kernel-fxtec-pro1x/sound/soc/codecs/wm8994.c
Mark Brown 5b7396709e ASoC: Conditionalize the enable of WM8994 ADC TDM mode
Future devices will not benefit from this.

Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Liam Girdwood <lrg@ti.com>
2011-07-09 23:16:48 +09:00

3262 lines
91 KiB
C

/*
* wm8994.c -- WM8994 ALSA SoC Audio driver
*
* Copyright 2009 Wolfson Microelectronics plc
*
* Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/jack.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <trace/events/asoc.h>
#include <linux/mfd/wm8994/core.h>
#include <linux/mfd/wm8994/registers.h>
#include <linux/mfd/wm8994/pdata.h>
#include <linux/mfd/wm8994/gpio.h>
#include "wm8994.h"
#include "wm_hubs.h"
#define WM8994_NUM_DRC 3
#define WM8994_NUM_EQ 3
static int wm8994_drc_base[] = {
WM8994_AIF1_DRC1_1,
WM8994_AIF1_DRC2_1,
WM8994_AIF2_DRC_1,
};
static int wm8994_retune_mobile_base[] = {
WM8994_AIF1_DAC1_EQ_GAINS_1,
WM8994_AIF1_DAC2_EQ_GAINS_1,
WM8994_AIF2_EQ_GAINS_1,
};
static int wm8994_readable(struct snd_soc_codec *codec, unsigned int reg)
{
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
struct wm8994 *control = wm8994->control_data;
switch (reg) {
case WM8994_GPIO_1:
case WM8994_GPIO_2:
case WM8994_GPIO_3:
case WM8994_GPIO_4:
case WM8994_GPIO_5:
case WM8994_GPIO_6:
case WM8994_GPIO_7:
case WM8994_GPIO_8:
case WM8994_GPIO_9:
case WM8994_GPIO_10:
case WM8994_GPIO_11:
case WM8994_INTERRUPT_STATUS_1:
case WM8994_INTERRUPT_STATUS_2:
case WM8994_INTERRUPT_RAW_STATUS_2:
return 1;
case WM8958_DSP2_PROGRAM:
case WM8958_DSP2_CONFIG:
case WM8958_DSP2_EXECCONTROL:
if (control->type == WM8958)
return 1;
else
return 0;
default:
break;
}
if (reg >= WM8994_CACHE_SIZE)
return 0;
return wm8994_access_masks[reg].readable != 0;
}
static int wm8994_volatile(struct snd_soc_codec *codec, unsigned int reg)
{
if (reg >= WM8994_CACHE_SIZE)
return 1;
switch (reg) {
case WM8994_SOFTWARE_RESET:
case WM8994_CHIP_REVISION:
case WM8994_DC_SERVO_1:
case WM8994_DC_SERVO_READBACK:
case WM8994_RATE_STATUS:
case WM8994_LDO_1:
case WM8994_LDO_2:
case WM8958_DSP2_EXECCONTROL:
case WM8958_MIC_DETECT_3:
return 1;
default:
return 0;
}
}
static int wm8994_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
int ret;
BUG_ON(reg > WM8994_MAX_REGISTER);
if (!wm8994_volatile(codec, reg)) {
ret = snd_soc_cache_write(codec, reg, value);
if (ret != 0)
dev_err(codec->dev, "Cache write to %x failed: %d\n",
reg, ret);
}
return wm8994_reg_write(codec->control_data, reg, value);
}
static unsigned int wm8994_read(struct snd_soc_codec *codec,
unsigned int reg)
{
unsigned int val;
int ret;
BUG_ON(reg > WM8994_MAX_REGISTER);
if (!wm8994_volatile(codec, reg) && wm8994_readable(codec, reg) &&
reg < codec->driver->reg_cache_size) {
ret = snd_soc_cache_read(codec, reg, &val);
if (ret >= 0)
return val;
else
dev_err(codec->dev, "Cache read from %x failed: %d\n",
reg, ret);
}
return wm8994_reg_read(codec->control_data, reg);
}
static int configure_aif_clock(struct snd_soc_codec *codec, int aif)
{
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
int rate;
int reg1 = 0;
int offset;
if (aif)
offset = 4;
else
offset = 0;
switch (wm8994->sysclk[aif]) {
case WM8994_SYSCLK_MCLK1:
rate = wm8994->mclk[0];
break;
case WM8994_SYSCLK_MCLK2:
reg1 |= 0x8;
rate = wm8994->mclk[1];
break;
case WM8994_SYSCLK_FLL1:
reg1 |= 0x10;
rate = wm8994->fll[0].out;
break;
case WM8994_SYSCLK_FLL2:
reg1 |= 0x18;
rate = wm8994->fll[1].out;
break;
default:
return -EINVAL;
}
if (rate >= 13500000) {
rate /= 2;
reg1 |= WM8994_AIF1CLK_DIV;
dev_dbg(codec->dev, "Dividing AIF%d clock to %dHz\n",
aif + 1, rate);
}
if (rate && rate < 3000000)
dev_warn(codec->dev, "AIF%dCLK is %dHz, should be >=3MHz for optimal performance\n",
aif + 1, rate);
wm8994->aifclk[aif] = rate;
snd_soc_update_bits(codec, WM8994_AIF1_CLOCKING_1 + offset,
WM8994_AIF1CLK_SRC_MASK | WM8994_AIF1CLK_DIV,
reg1);
return 0;
}
static int configure_clock(struct snd_soc_codec *codec)
{
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
int old, new;
/* Bring up the AIF clocks first */
configure_aif_clock(codec, 0);
configure_aif_clock(codec, 1);
/* Then switch CLK_SYS over to the higher of them; a change
* can only happen as a result of a clocking change which can
* only be made outside of DAPM so we can safely redo the
* clocking.
*/
/* If they're equal it doesn't matter which is used */
if (wm8994->aifclk[0] == wm8994->aifclk[1])
return 0;
if (wm8994->aifclk[0] < wm8994->aifclk[1])
new = WM8994_SYSCLK_SRC;
else
new = 0;
old = snd_soc_read(codec, WM8994_CLOCKING_1) & WM8994_SYSCLK_SRC;
/* If there's no change then we're done. */
if (old == new)
return 0;
snd_soc_update_bits(codec, WM8994_CLOCKING_1, WM8994_SYSCLK_SRC, new);
snd_soc_dapm_sync(&codec->dapm);
return 0;
}
static int check_clk_sys(struct snd_soc_dapm_widget *source,
struct snd_soc_dapm_widget *sink)
{
int reg = snd_soc_read(source->codec, WM8994_CLOCKING_1);
const char *clk;
/* Check what we're currently using for CLK_SYS */
if (reg & WM8994_SYSCLK_SRC)
clk = "AIF2CLK";
else
clk = "AIF1CLK";
return strcmp(source->name, clk) == 0;
}
static const char *sidetone_hpf_text[] = {
"2.7kHz", "1.35kHz", "675Hz", "370Hz", "180Hz", "90Hz", "45Hz"
};
static const struct soc_enum sidetone_hpf =
SOC_ENUM_SINGLE(WM8994_SIDETONE, 7, 7, sidetone_hpf_text);
static const char *adc_hpf_text[] = {
"HiFi", "Voice 1", "Voice 2", "Voice 3"
};
static const struct soc_enum aif1adc1_hpf =
SOC_ENUM_SINGLE(WM8994_AIF1_ADC1_FILTERS, 13, 4, adc_hpf_text);
static const struct soc_enum aif1adc2_hpf =
SOC_ENUM_SINGLE(WM8994_AIF1_ADC2_FILTERS, 13, 4, adc_hpf_text);
static const struct soc_enum aif2adc_hpf =
SOC_ENUM_SINGLE(WM8994_AIF2_ADC_FILTERS, 13, 4, adc_hpf_text);
static const DECLARE_TLV_DB_SCALE(aif_tlv, 0, 600, 0);
static const DECLARE_TLV_DB_SCALE(digital_tlv, -7200, 75, 1);
static const DECLARE_TLV_DB_SCALE(st_tlv, -3600, 300, 0);
static const DECLARE_TLV_DB_SCALE(wm8994_3d_tlv, -1600, 183, 0);
static const DECLARE_TLV_DB_SCALE(eq_tlv, -1200, 100, 0);
#define WM8994_DRC_SWITCH(xname, reg, shift) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\
.put = wm8994_put_drc_sw, \
.private_value = SOC_SINGLE_VALUE(reg, shift, 1, 0) }
static int wm8994_put_drc_sw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int mask, ret;
/* Can't enable both ADC and DAC paths simultaneously */
if (mc->shift == WM8994_AIF1DAC1_DRC_ENA_SHIFT)
mask = WM8994_AIF1ADC1L_DRC_ENA_MASK |
WM8994_AIF1ADC1R_DRC_ENA_MASK;
else
mask = WM8994_AIF1DAC1_DRC_ENA_MASK;
ret = snd_soc_read(codec, mc->reg);
if (ret < 0)
return ret;
if (ret & mask)
return -EINVAL;
return snd_soc_put_volsw(kcontrol, ucontrol);
}
static void wm8994_set_drc(struct snd_soc_codec *codec, int drc)
{
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
struct wm8994_pdata *pdata = wm8994->pdata;
int base = wm8994_drc_base[drc];
int cfg = wm8994->drc_cfg[drc];
int save, i;
/* Save any enables; the configuration should clear them. */
save = snd_soc_read(codec, base);
save &= WM8994_AIF1DAC1_DRC_ENA | WM8994_AIF1ADC1L_DRC_ENA |
WM8994_AIF1ADC1R_DRC_ENA;
for (i = 0; i < WM8994_DRC_REGS; i++)
snd_soc_update_bits(codec, base + i, 0xffff,
pdata->drc_cfgs[cfg].regs[i]);
snd_soc_update_bits(codec, base, WM8994_AIF1DAC1_DRC_ENA |
WM8994_AIF1ADC1L_DRC_ENA |
WM8994_AIF1ADC1R_DRC_ENA, save);
}
/* Icky as hell but saves code duplication */
static int wm8994_get_drc(const char *name)
{
if (strcmp(name, "AIF1DRC1 Mode") == 0)
return 0;
if (strcmp(name, "AIF1DRC2 Mode") == 0)
return 1;
if (strcmp(name, "AIF2DRC Mode") == 0)
return 2;
return -EINVAL;
}
static int wm8994_put_drc_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
struct wm8994_pdata *pdata = wm8994->pdata;
int drc = wm8994_get_drc(kcontrol->id.name);
int value = ucontrol->value.integer.value[0];
if (drc < 0)
return drc;
if (value >= pdata->num_drc_cfgs)
return -EINVAL;
wm8994->drc_cfg[drc] = value;
wm8994_set_drc(codec, drc);
return 0;
}
static int wm8994_get_drc_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
int drc = wm8994_get_drc(kcontrol->id.name);
ucontrol->value.enumerated.item[0] = wm8994->drc_cfg[drc];
return 0;
}
static void wm8994_set_retune_mobile(struct snd_soc_codec *codec, int block)
{
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
struct wm8994_pdata *pdata = wm8994->pdata;
int base = wm8994_retune_mobile_base[block];
int iface, best, best_val, save, i, cfg;
if (!pdata || !wm8994->num_retune_mobile_texts)
return;
switch (block) {
case 0:
case 1:
iface = 0;
break;
case 2:
iface = 1;
break;
default:
return;
}
/* Find the version of the currently selected configuration
* with the nearest sample rate. */
cfg = wm8994->retune_mobile_cfg[block];
best = 0;
best_val = INT_MAX;
for (i = 0; i < pdata->num_retune_mobile_cfgs; i++) {
if (strcmp(pdata->retune_mobile_cfgs[i].name,
wm8994->retune_mobile_texts[cfg]) == 0 &&
abs(pdata->retune_mobile_cfgs[i].rate
- wm8994->dac_rates[iface]) < best_val) {
best = i;
best_val = abs(pdata->retune_mobile_cfgs[i].rate
- wm8994->dac_rates[iface]);
}
}
dev_dbg(codec->dev, "ReTune Mobile %d %s/%dHz for %dHz sample rate\n",
block,
pdata->retune_mobile_cfgs[best].name,
pdata->retune_mobile_cfgs[best].rate,
wm8994->dac_rates[iface]);
/* The EQ will be disabled while reconfiguring it, remember the
* current configuration.
