inftl->mbd.mtd->index, ret);
if (!--warncount)
printk(KERN_WARNING "INFTL: further "
"failures for this block will "
"not be printed\n");
}
continue;
}
if (retlen < 6 || memcmp(buf, "BNAND", 6)) {
/* BNAND\0 not found. Continue */
continue;
}
/* To be safer with BIOS, also use erase mark as discriminant */
if ((ret = inftl_read_oob(mtd, block * inftl->EraseSize +
SECTORSIZE + 8, 8, &retlen,
(char *)&h1) < 0)) {
printk(KERN_WARNING "INFTL: ANAND header found at "
"0x%x in mtd%d, but OOB data read failed "
"(err %d)\n", block * inftl->EraseSize,
inftl->mbd.mtd->index, ret);
continue;
}
/*
* This is the first we've seen.
* Copy the media header structure into place.
*/
memcpy(mh, buf, sizeof(struct INFTLMediaHeader));
/* Read the spare media header at offset 4096 */
mtd->read(mtd, block * inftl->EraseSize + 4096,
SECTORSIZE, &retlen, buf);
if (retlen != SECTORSIZE) {
printk(KERN_WARNING "INFTL: Unable to read spare "
"Media Header\n");
return -1;
}
/* Check if this one is the same as the first one we found. */
if (memcmp(mh, buf, sizeof(struct INFTLMediaHeader))) {
printk(KERN_WARNING "INFTL: Primary and spare Media "
"Headers disagree.\n");
return -1;
}
mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
#ifdef CONFIG_MTD_DEBUG_VERBOSE
if (CONFIG_MTD_DEBUG_VERBOSE >= 2) {
printk("INFTL: Media Header ->\n"
" bootRecordID = %s\n"
" NoOfBootImageBlocks = %d\n"
" NoOfBinaryPartitions = %d\n"
" NoOfBDTLPartitions = %d\n"
" BlockMultiplerBits = %d\n"
" FormatFlgs = %d\n"
" OsakVersion = 0x%x\n"
" PercentUsed = %d\n",
mh->bootRecordID, mh->NoOfBootImageBlocks,
mh->NoOfBinaryPartitions,
mh->NoOfBDTLPartitions,
mh->BlockMultiplierBits, mh->FormatFlags,
mh->OsakVersion, mh->PercentUsed);
}
#endif
if (mh->NoOfBDTLPartitions == 0) {
printk(KERN_WARNING "INFTL: Media Header sanity check "
"failed: NoOfBDTLPartitions (%d) == 0, "
"must be at least 1\n", mh->NoOfBDTLPartitions);
return -1;
}
if ((mh->NoOfBDTLPartitions + mh->NoOfBinaryPartitions) > 4) {
printk(KERN_WARNING "INFTL: Media Header sanity check "
"failed: Total Partitions (%d) > 4, "
"BDTL=%d Binary=%d\n", mh->NoOfBDTLPartitions +
mh->NoOfBinaryPartitions,
mh->NoOfBDTLPartitions,
mh->NoOfBinaryPartitions);
return -1;
}
if (mh->BlockMultiplierBits > 1) {
printk(KERN_WARNING "INFTL: sorry, we don't support "
"UnitSizeFactor 0x%02x\n",
mh->BlockMultiplierBits);
return -1;
} else if (mh->BlockMultiplierBits == 1) {
printk(KERN_WARNING "INFTL: support for INFTL with "
"UnitSizeFactor 0x%02x is experimental\n",
mh->BlockMultiplierBits);
inftl->EraseSize = inftl->mbd.mtd->erasesize <<
mh->BlockMultiplierBits;
inftl->nb_blocks = inftl->mbd.mtd->size / inftl->EraseSize;
block >>= mh->BlockMultiplierBits;
}
/* Scan the partitions */
for (i = 0; (i < 4); i++) {
ip = &mh->Partitions[i];
ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
ip->firstUnit = le32_to_cpu(ip->firstUnit);
ip->lastUnit = le32_to_cpu(ip->lastUnit);
ip->flags = le32_to_cpu(ip->flags);
ip->spareUnits = le32_to_cpu(ip->spareUnits);
ip->Reserved0 = le32_to_cpu(ip->Reserved0);
#ifdef CONFIG_MTD_DEBUG_VERBOSE
if (CONFIG_MTD_DEBUG_VERBOSE >= 2) {
printk(" PARTITION[%d] ->\n"
" virtualUnits = %d\n"
" firstUnit = %d\n"
" lastUnit = %d\n"
" flags = 0x%x\n"
" spareUnits = %d\n",
i, ip->virtualUnits, ip->firstUnit,
ip->lastUnit, ip->flags,
ip->spareUnits);
}
#endif
if (ip->Reserved0 != ip->firstUnit) {
struct erase_info *instr = &inftl->instr;
instr->mtd = inftl->mbd.mtd;
/*
* Most likely this is using the
* undocumented qiuck mount feature.