*/
save = snd_soc_read(codec, base);
save &= WM8994_AIF1DAC1_EQ_ENA;
for (i = 0; i < WM8994_EQ_REGS; i++)
snd_soc_update_bits(codec, base + i, 0xffff,
pdata->retune_mobile_cfgs[best].regs[i]);
snd_soc_update_bits(codec, base, WM8994_AIF1DAC1_EQ_ENA, save);
}
/* Icky as hell but saves code duplication */
static int wm8994_get_retune_mobile_block(const char *name)
{
if (strcmp(name, "AIF1.1 EQ Mode") == 0)
return 0;
if (strcmp(name, "AIF1.2 EQ Mode") == 0)
return 1;
if (strcmp(name, "AIF2 EQ Mode") == 0)
return 2;
return -EINVAL;
}
static int wm8994_put_retune_mobile_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
struct wm8994_pdata *pdata = wm8994->pdata;
int block = wm8994_get_retune_mobile_block(kcontrol->id.name);
int value = ucontrol->value.integer.value[0];
if (block < 0)
return block;
if (value >= pdata->num_retune_mobile_cfgs)
return -EINVAL;
wm8994->retune_mobile_cfg[block] = value;
wm8994_set_retune_mobile(codec, block);
return 0;
}
static int wm8994_get_retune_mobile_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
int block = wm8994_get_retune_mobile_block(kcontrol->id.name);
ucontrol->value.enumerated.item[0] = wm8994->retune_mobile_cfg[block];
return 0;
}
static const char *aif_chan_src_text[] = {
"Left", "Right"
};
static const struct soc_enum aif1adcl_src =
SOC_ENUM_SINGLE(WM8994_AIF1_CONTROL_1, 15, 2, aif_chan_src_text);
static const struct soc_enum aif1adcr_src =
SOC_ENUM_SINGLE(WM8994_AIF1_CONTROL_1, 14, 2, aif_chan_src_text);
static const struct soc_enum aif2adcl_src =
SOC_ENUM_SINGLE(WM8994_AIF2_CONTROL_1, 15, 2, aif_chan_src_text);
static const struct soc_enum aif2adcr_src =
SOC_ENUM_SINGLE(WM8994_AIF2_CONTROL_1, 14, 2, aif_chan_src_text);
static const struct soc_enum aif1dacl_src =
SOC_ENUM_SINGLE(WM8994_AIF1_CONTROL_2, 15, 2, aif_chan_src_text);
static const struct soc_enum aif1dacr_src =
SOC_ENUM_SINGLE(WM8994_AIF1_CONTROL_2, 14, 2, aif_chan_src_text);
static const struct soc_enum aif2dacl_src =
SOC_ENUM_SINGLE(WM8994_AIF2_CONTROL_2, 15, 2, aif_chan_src_text);
static const struct soc_enum aif2dacr_src =
SOC_ENUM_SINGLE(WM8994_AIF2_CONTROL_2, 14, 2, aif_chan_src_text);
static const char *osr_text[] = {
"Low Power", "High Performance",
};
static const struct soc_enum dac_osr =
SOC_ENUM_SINGLE(WM8994_OVERSAMPLING, 0, 2, osr_text);
static const struct soc_enum adc_osr =
SOC_ENUM_SINGLE(WM8994_OVERSAMPLING, 1, 2, osr_text);
static const struct snd_kcontrol_new wm8994_snd_controls[] = {
SOC_DOUBLE_R_TLV("AIF1ADC1 Volume", WM8994_AIF1_ADC1_LEFT_VOLUME,
WM8994_AIF1_ADC1_RIGHT_VOLUME,
1, 119, 0, digital_tlv),
SOC_DOUBLE_R_TLV("AIF1ADC2 Volume", WM8994_AIF1_ADC2_LEFT_VOLUME,
WM8994_AIF1_ADC2_RIGHT_VOLUME,
1, 119, 0, digital_tlv),
SOC_DOUBLE_R_TLV("AIF2ADC Volume", WM8994_AIF2_ADC_LEFT_VOLUME,
WM8994_AIF2_ADC_RIGHT_VOLUME,
1, 119, 0, digital_tlv),
SOC_ENUM("AIF1ADCL Source", aif1adcl_src),
SOC_ENUM("AIF1ADCR Source", aif1adcr_src),
SOC_ENUM("AIF2ADCL Source", aif2adcl_src),
SOC_ENUM("AIF2ADCR Source", aif2adcr_src),
SOC_ENUM("AIF1DACL Source", aif1dacl_src),
SOC_ENUM("AIF1DACR Source", aif1dacr_src),
SOC_ENUM("AIF2DACL Source", aif2dacl_src),
SOC_ENUM("AIF2DACR Source", aif2dacr_src),
SOC_DOUBLE_R_TLV("AIF1DAC1 Volume", WM8994_AIF1_DAC1_LEFT_VOLUME,
WM8994_AIF1_DAC1_RIGHT_VOLUME, 1, 96, 0, digital_tlv),
SOC_DOUBLE_R_TLV("AIF1DAC2 Volume", WM8994_AIF1_DAC2_LEFT_VOLUME,
WM8994_AIF1_DAC2_RIGHT_VOLUME, 1, 96, 0, digital_tlv),
SOC_DOUBLE_R_TLV("AIF2DAC Volume", WM8994_AIF2_DAC_LEFT_VOLUME,
WM8994_AIF2_DAC_RIGHT_VOLUME, 1, 96, 0, digital_tlv),
SOC_SINGLE_TLV("AIF1 Boost Volume", WM8994_AIF1_CONTROL_2, 10, 3, 0, aif_tlv),
SOC_SINGLE_TLV("AIF2 Boost Volume", WM8994_AIF2_CONTROL_2, 10, 3, 0, aif_tlv),
SOC_SINGLE("AIF1DAC1 EQ Switch", WM8994_AIF1_DAC1_EQ_GAINS_1, 0, 1, 0),
SOC_SINGLE("AIF1DAC2 EQ Switch", WM8994_AIF1_DAC2_EQ_GAINS_1, 0, 1, 0),
SOC_SINGLE("AIF2 EQ Switch", WM8994_AIF2_EQ_GAINS_1, 0, 1, 0),
WM8994_DRC_SWITCH("AIF1DAC1 DRC Switch", WM8994_AIF1_DRC1_1, 2),
WM8994_DRC_SWITCH("AIF1ADC1L DRC Switch", WM8994_AIF1_DRC1_1, 1),
WM8994_DRC_SWITCH("AIF1ADC1R DRC Switch", WM8994_AIF1_DRC1_1, 0),
WM8994_DRC_SWITCH("AIF1DAC2 DRC Switch", WM8994_AIF1_DRC2_1, 2),
WM8994_DRC_SWITCH("AIF1ADC2L DRC Switch", WM8994_AIF1_DRC2_1, 1),
WM8994_DRC_SWITCH("AIF1ADC2R DRC Switch", WM8994_AIF1_DRC2_1, 0),
WM8994_DRC_SWITCH("AIF2DAC DRC Switch", WM8994_AIF2_DRC_1, 2),
WM8994_DRC_SWITCH("AIF2ADCL DRC Switch", WM8994_AIF2_DRC_1, 1),
WM8994_DRC_SWITCH("AIF2ADCR DRC Switch", WM8994_AIF2_DRC_1, 0),
SOC_SINGLE_TLV("DAC1 Right Sidetone Volume", WM8994_DAC1_MIXER_VOLUMES,
5, 12, 0, st_tlv),
SOC_SINGLE_TLV("DAC1 Left Sidetone Volume", WM8994_DAC1_MIXER_VOLUMES,
0, 12, 0, st_tlv),
SOC_SINGLE_TLV("DAC2 Right Sidetone Volume", WM8994_DAC2_MIXER_VOLUMES,
5, 12, 0, st_tlv),
SOC_SINGLE_TLV("DAC2 Left Sidetone Volume", WM8994_DAC2_MIXER_VOLUMES,
0, 12, 0, st_tlv),
SOC_ENUM("Sidetone HPF Mux", sidetone_hpf),
SOC_SINGLE("Sidetone HPF Switch", WM8994_SIDETONE, 6, 1, 0),
SOC_ENUM("AIF1ADC1 HPF Mode", aif1adc1_hpf),
SOC_DOUBLE("AIF1ADC1 HPF Switch", WM8994_AIF1_ADC1_FILTERS, 12, 11, 1, 0),
SOC_ENUM("AIF1ADC2 HPF Mode", aif1adc2_hpf),
SOC_DOUBLE("AIF1ADC2 HPF Switch", WM8994_AIF1_ADC2_FILTERS, 12, 11, 1, 0),
SOC_ENUM("AIF2ADC HPF Mode", aif2adc_hpf),
SOC_DOUBLE("AIF2ADC HPF Switch", WM8994_AIF2_ADC_FILTERS, 12, 11, 1, 0),
SOC_ENUM("ADC OSR", adc_osr),
SOC_ENUM("DAC OSR", dac_osr),
SOC_DOUBLE_R_TLV("DAC1 Volume", WM8994_DAC1_LEFT_VOLUME,
WM8994_DAC1_RIGHT_VOLUME, 1, 96, 0, digital_tlv),
SOC_DOUBLE_R("DAC1 Switch", WM8994_DAC1_LEFT_VOLUME,
WM8994_DAC1_RIGHT_VOLUME, 9, 1, 1),
SOC_DOUBLE_R_TLV("DAC2 Volume", WM8994_DAC2_LEFT_VOLUME,
WM8994_DAC2_RIGHT_VOLUME, 1, 96, 0, digital_tlv),
SOC_DOUBLE_R("DAC2 Switch", WM8994_DAC2_LEFT_VOLUME,
WM8994_DAC2_RIGHT_VOLUME, 9, 1, 1),
SOC_SINGLE_TLV("SPKL DAC2 Volume", WM8994_SPKMIXL_ATTENUATION,
6, 1, 1, wm_hubs_spkmix_tlv),
SOC_SINGLE_TLV("SPKL DAC1 Volume", WM8994_SPKMIXL_ATTENUATION,
2, 1, 1, wm_hubs_spkmix_tlv),
SOC_SINGLE_TLV("SPKR DAC2 Volume", WM8994_SPKMIXR_ATTENUATION,
6, 1, 1, wm_hubs_spkmix_tlv),
SOC_SINGLE_TLV("SPKR DAC1 Volume", WM8994_SPKMIXR_ATTENUATION,
2, 1, 1, wm_hubs_spkmix_tlv),
SOC_SINGLE_TLV("AIF1DAC1 3D Stereo Volume", WM8994_AIF1_DAC1_FILTERS_2,
10, 15, 0, wm8994_3d_tlv),
SOC_SINGLE("AIF1DAC1 3D Stereo Switch", WM8994_AIF1_DAC1_FILTERS_2,
8, 1, 0),
SOC_SINGLE_TLV("AIF1DAC2 3D Stereo Volume", WM8994_AIF1_DAC2_FILTERS_2,
10, 15, 0, wm8994_3d_tlv),
SOC_SINGLE("AIF1DAC2 3D Stereo Switch", WM8994_AIF1_DAC2_FILTERS_2,
8, 1, 0),
SOC_SINGLE_TLV("AIF2DAC 3D Stereo Volume", WM8994_AIF2_DAC_FILTERS_2,
10, 15, 0, wm8994_3d_tlv),
SOC_SINGLE("AIF2DAC 3D Stereo Switch", WM8994_AIF2_DAC_FILTERS_2,
8, 1, 0),
};
static const struct snd_kcontrol_new wm8994_eq_controls[] = {
SOC_SINGLE_TLV("AIF1DAC1 EQ1 Volume", WM8994_AIF1_DAC1_EQ_GAINS_1, 11, 31, 0,
eq_tlv),
SOC_SINGLE_TLV("AIF1DAC1 EQ2 Volume", WM8994_AIF1_DAC1_EQ_GAINS_1, 6, 31, 0,
eq_tlv),
SOC_SINGLE_TLV("AIF1DAC1 EQ3 Volume", WM8994_AIF1_DAC1_EQ_GAINS_1, 1, 31, 0,
eq_tlv),
SOC_SINGLE_TLV("AIF1DAC1 EQ4 Volume", WM8994_AIF1_DAC1_EQ_GAINS_2, 11, 31, 0,
eq_tlv),
SOC_SINGLE_TLV("AIF1DAC1 EQ5 Volume", WM8994_AIF1_DAC1_EQ_GAINS_2, 6, 31, 0,
eq_tlv),
SOC_SINGLE_TLV("AIF1DAC2 EQ1 Volume", WM8994_AIF1_DAC2_EQ_GAINS_1, 11, 31, 0,
eq_tlv),
SOC_SINGLE_TLV("AIF1DAC2 EQ2 Volume", WM8994_AIF1_DAC2_EQ_GAINS_1, 6, 31, 0,
eq_tlv),
SOC_SINGLE_TLV("AIF1DAC2 EQ3 Volume", WM8994_AIF1_DAC2_EQ_GAINS_1, 1, 31, 0,
eq_tlv),
SOC_SINGLE_TLV("AIF1DAC2 EQ4 Volume", WM8994_AIF1_DAC2_EQ_GAINS_2, 11, 31, 0,
eq_tlv),
SOC_SINGLE_TLV("AIF1DAC2 EQ5 Volume", WM8994_AIF1_DAC2_EQ_GAINS_2, 6, 31, 0,
eq_tlv),
SOC_SINGLE_TLV("AIF2 EQ1 Volume", WM8994_AIF2_EQ_GAINS_1, 11, 31, 0,
eq_tlv),
SOC_SINGLE_TLV("AIF2 EQ2 Volume", WM8994_AIF2_EQ_GAINS_1, 6, 31, 0,
eq_tlv),
SOC_SINGLE_TLV("AIF2 EQ3 Volume", WM8994_AIF2_EQ_GAINS_1, 1, 31, 0,
eq_tlv),
SOC_SINGLE_TLV("AIF2 EQ4 Volume", WM8994_AIF2_EQ_GAINS_2, 11, 31, 0,
eq_tlv),
SOC_SINGLE_TLV("AIF2 EQ5 Volume", WM8994_AIF2_EQ_GAINS_2, 6, 31, 0,
eq_tlv),
};
static const struct snd_kcontrol_new wm8958_snd_controls[] = {
SOC_SINGLE_TLV("AIF3 Boost Volume", WM8958_AIF3_CONTROL_2, 10, 3, 0, aif_tlv),
};
static int clk_sys_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
return configure_clock(codec);
case SND_SOC_DAPM_POST_PMD:
configure_clock(codec);
break;
}
return 0;
}
static void wm8994_update_class_w(struct snd_soc_codec *codec)
{
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
int enable = 1;
int source = 0; /* GCC flow analysis can't track enable */
int reg, reg_r;
/* Only support direct DAC->headphone paths */
reg = snd_soc_read(codec, WM8994_OUTPUT_MIXER_1);
if (!(reg & WM8994_DAC1L_TO_HPOUT1L)) {
dev_vdbg(codec->dev, "HPL connected to output mixer\n");
enable = 0;
}
reg = snd_soc_read(codec, WM8994_OUTPUT_MIXER_2);
if (!(reg & WM8994_DAC1R_TO_HPOUT1R)) {
dev_vdbg(codec->dev, "HPR connected to output mixer\n");
enable = 0;
}
/* We also need the same setting for L/R and only one path */
reg = snd_soc_read(codec, WM8994_DAC1_LEFT_MIXER_ROUTING);
switch (reg) {
case WM8994_AIF2DACL_TO_DAC1L:
dev_vdbg(codec->dev, "Class W source AIF2DAC\n");
source = 2 << WM8994_CP_DYN_SRC_SEL_SHIFT;
break;
case WM8994_AIF1DAC2L_TO_DAC1L:
dev_vdbg(codec->dev, "Class W source AIF1DAC2\n");
source = 1 << WM8994_CP_DYN_SRC_SEL_SHIFT;
break;
case WM8994_AIF1DAC1L_TO_DAC1L:
dev_vdbg(codec->dev, "Class W source AIF1DAC1\n");
source = 0 << WM8994_CP_DYN_SRC_SEL_SHIFT;
break;
default:
dev_vdbg(codec->dev, "DAC mixer setting: %x\n", reg);
enable = 0;
break;
}
reg_r = snd_soc_read(codec, WM8994_DAC1_RIGHT_MIXER_ROUTING);
if (reg_r != reg) {
dev_vdbg(codec->dev, "Left and right DAC mixers different\n");
enable = 0;
}
if (enable) {
dev_dbg(codec->dev, "Class W enabled\n");
snd_soc_update_bits(codec, WM8994_CLASS_W_1,
WM8994_CP_DYN_PWR |
WM8994_CP_DYN_SRC_SEL_MASK,
source | WM8994_CP_DYN_PWR);
wm8994->hubs.class_w = true;
} else {
dev_dbg(codec->dev, "Class W disabled\n");
snd_soc_update_bits(codec, WM8994_CLASS_W_1,
WM8994_CP_DYN_PWR, 0);
wm8994->hubs.class_w = false;
}
}
static int late_enable_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (wm8994->aif1clk_enable) {
snd_soc_update_bits(codec, WM8994_AIF1_CLOCKING_1,
WM8994_AIF1CLK_ENA_MASK,
WM8994_AIF1CLK_ENA);
wm8994->aif1clk_enable = 0;
}
if (wm8994->aif2clk_enable) {
snd_soc_update_bits(codec, WM8994_AIF2_CLOCKING_1,
WM8994_AIF2CLK_ENA_MASK,
WM8994_AIF2CLK_ENA);
wm8994->aif2clk_enable = 0;
}
break;
}
/* We may also have postponed startup of DSP, handle that. */
wm8958_aif_ev(w, kcontrol, event);
return 0;
}
static int late_disable_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
switch (event) {
case SND_SOC_DAPM_POST_PMD:
if (wm8994->aif1clk_disable) {
snd_soc_update_bits(codec, WM8994_AIF1_CLOCKING_1,
WM8994_AIF1CLK_ENA_MASK, 0);
wm8994->aif1clk_disable = 0;
}
if (wm8994->aif2clk_disable) {
snd_soc_update_bits(codec, WM8994_AIF2_CLOCKING_1,
WM8994_AIF2CLK_ENA_MASK, 0);
wm8994->aif2clk_disable = 0;
}
break;
}
return 0;
}
static int aif1clk_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
wm8994->aif1clk_enable = 1;
break;
case SND_SOC_DAPM_POST_PMD:
wm8994->aif1clk_disable = 1;
break;
}
return 0;
}
static int aif2clk_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
wm8994->aif2clk_enable = 1;
break;
case SND_SOC_DAPM_POST_PMD:
wm8994->aif2clk_disable = 1;
break;
}
return 0;
}
static int adc_mux_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
late_enable_ev(w, kcontrol, event);
return 0;
}
static int micbias_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
late_enable_ev(w, kcontrol, event);
return 0;
}
static int dac_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
unsigned int mask = 1 << w->shift;
snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_5,
mask, mask);
return 0;
}
static const char *hp_mux_text[] = {
"Mixer",
"DAC",
};
#define WM8994_HP_ENUM(xname, xenum) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_soc_info_enum_double, \
.get = snd_soc_dapm_get_enum_double, \
.put = wm8994_put_hp_enum, \
.private_value = (unsigned long)&xenum }
static int wm8994_put_hp_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol);
struct snd_soc_dapm_widget *w = wlist->widgets[0];
struct snd_soc_codec *codec = w->codec;
int ret;
ret = snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
wm8994_update_class_w(codec);
return ret;
}
static const struct soc_enum hpl_enum =
SOC_ENUM_SINGLE(WM8994_OUTPUT_MIXER_1, 8, 2, hp_mux_text);
static const struct snd_kcontrol_new hpl_mux =
WM8994_HP_ENUM("Left Headphone Mux", hpl_enum);