* We don't support that, we will need
* to erase the hidden block for full
* compatibility.
*/
instr->addr = ip->Reserved0 * inftl->EraseSize;
instr->len = inftl->EraseSize;
mtd->erase(mtd, instr);
}
if ((ip->lastUnit - ip->firstUnit + 1) < ip->virtualUnits) {
printk(KERN_WARNING "INFTL: Media Header "
"Partition %d sanity check failed\n"
" firstUnit %d : lastUnit %d > "
"virtualUnits %d\n", i, ip->lastUnit,
ip->firstUnit, ip->Reserved0);
return -1;
}
if (ip->Reserved1 != 0) {
printk(KERN_WARNING "INFTL: Media Header "
"Partition %d sanity check failed: "
"Reserved1 %d != 0\n",
i, ip->Reserved1);
return -1;
}
if (ip->flags & INFTL_BDTL)
break;
}
if (i >= 4) {
printk(KERN_WARNING "INFTL: Media Header Partition "
"sanity check failed:\n No partition "
"marked as Disk Partition\n");
return -1;
}
inftl->nb_boot_blocks = ip->firstUnit;
inftl->numvunits = ip->virtualUnits;
if (inftl->numvunits > (inftl->nb_blocks -
inftl->nb_boot_blocks - 2)) {
printk(KERN_WARNING "INFTL: Media Header sanity check "
"failed:\n numvunits (%d) > nb_blocks "
"(%d) - nb_boot_blocks(%d) - 2\n",
inftl->numvunits, inftl->nb_blocks,
inftl->nb_boot_blocks);
return -1;
}
inftl->mbd.size = inftl->numvunits *
(inftl->EraseSize / SECTORSIZE);
/*
* Block count is set to last used EUN (we won't need to keep
* any meta-data past that point).
*/
inftl->firstEUN = ip->firstUnit;
inftl->lastEUN = ip->lastUnit;
inftl->nb_blocks = ip->lastUnit + 1;
/* Memory alloc */
inftl->PUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL);
if (!inftl->PUtable) {
printk(KERN_WARNING "INFTL: allocation of PUtable "
"failed (%zd bytes)\n",
inftl->nb_blocks * sizeof(u16));
return -ENOMEM;
}
inftl->VUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL);
if (!inftl->VUtable) {
kfree(inftl->PUtable);
printk(KERN_WARNING "INFTL: allocation of VUtable "
"failed (%zd bytes)\n",
inftl->nb_blocks * sizeof(u16));
return -ENOMEM;
}
/* Mark the blocks before INFTL MediaHeader as reserved */
for (i = 0; i < inftl->nb_boot_blocks; i++)
inftl->PUtable[i] = BLOCK_RESERVED;
/* Mark all remaining blocks as potentially containing data */
for (; i < inftl->nb_blocks; i++)
inftl->PUtable[i] = BLOCK_NOTEXPLORED;
/* Mark this boot record (NFTL MediaHeader) block as reserved */
inftl->PUtable[block] = BLOCK_RESERVED;
/* Read Bad Erase Unit Table and modify PUtable[] accordingly */
for (i = 0; i < inftl->nb_blocks; i++) {
int physblock;
/* If any of the physical eraseblocks are bad, don't
use the unit. */
for (physblock = 0; physblock < inftl->EraseSize; physblock += inftl->mbd.mtd->erasesize) {
if (inftl->mbd.mtd->block_isbad(inftl->mbd.mtd, i * inftl->EraseSize + physblock))
inftl->PUtable[i] = BLOCK_RESERVED;
}
}
inftl->MediaUnit = block;
return 0;
}
/* Not found. */
return -1;
}
static int memcmpb(void *a, int c, int n)
{
int i;
for (i = 0; i < n; i++) {
if (c != ((unsigned char *)a)[i])
return 1;
}
return 0;
}
/*
* check_free_sector: check if a free sector is actually FREE,
* i.e. All 0xff in data and oob area.