static const struct soc_enum hpr_enum =
SOC_ENUM_SINGLE(WM8994_OUTPUT_MIXER_2, 8, 2, hp_mux_text);
static const struct snd_kcontrol_new hpr_mux =
WM8994_HP_ENUM("Right Headphone Mux", hpr_enum);
static const char *adc_mux_text[] = {
"ADC",
"DMIC",
};
static const struct soc_enum adc_enum =
SOC_ENUM_SINGLE(0, 0, 2, adc_mux_text);
static const struct snd_kcontrol_new adcl_mux =
SOC_DAPM_ENUM_VIRT("ADCL Mux", adc_enum);
static const struct snd_kcontrol_new adcr_mux =
SOC_DAPM_ENUM_VIRT("ADCR Mux", adc_enum);
static const struct snd_kcontrol_new left_speaker_mixer[] = {
SOC_DAPM_SINGLE("DAC2 Switch", WM8994_SPEAKER_MIXER, 9, 1, 0),
SOC_DAPM_SINGLE("Input Switch", WM8994_SPEAKER_MIXER, 7, 1, 0),
SOC_DAPM_SINGLE("IN1LP Switch", WM8994_SPEAKER_MIXER, 5, 1, 0),
SOC_DAPM_SINGLE("Output Switch", WM8994_SPEAKER_MIXER, 3, 1, 0),
SOC_DAPM_SINGLE("DAC1 Switch", WM8994_SPEAKER_MIXER, 1, 1, 0),
};
static const struct snd_kcontrol_new right_speaker_mixer[] = {
SOC_DAPM_SINGLE("DAC2 Switch", WM8994_SPEAKER_MIXER, 8, 1, 0),
SOC_DAPM_SINGLE("Input Switch", WM8994_SPEAKER_MIXER, 6, 1, 0),
SOC_DAPM_SINGLE("IN1RP Switch", WM8994_SPEAKER_MIXER, 4, 1, 0),
SOC_DAPM_SINGLE("Output Switch", WM8994_SPEAKER_MIXER, 2, 1, 0),
SOC_DAPM_SINGLE("DAC1 Switch", WM8994_SPEAKER_MIXER, 0, 1, 0),
};
/* Debugging; dump chip status after DAPM transitions */
static int post_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
dev_dbg(codec->dev, "SRC status: %x\n",
snd_soc_read(codec,
WM8994_RATE_STATUS));
return 0;
}
static const struct snd_kcontrol_new aif1adc1l_mix[] = {
SOC_DAPM_SINGLE("ADC/DMIC Switch", WM8994_AIF1_ADC1_LEFT_MIXER_ROUTING,
1, 1, 0),
SOC_DAPM_SINGLE("AIF2 Switch", WM8994_AIF1_ADC1_LEFT_MIXER_ROUTING,
0, 1, 0),
};
static const struct snd_kcontrol_new aif1adc1r_mix[] = {
SOC_DAPM_SINGLE("ADC/DMIC Switch", WM8994_AIF1_ADC1_RIGHT_MIXER_ROUTING,
1, 1, 0),
SOC_DAPM_SINGLE("AIF2 Switch", WM8994_AIF1_ADC1_RIGHT_MIXER_ROUTING,
0, 1, 0),
};
static const struct snd_kcontrol_new aif1adc2l_mix[] = {
SOC_DAPM_SINGLE("DMIC Switch", WM8994_AIF1_ADC2_LEFT_MIXER_ROUTING,
1, 1, 0),
SOC_DAPM_SINGLE("AIF2 Switch", WM8994_AIF1_ADC2_LEFT_MIXER_ROUTING,
0, 1, 0),
};
static const struct snd_kcontrol_new aif1adc2r_mix[] = {
SOC_DAPM_SINGLE("DMIC Switch", WM8994_AIF1_ADC2_RIGHT_MIXER_ROUTING,
1, 1, 0),
SOC_DAPM_SINGLE("AIF2 Switch", WM8994_AIF1_ADC2_RIGHT_MIXER_ROUTING,
0, 1, 0),
};
static const struct snd_kcontrol_new aif2dac2l_mix[] = {
SOC_DAPM_SINGLE("Right Sidetone Switch", WM8994_DAC2_LEFT_MIXER_ROUTING,
5, 1, 0),
SOC_DAPM_SINGLE("Left Sidetone Switch", WM8994_DAC2_LEFT_MIXER_ROUTING,
4, 1, 0),
SOC_DAPM_SINGLE("AIF2 Switch", WM8994_DAC2_LEFT_MIXER_ROUTING,
2, 1, 0),
SOC_DAPM_SINGLE("AIF1.2 Switch", WM8994_DAC2_LEFT_MIXER_ROUTING,
1, 1, 0),
SOC_DAPM_SINGLE("AIF1.1 Switch", WM8994_DAC2_LEFT_MIXER_ROUTING,
0, 1, 0),
};
static const struct snd_kcontrol_new aif2dac2r_mix[] = {
SOC_DAPM_SINGLE("Right Sidetone Switch", WM8994_DAC2_RIGHT_MIXER_ROUTING,
5, 1, 0),
SOC_DAPM_SINGLE("Left Sidetone Switch", WM8994_DAC2_RIGHT_MIXER_ROUTING,
4, 1, 0),
SOC_DAPM_SINGLE("AIF2 Switch", WM8994_DAC2_RIGHT_MIXER_ROUTING,
2, 1, 0),
SOC_DAPM_SINGLE("AIF1.2 Switch", WM8994_DAC2_RIGHT_MIXER_ROUTING,
1, 1, 0),
SOC_DAPM_SINGLE("AIF1.1 Switch", WM8994_DAC2_RIGHT_MIXER_ROUTING,
0, 1, 0),
};
#define WM8994_CLASS_W_SWITCH(xname, reg, shift, max, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_soc_info_volsw, \
.get = snd_soc_dapm_get_volsw, .put = wm8994_put_class_w, \
.private_value = SOC_SINGLE_VALUE(reg, shift, max, invert) }
static int wm8994_put_class_w(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol);
struct snd_soc_dapm_widget *w = wlist->widgets[0];
struct snd_soc_codec *codec = w->codec;
int ret;
ret = snd_soc_dapm_put_volsw(kcontrol, ucontrol);
wm8994_update_class_w(codec);
return ret;
}
static const struct snd_kcontrol_new dac1l_mix[] = {
WM8994_CLASS_W_SWITCH("Right Sidetone Switch", WM8994_DAC1_LEFT_MIXER_ROUTING,
5, 1, 0),
WM8994_CLASS_W_SWITCH("Left Sidetone Switch", WM8994_DAC1_LEFT_MIXER_ROUTING,
4, 1, 0),
WM8994_CLASS_W_SWITCH("AIF2 Switch", WM8994_DAC1_LEFT_MIXER_ROUTING,
2, 1, 0),
WM8994_CLASS_W_SWITCH("AIF1.2 Switch", WM8994_DAC1_LEFT_MIXER_ROUTING,
1, 1, 0),
WM8994_CLASS_W_SWITCH("AIF1.1 Switch", WM8994_DAC1_LEFT_MIXER_ROUTING,
0, 1, 0),
};
static const struct snd_kcontrol_new dac1r_mix[] = {
WM8994_CLASS_W_SWITCH("Right Sidetone Switch", WM8994_DAC1_RIGHT_MIXER_ROUTING,
5, 1, 0),
WM8994_CLASS_W_SWITCH("Left Sidetone Switch", WM8994_DAC1_RIGHT_MIXER_ROUTING,
4, 1, 0),
WM8994_CLASS_W_SWITCH("AIF2 Switch", WM8994_DAC1_RIGHT_MIXER_ROUTING,
2, 1, 0),
WM8994_CLASS_W_SWITCH("AIF1.2 Switch", WM8994_DAC1_RIGHT_MIXER_ROUTING,
1, 1, 0),
WM8994_CLASS_W_SWITCH("AIF1.1 Switch", WM8994_DAC1_RIGHT_MIXER_ROUTING,
0, 1, 0),
};
static const char *sidetone_text[] = {
"ADC/DMIC1", "DMIC2",
};
static const struct soc_enum sidetone1_enum =
SOC_ENUM_SINGLE(WM8994_SIDETONE, 0, 2, sidetone_text);
static const struct snd_kcontrol_new sidetone1_mux =
SOC_DAPM_ENUM("Left Sidetone Mux", sidetone1_enum);
static const struct soc_enum sidetone2_enum =
SOC_ENUM_SINGLE(WM8994_SIDETONE, 1, 2, sidetone_text);
static const struct snd_kcontrol_new sidetone2_mux =
SOC_DAPM_ENUM("Right Sidetone Mux", sidetone2_enum);
static const char *aif1dac_text[] = {
"AIF1DACDAT", "AIF3DACDAT",
};
static const struct soc_enum aif1dac_enum =
SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 0, 2, aif1dac_text);
static const struct snd_kcontrol_new aif1dac_mux =
SOC_DAPM_ENUM("AIF1DAC Mux", aif1dac_enum);
static const char *aif2dac_text[] = {
"AIF2DACDAT", "AIF3DACDAT",
};
static const struct soc_enum aif2dac_enum =
SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 1, 2, aif2dac_text);
static const struct snd_kcontrol_new aif2dac_mux =
SOC_DAPM_ENUM("AIF2DAC Mux", aif2dac_enum);
static const char *aif2adc_text[] = {
"AIF2ADCDAT", "AIF3DACDAT",
};
static const struct soc_enum aif2adc_enum =
SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 2, 2, aif2adc_text);
static const struct snd_kcontrol_new aif2adc_mux =
SOC_DAPM_ENUM("AIF2ADC Mux", aif2adc_enum);
static const char *aif3adc_text[] = {
"AIF1ADCDAT", "AIF2ADCDAT", "AIF2DACDAT", "Mono PCM",
};
static const struct soc_enum wm8994_aif3adc_enum =
SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 3, 3, aif3adc_text);
static const struct snd_kcontrol_new wm8994_aif3adc_mux =
SOC_DAPM_ENUM("AIF3ADC Mux", wm8994_aif3adc_enum);
static const struct soc_enum wm8958_aif3adc_enum =
SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 3, 4, aif3adc_text);
static const struct snd_kcontrol_new wm8958_aif3adc_mux =
SOC_DAPM_ENUM("AIF3ADC Mux", wm8958_aif3adc_enum);
static const char *mono_pcm_out_text[] = {
"None", "AIF2ADCL", "AIF2ADCR",
};
static const struct soc_enum mono_pcm_out_enum =
SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 9, 3, mono_pcm_out_text);
static const struct snd_kcontrol_new mono_pcm_out_mux =
SOC_DAPM_ENUM("Mono PCM Out Mux", mono_pcm_out_enum);
static const char *aif2dac_src_text[] = {
"AIF2", "AIF3",
};
/* Note that these two control shouldn't be simultaneously switched to AIF3 */
static const struct soc_enum aif2dacl_src_enum =
SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 7, 2, aif2dac_src_text);
static const struct snd_kcontrol_new aif2dacl_src_mux =
SOC_DAPM_ENUM("AIF2DACL Mux", aif2dacl_src_enum);
static const struct soc_enum aif2dacr_src_enum =
SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 8, 2, aif2dac_src_text);
static const struct snd_kcontrol_new aif2dacr_src_mux =
SOC_DAPM_ENUM("AIF2DACR Mux", aif2dacr_src_enum);
static const struct snd_soc_dapm_widget wm8994_lateclk_revd_widgets[] = {
SND_SOC_DAPM_SUPPLY("AIF1CLK", SND_SOC_NOPM, 0, 0, aif1clk_ev,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY("AIF2CLK", SND_SOC_NOPM, 0, 0, aif2clk_ev,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("Late DAC1L Enable PGA", SND_SOC_NOPM, 0, 0, NULL, 0,
late_enable_ev, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_PGA_E("Late DAC1R Enable PGA", SND_SOC_NOPM, 0, 0, NULL, 0,
late_enable_ev, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_PGA_E("Late DAC2L Enable PGA", SND_SOC_NOPM, 0, 0, NULL, 0,
late_enable_ev, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_PGA_E("Late DAC2R Enable PGA", SND_SOC_NOPM, 0, 0, NULL, 0,
late_enable_ev, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_POST("Late Disable PGA", late_disable_ev)
};
static const struct snd_soc_dapm_widget wm8994_lateclk_widgets[] = {
SND_SOC_DAPM_SUPPLY("AIF1CLK", WM8994_AIF1_CLOCKING_1, 0, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("AIF2CLK", WM8994_AIF2_CLOCKING_1, 0, 0, NULL, 0)
};
static const struct snd_soc_dapm_widget wm8994_dac_revd_widgets[] = {
SND_SOC_DAPM_DAC_E("DAC2L", NULL, SND_SOC_NOPM, 3, 0,
dac_ev, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_DAC_E("DAC2R", NULL, SND_SOC_NOPM, 2, 0,
dac_ev, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_DAC_E("DAC1L", NULL, SND_SOC_NOPM, 1, 0,
dac_ev, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_DAC_E("DAC1R", NULL, SND_SOC_NOPM, 0, 0,
dac_ev, SND_SOC_DAPM_PRE_PMU),
};
static const struct snd_soc_dapm_widget wm8994_dac_widgets[] = {
SND_SOC_DAPM_DAC("DAC2L", NULL, WM8994_POWER_MANAGEMENT_5, 3, 0),
SND_SOC_DAPM_DAC("DAC2R", NULL, WM8994_POWER_MANAGEMENT_5, 2, 0),
SND_SOC_DAPM_DAC("DAC1L", NULL, WM8994_POWER_MANAGEMENT_5, 1, 0),
SND_SOC_DAPM_DAC("DAC1R", NULL, WM8994_POWER_MANAGEMENT_5, 0, 0),
};
static const struct snd_soc_dapm_widget wm8994_adc_revd_widgets[] = {
SND_SOC_DAPM_MUX_E("ADCL Mux", WM8994_POWER_MANAGEMENT_4, 1, 0, &adcl_mux,
adc_mux_ev, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_MUX_E("ADCR Mux", WM8994_POWER_MANAGEMENT_4, 0, 0, &adcr_mux,
adc_mux_ev, SND_SOC_DAPM_PRE_PMU),
};
static const struct snd_soc_dapm_widget wm8994_adc_widgets[] = {
SND_SOC_DAPM_MUX("ADCL Mux", WM8994_POWER_MANAGEMENT_4, 1, 0, &adcl_mux),
SND_SOC_DAPM_MUX("ADCR Mux", WM8994_POWER_MANAGEMENT_4, 0, 0, &adcr_mux),
};
static const struct snd_soc_dapm_widget wm8994_dapm_widgets[] = {
SND_SOC_DAPM_INPUT("DMIC1DAT"),
SND_SOC_DAPM_INPUT("DMIC2DAT"),
SND_SOC_DAPM_INPUT("Clock"),
SND_SOC_DAPM_MICBIAS("MICBIAS", WM8994_MICBIAS, 2, 0),
SND_SOC_DAPM_SUPPLY_S("MICBIAS Supply", 1, SND_SOC_NOPM, 0, 0, micbias_ev,
SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_SUPPLY("CLK_SYS", SND_SOC_NOPM, 0, 0, clk_sys_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_SUPPLY("DSP1CLK", WM8994_CLOCKING_1, 3, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DSP2CLK", WM8994_CLOCKING_1, 2, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DSPINTCLK", WM8994_CLOCKING_1, 1, 0, NULL, 0),
SND_SOC_DAPM_AIF_OUT("AIF1ADC1L", NULL,
0, WM8994_POWER_MANAGEMENT_4, 9, 0),
SND_SOC_DAPM_AIF_OUT("AIF1ADC1R", NULL,
0, WM8994_POWER_MANAGEMENT_4, 8, 0),
SND_SOC_DAPM_AIF_IN_E("AIF1DAC1L", NULL, 0,
WM8994_POWER_MANAGEMENT_5, 9, 0, wm8958_aif_ev,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_AIF_IN_E("AIF1DAC1R", NULL, 0,
WM8994_POWER_MANAGEMENT_5, 8, 0, wm8958_aif_ev,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_AIF_OUT("AIF1ADC2L", NULL,
0, WM8994_POWER_MANAGEMENT_4, 11, 0),
SND_SOC_DAPM_AIF_OUT("AIF1ADC2R", NULL,
0, WM8994_POWER_MANAGEMENT_4, 10, 0),
SND_SOC_DAPM_AIF_IN_E("AIF1DAC2L", NULL, 0,
WM8994_POWER_MANAGEMENT_5, 11, 0, wm8958_aif_ev,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_AIF_IN_E("AIF1DAC2R", NULL, 0,
WM8994_POWER_MANAGEMENT_5, 10, 0, wm8958_aif_ev,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER("AIF1ADC1L Mixer", SND_SOC_NOPM, 0, 0,
aif1adc1l_mix, ARRAY_SIZE(aif1adc1l_mix)),
SND_SOC_DAPM_MIXER("AIF1ADC1R Mixer", SND_SOC_NOPM, 0, 0,
aif1adc1r_mix, ARRAY_SIZE(aif1adc1r_mix)),
SND_SOC_DAPM_MIXER("AIF1ADC2L Mixer", SND_SOC_NOPM, 0, 0,
aif1adc2l_mix, ARRAY_SIZE(aif1adc2l_mix)),
SND_SOC_DAPM_MIXER("AIF1ADC2R Mixer", SND_SOC_NOPM, 0, 0,
aif1adc2r_mix, ARRAY_SIZE(aif1adc2r_mix)),
SND_SOC_DAPM_MIXER("AIF2DAC2L Mixer", SND_SOC_NOPM, 0, 0,
aif2dac2l_mix, ARRAY_SIZE(aif2dac2l_mix)),
SND_SOC_DAPM_MIXER("AIF2DAC2R Mixer", SND_SOC_NOPM, 0, 0,
aif2dac2r_mix, ARRAY_SIZE(aif2dac2r_mix)),
SND_SOC_DAPM_MUX("Left Sidetone", SND_SOC_NOPM, 0, 0, &sidetone1_mux),
SND_SOC_DAPM_MUX("Right Sidetone", SND_SOC_NOPM, 0, 0, &sidetone2_mux),
SND_SOC_DAPM_MIXER("DAC1L Mixer", SND_SOC_NOPM, 0, 0,
dac1l_mix, ARRAY_SIZE(dac1l_mix)),
SND_SOC_DAPM_MIXER("DAC1R Mixer", SND_SOC_NOPM, 0, 0,
dac1r_mix, ARRAY_SIZE(dac1r_mix)),
SND_SOC_DAPM_AIF_OUT("AIF2ADCL", NULL, 0,
WM8994_POWER_MANAGEMENT_4, 13, 0),
SND_SOC_DAPM_AIF_OUT("AIF2ADCR", NULL, 0,