*/
static int check_free_sectors(struct INFTLrecord *inftl, unsigned int address,
int len, int check_oob)
{
u8 buf[SECTORSIZE + inftl->mbd.mtd->oobsize];
struct mtd_info *mtd = inftl->mbd.mtd;
size_t retlen;
int i;
for (i = 0; i < len; i += SECTORSIZE) {
if (mtd->read(mtd, address, SECTORSIZE, &retlen, buf))
return -1;
if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
return -1;
if (check_oob) {
if(inftl_read_oob(mtd, address, mtd->oobsize,
&retlen, &buf[SECTORSIZE]) < 0)
return -1;
if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
return -1;
}
address += SECTORSIZE;
}
return 0;
}
/*
* INFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase
* Unit and Update INFTL metadata. Each erase operation is
* checked with check_free_sectors.
*
* Return: 0 when succeed, -1 on error.
*
* ToDo: 1. Is it neceressary to check_free_sector after erasing ??
*/
int INFTL_formatblock(struct INFTLrecord *inftl, int block)
{
size_t retlen;
struct inftl_unittail uci;
struct erase_info *instr = &inftl->instr;
struct mtd_info *mtd = inftl->mbd.mtd;
int physblock;
DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_formatblock(inftl=%p,"
"block=%d)\n", inftl, block);
memset(instr, 0, sizeof(struct erase_info));
/* FIXME: Shouldn't we be setting the 'discarded' flag to zero
_first_? */
/* Use async erase interface, test return code */
instr->mtd = inftl->mbd.mtd;
instr->addr = block * inftl->EraseSize;
instr->len = inftl->mbd.mtd->erasesize;
/* Erase one physical eraseblock at a time, even though the NAND api
allows us to group them. This way we if we have a failure, we can
mark only the failed block in the bbt. */
for (physblock = 0; physblock < inftl->EraseSize;
physblock += instr->len, instr->addr += instr->len) {
mtd->erase(inftl->mbd.mtd, instr);
if (instr->state == MTD_ERASE_FAILED) {
printk(KERN_WARNING "INFTL: error while formatting block %d\n",
block);
goto fail;
}
/*
* Check the "freeness" of Erase Unit before updating metadata.
* FixMe: is this check really necessary? Since we have check
* the return code after the erase operation.
*/
if (check_free_sectors(inftl, instr->addr, instr->len, 1) != 0)
goto fail;
}
uci.EraseMark = cpu_to_le16(ERASE_MARK);
uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
uci.Reserved[0] = 0;
uci.Reserved[1] = 0;
uci.Reserved[2] = 0;
uci.Reserved[3] = 0;
instr->addr = block * inftl->EraseSize + SECTORSIZE * 2;
if (inftl_write_oob(mtd, instr->addr + 8, 8, &retlen, (char *)&uci) < 0)
goto fail;
return 0;
fail:
/* could not format, update the bad block table (caller is responsible
for setting the PUtable to BLOCK_RESERVED on failure) */
inftl->mbd.mtd->block_markbad(inftl->mbd.mtd, instr->addr);
return -1;
}
/*
* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase
* Units in a Virtual Unit Chain, i.e. all the units are disconnected.
*
* Since the chain is invalid then we will have to erase it from its
* head (normally for INFTL we go from the oldest). But if it has a
* loop then there is no oldest...
*/
static void format_chain(struct INFTLrecord *inftl, unsigned int first_block)
{
unsigned int block = first_block, block1;
printk(KERN_WARNING "INFTL: formatting chain at block %d\n",
first_block);
for (;;) {
block1 = inftl->PUtable[block];
printk(KERN_WARNING "INFTL: formatting block %d\n", block);
if (INFTL_formatblock(inftl, block) < 0) {
/*
* Cannot format !!!! Mark it as Bad Unit,
*/
inftl->PUtable[block] = BLOCK_RESERVED;
} else {
inftl->PUtable[block] = BLOCK_FREE;
}
/* Goto next block on the chain */
block = block1;
if (block == BLOCK_NIL || block >= inftl->lastEUN)
break;
}
}
void INFTL_dumptables(struct INFTLrecord *s)
{
int i;
printk("-------------------------------------------"
"----------------------------------\n");
printk("VUtable[%d] ->", s->nb_blocks);
for (i = 0; i < s->nb_blocks; i++) {
if ((i % 8) == 0)
printk("\n%04x: ", i);
printk("%04x ", s->VUtable[i]);
}
printk("\n-------------------------------------------"
"----------------------------------\n");
printk("PUtable[%d-%d=%d] ->", s->firstEUN, s->lastEUN, s->nb_blocks);