WM8994_POWER_MANAGEMENT_4, 12, 0),
SND_SOC_DAPM_AIF_IN_E("AIF2DACL", NULL, 0,
WM8994_POWER_MANAGEMENT_5, 13, 0, wm8958_aif_ev,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_AIF_IN_E("AIF2DACR", NULL, 0,
WM8994_POWER_MANAGEMENT_5, 12, 0, wm8958_aif_ev,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_AIF_IN("AIF1DACDAT", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("AIF2DACDAT", "AIF2 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("AIF1ADCDAT", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("AIF2ADCDAT", "AIF2 Capture", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_MUX("AIF1DAC Mux", SND_SOC_NOPM, 0, 0, &aif1dac_mux),
SND_SOC_DAPM_MUX("AIF2DAC Mux", SND_SOC_NOPM, 0, 0, &aif2dac_mux),
SND_SOC_DAPM_MUX("AIF2ADC Mux", SND_SOC_NOPM, 0, 0, &aif2adc_mux),
SND_SOC_DAPM_AIF_IN("AIF3DACDAT", "AIF3 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("AIF3ADCDAT", "AIF3 Capture", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_SUPPLY("TOCLK", WM8994_CLOCKING_1, 4, 0, NULL, 0),
SND_SOC_DAPM_ADC("DMIC2L", NULL, WM8994_POWER_MANAGEMENT_4, 5, 0),
SND_SOC_DAPM_ADC("DMIC2R", NULL, WM8994_POWER_MANAGEMENT_4, 4, 0),
SND_SOC_DAPM_ADC("DMIC1L", NULL, WM8994_POWER_MANAGEMENT_4, 3, 0),
SND_SOC_DAPM_ADC("DMIC1R", NULL, WM8994_POWER_MANAGEMENT_4, 2, 0),
/* Power is done with the muxes since the ADC power also controls the
* downsampling chain, the chip will automatically manage the analogue
* specific portions.
*/
SND_SOC_DAPM_ADC("ADCL", NULL, SND_SOC_NOPM, 1, 0),
SND_SOC_DAPM_ADC("ADCR", NULL, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_MUX("Left Headphone Mux", SND_SOC_NOPM, 0, 0, &hpl_mux),
SND_SOC_DAPM_MUX("Right Headphone Mux", SND_SOC_NOPM, 0, 0, &hpr_mux),
SND_SOC_DAPM_MIXER("SPKL", WM8994_POWER_MANAGEMENT_3, 8, 0,
left_speaker_mixer, ARRAY_SIZE(left_speaker_mixer)),
SND_SOC_DAPM_MIXER("SPKR", WM8994_POWER_MANAGEMENT_3, 9, 0,
right_speaker_mixer, ARRAY_SIZE(right_speaker_mixer)),
SND_SOC_DAPM_POST("Debug log", post_ev),
};
static const struct snd_soc_dapm_widget wm8994_specific_dapm_widgets[] = {
SND_SOC_DAPM_MUX("AIF3ADC Mux", SND_SOC_NOPM, 0, 0, &wm8994_aif3adc_mux),
};
static const struct snd_soc_dapm_widget wm8958_dapm_widgets[] = {
SND_SOC_DAPM_MUX("Mono PCM Out Mux", SND_SOC_NOPM, 0, 0, &mono_pcm_out_mux),
SND_SOC_DAPM_MUX("AIF2DACL Mux", SND_SOC_NOPM, 0, 0, &aif2dacl_src_mux),
SND_SOC_DAPM_MUX("AIF2DACR Mux", SND_SOC_NOPM, 0, 0, &aif2dacr_src_mux),
SND_SOC_DAPM_MUX("AIF3ADC Mux", SND_SOC_NOPM, 0, 0, &wm8958_aif3adc_mux),
};
static const struct snd_soc_dapm_route intercon[] = {
{ "CLK_SYS", NULL, "AIF1CLK", check_clk_sys },
{ "CLK_SYS", NULL, "AIF2CLK", check_clk_sys },
{ "DSP1CLK", NULL, "CLK_SYS" },
{ "DSP2CLK", NULL, "CLK_SYS" },
{ "DSPINTCLK", NULL, "CLK_SYS" },
{ "AIF1ADC1L", NULL, "AIF1CLK" },
{ "AIF1ADC1L", NULL, "DSP1CLK" },
{ "AIF1ADC1R", NULL, "AIF1CLK" },
{ "AIF1ADC1R", NULL, "DSP1CLK" },
{ "AIF1ADC1R", NULL, "DSPINTCLK" },
{ "AIF1DAC1L", NULL, "AIF1CLK" },
{ "AIF1DAC1L", NULL, "DSP1CLK" },
{ "AIF1DAC1R", NULL, "AIF1CLK" },
{ "AIF1DAC1R", NULL, "DSP1CLK" },
{ "AIF1DAC1R", NULL, "DSPINTCLK" },
{ "AIF1ADC2L", NULL, "AIF1CLK" },
{ "AIF1ADC2L", NULL, "DSP1CLK" },
{ "AIF1ADC2R", NULL, "AIF1CLK" },
{ "AIF1ADC2R", NULL, "DSP1CLK" },
{ "AIF1ADC2R", NULL, "DSPINTCLK" },
{ "AIF1DAC2L", NULL, "AIF1CLK" },
{ "AIF1DAC2L", NULL, "DSP1CLK" },
{ "AIF1DAC2R", NULL, "AIF1CLK" },
{ "AIF1DAC2R", NULL, "DSP1CLK" },
{ "AIF1DAC2R", NULL, "DSPINTCLK" },
{ "AIF2ADCL", NULL, "AIF2CLK" },
{ "AIF2ADCL", NULL, "DSP2CLK" },
{ "AIF2ADCR", NULL, "AIF2CLK" },
{ "AIF2ADCR", NULL, "DSP2CLK" },
{ "AIF2ADCR", NULL, "DSPINTCLK" },
{ "AIF2DACL", NULL, "AIF2CLK" },
{ "AIF2DACL", NULL, "DSP2CLK" },
{ "AIF2DACR", NULL, "AIF2CLK" },
{ "AIF2DACR", NULL, "DSP2CLK" },
{ "AIF2DACR", NULL, "DSPINTCLK" },
{ "DMIC1L", NULL, "DMIC1DAT" },
{ "DMIC1L", NULL, "CLK_SYS" },
{ "DMIC1R", NULL, "DMIC1DAT" },
{ "DMIC1R", NULL, "CLK_SYS" },
{ "DMIC2L", NULL, "DMIC2DAT" },
{ "DMIC2L", NULL, "CLK_SYS" },
{ "DMIC2R", NULL, "DMIC2DAT" },
{ "DMIC2R", NULL, "CLK_SYS" },
{ "ADCL", NULL, "AIF1CLK" },
{ "ADCL", NULL, "DSP1CLK" },
{ "ADCL", NULL, "DSPINTCLK" },
{ "ADCR", NULL, "AIF1CLK" },
{ "ADCR", NULL, "DSP1CLK" },
{ "ADCR", NULL, "DSPINTCLK" },
{ "ADCL Mux", "ADC", "ADCL" },
{ "ADCL Mux", "DMIC", "DMIC1L" },
{ "ADCR Mux", "ADC", "ADCR" },
{ "ADCR Mux", "DMIC", "DMIC1R" },
{ "DAC1L", NULL, "AIF1CLK" },
{ "DAC1L", NULL, "DSP1CLK" },
{ "DAC1L", NULL, "DSPINTCLK" },
{ "DAC1R", NULL, "AIF1CLK" },
{ "DAC1R", NULL, "DSP1CLK" },
{ "DAC1R", NULL, "DSPINTCLK" },
{ "DAC2L", NULL, "AIF2CLK" },
{ "DAC2L", NULL, "DSP2CLK" },
{ "DAC2L", NULL, "DSPINTCLK" },
{ "DAC2R", NULL, "AIF2DACR" },
{ "DAC2R", NULL, "AIF2CLK" },
{ "DAC2R", NULL, "DSP2CLK" },
{ "DAC2R", NULL, "DSPINTCLK" },
{ "TOCLK", NULL, "CLK_SYS" },
/* AIF1 outputs */
{ "AIF1ADC1L", NULL, "AIF1ADC1L Mixer" },
{ "AIF1ADC1L Mixer", "ADC/DMIC Switch", "ADCL Mux" },
{ "AIF1ADC1L Mixer", "AIF2 Switch", "AIF2DACL" },
{ "AIF1ADC1R", NULL, "AIF1ADC1R Mixer" },
{ "AIF1ADC1R Mixer", "ADC/DMIC Switch", "ADCR Mux" },
{ "AIF1ADC1R Mixer", "AIF2 Switch", "AIF2DACR" },
{ "AIF1ADC2L", NULL, "AIF1ADC2L Mixer" },
{ "AIF1ADC2L Mixer", "DMIC Switch", "DMIC2L" },
{ "AIF1ADC2L Mixer", "AIF2 Switch", "AIF2DACL" },
{ "AIF1ADC2R", NULL, "AIF1ADC2R Mixer" },
{ "AIF1ADC2R Mixer", "DMIC Switch", "DMIC2R" },
{ "AIF1ADC2R Mixer", "AIF2 Switch", "AIF2DACR" },
/* Pin level routing for AIF3 */
{ "AIF1DAC1L", NULL, "AIF1DAC Mux" },
{ "AIF1DAC1R", NULL, "AIF1DAC Mux" },
{ "AIF1DAC2L", NULL, "AIF1DAC Mux" },
{ "AIF1DAC2R", NULL, "AIF1DAC Mux" },
{ "AIF1DAC Mux", "AIF1DACDAT", "AIF1DACDAT" },
{ "AIF1DAC Mux", "AIF3DACDAT", "AIF3DACDAT" },
{ "AIF2DAC Mux", "AIF2DACDAT", "AIF2DACDAT" },
{ "AIF2DAC Mux", "AIF3DACDAT", "AIF3DACDAT" },
{ "AIF2ADC Mux", "AIF2ADCDAT", "AIF2ADCL" },
{ "AIF2ADC Mux", "AIF2ADCDAT", "AIF2ADCR" },
{ "AIF2ADC Mux", "AIF3DACDAT", "AIF3ADCDAT" },
/* DAC1 inputs */
{ "DAC1L Mixer", "AIF2 Switch", "AIF2DACL" },
{ "DAC1L Mixer", "AIF1.2 Switch", "AIF1DAC2L" },
{ "DAC1L Mixer", "AIF1.1 Switch", "AIF1DAC1L" },
{ "DAC1L Mixer", "Left Sidetone Switch", "Left Sidetone" },
{ "DAC1L Mixer", "Right Sidetone Switch", "Right Sidetone" },
{ "DAC1R Mixer", "AIF2 Switch", "AIF2DACR" },
{ "DAC1R Mixer", "AIF1.2 Switch", "AIF1DAC2R" },
{ "DAC1R Mixer", "AIF1.1 Switch", "AIF1DAC1R" },
{ "DAC1R Mixer", "Left Sidetone Switch", "Left Sidetone" },
{ "DAC1R Mixer", "Right Sidetone Switch", "Right Sidetone" },
/* DAC2/AIF2 outputs */
{ "AIF2ADCL", NULL, "AIF2DAC2L Mixer" },
{ "AIF2DAC2L Mixer", "AIF2 Switch", "AIF2DACL" },
{ "AIF2DAC2L Mixer", "AIF1.2 Switch", "AIF1DAC2L" },
{ "AIF2DAC2L Mixer", "AIF1.1 Switch", "AIF1DAC1L" },
{ "AIF2DAC2L Mixer", "Left Sidetone Switch", "Left Sidetone" },
{ "AIF2DAC2L Mixer", "Right Sidetone Switch", "Right Sidetone" },
{ "AIF2ADCR", NULL, "AIF2DAC2R Mixer" },
{ "AIF2DAC2R Mixer", "AIF2 Switch", "AIF2DACR" },
{ "AIF2DAC2R Mixer", "AIF1.2 Switch", "AIF1DAC2R" },
{ "AIF2DAC2R Mixer", "AIF1.1 Switch", "AIF1DAC1R" },
{ "AIF2DAC2R Mixer", "Left Sidetone Switch", "Left Sidetone" },
{ "AIF2DAC2R Mixer", "Right Sidetone Switch", "Right Sidetone" },
{ "AIF1ADCDAT", NULL, "AIF1ADC1L" },
{ "AIF1ADCDAT", NULL, "AIF1ADC1R" },
{ "AIF1ADCDAT", NULL, "AIF1ADC2L" },
{ "AIF1ADCDAT", NULL, "AIF1ADC2R" },
{ "AIF2ADCDAT", NULL, "AIF2ADC Mux" },
/* AIF3 output */
{ "AIF3ADCDAT", "AIF1ADCDAT", "AIF1ADC1L" },
{ "AIF3ADCDAT", "AIF1ADCDAT", "AIF1ADC1R" },
{ "AIF3ADCDAT", "AIF1ADCDAT", "AIF1ADC2L" },
{ "AIF3ADCDAT", "AIF1ADCDAT", "AIF1ADC2R" },
{ "AIF3ADCDAT", "AIF2ADCDAT", "AIF2ADCL" },
{ "AIF3ADCDAT", "AIF2ADCDAT", "AIF2ADCR" },
{ "AIF3ADCDAT", "AIF2DACDAT", "AIF2DACL" },
{ "AIF3ADCDAT", "AIF2DACDAT", "AIF2DACR" },
/* Sidetone */
{ "Left Sidetone", "ADC/DMIC1", "ADCL Mux" },
{ "Left Sidetone", "DMIC2", "DMIC2L" },
{ "Right Sidetone", "ADC/DMIC1", "ADCR Mux" },
{ "Right Sidetone", "DMIC2", "DMIC2R" },
/* Output stages */
{ "Left Output Mixer", "DAC Switch", "DAC1L" },
{ "Right Output Mixer", "DAC Switch", "DAC1R" },
{ "SPKL", "DAC1 Switch", "DAC1L" },
{ "SPKL", "DAC2 Switch", "DAC2L" },
{ "SPKR", "DAC1 Switch", "DAC1R" },
{ "SPKR", "DAC2 Switch", "DAC2R" },
{ "Left Headphone Mux", "DAC", "DAC1L" },
{ "Right Headphone Mux", "DAC", "DAC1R" },
};
static const struct snd_soc_dapm_route wm8994_lateclk_revd_intercon[] = {
{ "DAC1L", NULL, "Late DAC1L Enable PGA" },
{ "Late DAC1L Enable PGA", NULL, "DAC1L Mixer" },
{ "DAC1R", NULL, "Late DAC1R Enable PGA" },
{ "Late DAC1R Enable PGA", NULL, "DAC1R Mixer" },
{ "DAC2L", NULL, "Late DAC2L Enable PGA" },
{ "Late DAC2L Enable PGA", NULL, "AIF2DAC2L Mixer" },
{ "DAC2R", NULL, "Late DAC2R Enable PGA" },
{ "Late DAC2R Enable PGA", NULL, "AIF2DAC2R Mixer" }
};
static const struct snd_soc_dapm_route wm8994_lateclk_intercon[] = {
{ "DAC1L", NULL, "DAC1L Mixer" },
{ "DAC1R", NULL, "DAC1R Mixer" },
{ "DAC2L", NULL, "AIF2DAC2L Mixer" },
{ "DAC2R", NULL, "AIF2DAC2R Mixer" },
};
static const struct snd_soc_dapm_route wm8994_revd_intercon[] = {
{ "AIF1DACDAT", NULL, "AIF2DACDAT" },
{ "AIF2DACDAT", NULL, "AIF1DACDAT" },
{ "AIF1ADCDAT", NULL, "AIF2ADCDAT" },
{ "AIF2ADCDAT", NULL, "AIF1ADCDAT" },
{ "MICBIAS", NULL, "CLK_SYS" },
{ "MICBIAS", NULL, "MICBIAS Supply" },
};
static const struct snd_soc_dapm_route wm8994_intercon[] = {
{ "AIF2DACL", NULL, "AIF2DAC Mux" },
{ "AIF2DACR", NULL, "AIF2DAC Mux" },
};
static const struct snd_soc_dapm_route wm8958_intercon[] = {
{ "AIF2DACL", NULL, "AIF2DACL Mux" },
{ "AIF2DACR", NULL, "AIF2DACR Mux" },
{ "AIF2DACL Mux", "AIF2", "AIF2DAC Mux" },
{ "AIF2DACL Mux", "AIF3", "AIF3DACDAT" },
{ "AIF2DACR Mux", "AIF2", "AIF2DAC Mux" },
{ "AIF2DACR Mux", "AIF3", "AIF3DACDAT" },
{ "Mono PCM Out Mux", "AIF2ADCL", "AIF2ADCL" },
{ "Mono PCM Out Mux", "AIF2ADCR", "AIF2ADCR" },
{ "AIF3ADC Mux", "Mono PCM", "Mono PCM Out Mux" },
};
/* The size in bits of the FLL divide multiplied by 10
* to allow rounding later */
#define FIXED_FLL_SIZE ((1 << 16) * 10)
struct fll_div {
u16 outdiv;
u16 n;
u16 k;
u16 clk_ref_div;
u16 fll_fratio;
};
static int wm8994_get_fll_config(struct fll_div *fll,
int freq_in, int freq_out)
{
u64 Kpart;
unsigned int K, Ndiv, Nmod;
pr_debug("FLL input=%dHz, output=%dHz\n", freq_in, freq_out);
/* Scale the input frequency down to <= 13.5MHz */
fll->clk_ref_div = 0;
while (freq_in > 13500000) {
fll->clk_ref_div++;
freq_in /= 2;
if (fll->clk_ref_div > 3)
return -EINVAL;
}
pr_debug("CLK_REF_DIV=%d, Fref=%dHz\n", fll->clk_ref_div, freq_in);
/* Scale the output to give 90MHz<=Fvco<=100MHz */
fll->outdiv = 3;
while (freq_out * (fll->outdiv + 1) < 90000000) {
fll->outdiv++;
if (fll->outdiv > 63)
return -EINVAL;
}
freq_out *= fll->outdiv + 1;
pr_debug("OUTDIV=%d, Fvco=%dHz\n", fll->outdiv, freq_out);
if (freq_in > 1000000) {
fll->fll_fratio = 0;
} else if (freq_in > 256000) {
fll->fll_fratio = 1;
freq_in *= 2;
} else if (freq_in > 128000) {
fll->fll_fratio = 2;
freq_in *= 4;
} else if (freq_in > 64000) {
fll->fll_fratio = 3;
freq_in *= 8;
} else {
fll->fll_fratio = 4;
freq_in *= 16;
}
pr_debug("FLL_FRATIO=%d, Fref=%dHz\n", fll->fll_fratio, freq_in);
/* Now, calculate N.K */
Ndiv = freq_out / freq_in;
fll->n = Ndiv;
Nmod = freq_out % freq_in;
pr_debug("Nmod=%d\n", Nmod);
/* Calculate fractional part - scale up so we can round. */
Kpart = FIXED_FLL_SIZE * (long long)Nmod;
do_div(Kpart, freq_in);
K = Kpart & 0xFFFFFFFF;
if ((K % 10) >= 5)
K += 5;
/* Move down to proper range now rounding is done */
fll->k = K / 10;
pr_debug("N=%x K=%x\n", fll->n, fll->k);
return 0;
}
static int _wm8994_set_fll(struct snd_soc_codec *codec, int id, int src,
unsigned int freq_in, unsigned int freq_out)
{
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
int reg_offset, ret;
struct fll_div fll;
u16 reg, aif1, aif2;
aif1 = snd_soc_read(codec, WM8994_AIF1_CLOCKING_1)
& WM8994_AIF1CLK_ENA;
aif2 = snd_soc_read(codec, WM8994_AIF2_CLOCKING_1)
& WM8994_AIF2CLK_ENA;
switch (id) {
case WM8994_FLL1:
reg_offset = 0;
id = 0;
break;
case WM8994_FLL2:
reg_offset = 0x20;
id = 1;
break;
default:
return -EINVAL;
}
switch (src) {
case 0:
/* Allow no source specification when stopping */
if (freq_out)
return -EINVAL;
src = wm8994->fll[id].src;
break;
case WM8994_FLL_SRC_MCLK1:
case WM8994_FLL_SRC_MCLK2:
case WM8994_FLL_SRC_LRCLK:
case WM8994_FLL_SRC_BCLK:
break;
default:
return -EINVAL;
}
/* Are we changing anything? */
if (wm8994->fll[id].src == src &&
wm8994->fll[id].in == freq_in && wm8994->fll[id].out == freq_out)
return 0;
/* If we're stopping the FLL redo the old config - no
* registers will actually be written but we avoid GCC flow
* analysis bugs spewing warnings.