for (i = 0; i <= s->lastEUN; i++) {
if ((i % 8) == 0)
printk("\n%04x: ", i);
printk("%04x ", s->PUtable[i]);
}
printk("\n-------------------------------------------"
"----------------------------------\n");
printk("INFTL ->\n"
" EraseSize = %d\n"
" h/s/c = %d/%d/%d\n"
" numvunits = %d\n"
" firstEUN = %d\n"
" lastEUN = %d\n"
" numfreeEUNs = %d\n"
" LastFreeEUN = %d\n"
" nb_blocks = %d\n"
" nb_boot_blocks = %d",
s->EraseSize, s->heads, s->sectors, s->cylinders,
s->numvunits, s->firstEUN, s->lastEUN, s->numfreeEUNs,
s->LastFreeEUN, s->nb_blocks, s->nb_boot_blocks);
printk("\n-------------------------------------------"
"----------------------------------\n");
}
void INFTL_dumpVUchains(struct INFTLrecord *s)
{
int logical, block, i;
printk("-------------------------------------------"
"----------------------------------\n");
printk("INFTL Virtual Unit Chains:\n");
for (logical = 0; logical < s->nb_blocks; logical++) {
block = s->VUtable[logical];
if (block > s->nb_blocks)
continue;
printk(" LOGICAL %d --> %d ", logical, block);
for (i = 0; i < s->nb_blocks; i++) {
if (s->PUtable[block] == BLOCK_NIL)
break;
block = s->PUtable[block];
printk("%d ", block);
}
printk("\n");
}
printk("-------------------------------------------"
"----------------------------------\n");
}
int INFTL_mount(struct INFTLrecord *s)
{
struct mtd_info *mtd = s->mbd.mtd;
unsigned int block, first_block, prev_block, last_block;
unsigned int first_logical_block, logical_block, erase_mark;
int chain_length, do_format_chain;
struct inftl_unithead1 h0;
struct inftl_unittail h1;
size_t retlen;
int i;
u8 *ANACtable, ANAC;
DEBUG(MTD_DEBUG_LEVEL3, "INFTL: INFTL_mount(inftl=%p)\n", s);
/* Search for INFTL MediaHeader and Spare INFTL Media Header */
if (find_boot_record(s) < 0) {
printk(KERN_WARNING "INFTL: could not find valid boot record?\n");
return -ENXIO;
}
/* Init the logical to physical table */
for (i = 0; i < s->nb_blocks; i++)
s->VUtable[i] = BLOCK_NIL;
logical_block = block = BLOCK_NIL;
/* Temporary buffer to store ANAC numbers. */
ANACtable = kcalloc(s->nb_blocks, sizeof(u8), GFP_KERNEL);
if (!ANACtable) {
printk(KERN_WARNING "INFTL: allocation of ANACtable "
"failed (%zd bytes)\n",
s->nb_blocks * sizeof(u8));
return -ENOMEM;
}
/*
* First pass is to explore each physical unit, and construct the
* virtual chains that exist (newest physical unit goes into VUtable).
* Any block that is in any way invalid will be left in the
* NOTEXPLORED state. Then at the end we will try to format it and
* mark it as free.
*/
DEBUG(MTD_DEBUG_LEVEL3, "INFTL: pass 1, explore each unit\n");
for (first_block = s->firstEUN; first_block <= s->lastEUN; first_block++) {
if (s->PUtable[first_block] != BLOCK_NOTEXPLORED)
continue;
do_format_chain = 0;
first_logical_block = BLOCK_NIL;
last_block = BLOCK_NIL;
block = first_block;
for (chain_length = 0; ; chain_length++) {
if ((chain_length == 0) &&
(s->PUtable[block] != BLOCK_NOTEXPLORED)) {
/* Nothing to do here, onto next block */
break;
}
if (inftl_read_oob(mtd, block * s->EraseSize + 8,
8, &retlen, (char *)&h0) < 0 ||
inftl_read_oob(mtd, block * s->EraseSize +
2 * SECTORSIZE + 8, 8, &retlen,
(char *)&h1) < 0) {
/* Should never happen? */
do_format_chain++;
break;
}
logical_block = le16_to_cpu(h0.virtualUnitNo);
prev_block = le16_to_cpu(h0.prevUnitNo);
erase_mark = le16_to_cpu((h1.EraseMark | h1.EraseMark1));
ANACtable[block] = h0.ANAC;
/* Previous block is relative to start of Partition */
if (prev_block < s->nb_blocks)
prev_block += s->firstEUN;
/* Already explored partial chain? */
if (s->PUtable[block] != BLOCK_NOTEXPLORED) {
/* Check if chain for this logical */
if (logical_block == first_logical_block) {
if (last_block != BLOCK_NIL)
s->PUtable[last_block] = block;
}
break;
}
/* Check for invalid block */
if (erase_mark != ERASE_MARK) {
printk(KERN_WARNING "INFTL: corrupt block %d "
"in chain %d, chain length %d, erase "
"mark 0x%x?\n", block, first_block,
chain_length, erase_mark);
/*
* Assume end of chain, probably incomplete
* fold/erase...
*/
if (chain_length == 0)
do_format_chain++;
break;
}
/* Check for it being free already then... */
if ((logical_block == BLOCK_FREE) ||
(logical_block == BLOCK_NIL)) {
s->PUtable[block] = BLOCK_FREE;
break;
}
/* Sanity checks on block numbers */
if ((logical_block >= s->nb_blocks) ||
((prev_block >= s->nb_blocks) &&
(prev_block != BLOCK_NIL))) {
if (chain_length > 0) {
printk(KERN_WARNING "INFTL: corrupt "
"block %d in chain %d?\n",
block, first_block);
do_format_chain++;
}
break;
}
if (first_logical_block == BLOCK_NIL) {
first_logical_block = logical_block;
} else {
if (first_logical_block != logical_block) {
/* Normal for folded chain... */
break;
}
}
/*
* Current block is valid, so if we followed a virtual
* chain to get here then we can set the previous
* block pointer in our PUtable now. Then move onto
* the previous block in the chain.
*/
s->PUtable[block] = BLOCK_NIL;
if (last_block != BLOCK_NIL)
s->PUtable[last_block] = block;
last_block = block;
block = prev_block;
/* Check for end of chain */
if (block == BLOCK_NIL)
break;
/* Validate next block before following it... */
if (block > s->lastEUN) {
printk(KERN_WARNING "INFTL: invalid previous "
"block %d in chain %d?\n", block,
first_block);
do_format_chain++;
break;
}
}
if (do_format_chain) {
format_chain(s, first_block);
continue;
}
/*
* Looks like a valid chain then. It may not really be the
* newest block in the chain, but it is the newest we have
* found so far. We might update it in later iterations of
* this loop if we find something newer.
*/
s->VUtable[first_logical_block] = first_block;
logical_block = BLOCK_NIL;
}
#ifdef CONFIG_MTD_DEBUG_VERBOSE
if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
INFTL_dumptables(s);
#endif
/*
* Second pass, check for infinite loops in chains. These are
* possible because we don't update the previous pointers when
* we fold chains. No big deal, just fix them up in PUtable.
*/
DEBUG(MTD_DEBUG_LEVEL3, "INFTL: pass 2, validate virtual chains\n");
for (logical_block = 0; logical_block < s->numvunits; logical_block++) {
block = s->VUtable[logical_block];
last_block = BLOCK_NIL;
/* Check for free/reserved/nil */
if (block >= BLOCK_RESERVED)
continue;
ANAC = ANACtable[block];
for (i = 0; i < s->numvunits; i++) {
if (s->PUtable[block] == BLOCK_NIL)
break;
if (s->PUtable[block] > s->lastEUN) {
printk(KERN_WARNING "INFTL: invalid prev %d, "
"in virtual chain %d\n",
s->PUtable[block], logical_block);
s->PUtable[block] = BLOCK_NIL;
}
if (ANACtable[block] != ANAC) {
/*
* Chain must point back to itself. This is ok,
* but we will need adjust the tables with this
* newest block and oldest block.
*/
s->VUtable[logical_block] = block;
s->PUtable[last_block] = BLOCK_NIL;
break;
}
ANAC--;
last_block = block;
block = s->PUtable[block];
}
if (i >= s->nb_blocks) {
/*
* Uhoo, infinite chain with valid ANACS!
* Format whole chain...
*/
format_chain(s, first_block);
}
}
#ifdef CONFIG_MTD_DEBUG_VERBOSE
if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
INFTL_dumptables(s);
if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
INFTL_dumpVUchains(s);
#endif
/*
* Third pass, format unreferenced blocks and init free block count.
*/
s->numfreeEUNs = 0;
s->LastFreeEUN = BLOCK_NIL;
DEBUG(MTD_DEBUG_LEVEL3, "INFTL: pass 3, format unused blocks\n");
for (block = s->firstEUN; block <= s->lastEUN; block++) {
if (s->PUtable[block] == BLOCK_NOTEXPLORED) {
printk("INFTL: unreferenced block %d, formatting it\n",
block);
if (INFTL_formatblock(s, block) < 0)
s->PUtable[block] = BLOCK_RESERVED;
else
s->PUtable[block] = BLOCK_FREE;
}
if (s->PUtable[block] == BLOCK_FREE) {
s->numfreeEUNs++;
if (s->LastFreeEUN == BLOCK_NIL)
s->LastFreeEUN = block;
}
}
kfree(ANACtable);
return 0;
}