*/
if (freq_out)
ret = wm8994_get_fll_config(&fll, freq_in, freq_out);
else
ret = wm8994_get_fll_config(&fll, wm8994->fll[id].in,
wm8994->fll[id].out);
if (ret < 0)
return ret;
/* Gate the AIF clocks while we reclock */
snd_soc_update_bits(codec, WM8994_AIF1_CLOCKING_1,
WM8994_AIF1CLK_ENA, 0);
snd_soc_update_bits(codec, WM8994_AIF2_CLOCKING_1,
WM8994_AIF2CLK_ENA, 0);
/* We always need to disable the FLL while reconfiguring */
snd_soc_update_bits(codec, WM8994_FLL1_CONTROL_1 + reg_offset,
WM8994_FLL1_ENA, 0);
reg = (fll.outdiv << WM8994_FLL1_OUTDIV_SHIFT) |
(fll.fll_fratio << WM8994_FLL1_FRATIO_SHIFT);
snd_soc_update_bits(codec, WM8994_FLL1_CONTROL_2 + reg_offset,
WM8994_FLL1_OUTDIV_MASK |
WM8994_FLL1_FRATIO_MASK, reg);
snd_soc_write(codec, WM8994_FLL1_CONTROL_3 + reg_offset, fll.k);
snd_soc_update_bits(codec, WM8994_FLL1_CONTROL_4 + reg_offset,
WM8994_FLL1_N_MASK,
fll.n << WM8994_FLL1_N_SHIFT);
snd_soc_update_bits(codec, WM8994_FLL1_CONTROL_5 + reg_offset,
WM8994_FLL1_REFCLK_DIV_MASK |
WM8994_FLL1_REFCLK_SRC_MASK,
(fll.clk_ref_div << WM8994_FLL1_REFCLK_DIV_SHIFT) |
(src - 1));
/* Enable (with fractional mode if required) */
if (freq_out) {
if (fll.k)
reg = WM8994_FLL1_ENA | WM8994_FLL1_FRAC;
else
reg = WM8994_FLL1_ENA;
snd_soc_update_bits(codec, WM8994_FLL1_CONTROL_1 + reg_offset,
WM8994_FLL1_ENA | WM8994_FLL1_FRAC,
reg);
msleep(5);
}
wm8994->fll[id].in = freq_in;
wm8994->fll[id].out = freq_out;
wm8994->fll[id].src = src;
/* Enable any gated AIF clocks */
snd_soc_update_bits(codec, WM8994_AIF1_CLOCKING_1,
WM8994_AIF1CLK_ENA, aif1);
snd_soc_update_bits(codec, WM8994_AIF2_CLOCKING_1,
WM8994_AIF2CLK_ENA, aif2);
configure_clock(codec);
return 0;
}
static int opclk_divs[] = { 10, 20, 30, 40, 55, 60, 80, 120, 160 };
static int wm8994_set_fll(struct snd_soc_dai *dai, int id, int src,
unsigned int freq_in, unsigned int freq_out)
{
return _wm8994_set_fll(dai->codec, id, src, freq_in, freq_out);
}
static int wm8994_set_dai_sysclk(struct snd_soc_dai *dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_codec *codec = dai->codec;
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
int i;
switch (dai->id) {
case 1:
case 2:
break;
default:
/* AIF3 shares clocking with AIF1/2 */
return -EINVAL;
}
switch (clk_id) {
case WM8994_SYSCLK_MCLK1:
wm8994->sysclk[dai->id - 1] = WM8994_SYSCLK_MCLK1;
wm8994->mclk[0] = freq;
dev_dbg(dai->dev, "AIF%d using MCLK1 at %uHz\n",
dai->id, freq);
break;
case WM8994_SYSCLK_MCLK2:
/* TODO: Set GPIO AF */
wm8994->sysclk[dai->id - 1] = WM8994_SYSCLK_MCLK2;
wm8994->mclk[1] = freq;
dev_dbg(dai->dev, "AIF%d using MCLK2 at %uHz\n",
dai->id, freq);
break;
case WM8994_SYSCLK_FLL1:
wm8994->sysclk[dai->id - 1] = WM8994_SYSCLK_FLL1;
dev_dbg(dai->dev, "AIF%d using FLL1\n", dai->id);
break;
case WM8994_SYSCLK_FLL2:
wm8994->sysclk[dai->id - 1] = WM8994_SYSCLK_FLL2;
dev_dbg(dai->dev, "AIF%d using FLL2\n", dai->id);
break;
case WM8994_SYSCLK_OPCLK:
/* Special case - a division (times 10) is given and
* no effect on main clocking.
*/
if (freq) {
for (i = 0; i < ARRAY_SIZE(opclk_divs); i++)
if (opclk_divs[i] == freq)
break;
if (i == ARRAY_SIZE(opclk_divs))
return -EINVAL;
snd_soc_update_bits(codec, WM8994_CLOCKING_2,
WM8994_OPCLK_DIV_MASK, i);
snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_2,
WM8994_OPCLK_ENA, WM8994_OPCLK_ENA);
} else {
snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_2,
WM8994_OPCLK_ENA, 0);
}
default:
return -EINVAL;
}
configure_clock(codec);
return 0;
}
static int wm8994_set_bias_level(struct snd_soc_codec *codec,
enum snd_soc_bias_level level)
{
struct wm8994 *control = codec->control_data;
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
/* VMID=2x40k */
snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_1,
WM8994_VMID_SEL_MASK, 0x2);
break;
case SND_SOC_BIAS_STANDBY:
if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
pm_runtime_get_sync(codec->dev);
switch (control->type) {
case WM8994:
if (wm8994->revision < 4) {
/* Tweak DC servo and DSP
* configuration for improved
* performance. */
snd_soc_write(codec, 0x102, 0x3);
snd_soc_write(codec, 0x56, 0x3);
snd_soc_write(codec, 0x817, 0);
snd_soc_write(codec, 0x102, 0);
}
break;
case WM8958:
if (wm8994->revision == 0) {
/* Optimise performance for rev A */
snd_soc_write(codec, 0x102, 0x3);
snd_soc_write(codec, 0xcb, 0x81);
snd_soc_write(codec, 0x817, 0);
snd_soc_write(codec, 0x102, 0);
snd_soc_update_bits(codec,
WM8958_CHARGE_PUMP_2,
WM8958_CP_DISCH,
WM8958_CP_DISCH);
}
break;
}
/* Discharge LINEOUT1 & 2 */
snd_soc_update_bits(codec, WM8994_ANTIPOP_1,
WM8994_LINEOUT1_DISCH |
WM8994_LINEOUT2_DISCH,
WM8994_LINEOUT1_DISCH |
WM8994_LINEOUT2_DISCH);
/* Startup bias, VMID ramp & buffer */
snd_soc_update_bits(codec, WM8994_ANTIPOP_2,
WM8994_STARTUP_BIAS_ENA |
WM8994_VMID_BUF_ENA |
WM8994_VMID_RAMP_MASK,
WM8994_STARTUP_BIAS_ENA |
WM8994_VMID_BUF_ENA |
(0x11 << WM8994_VMID_RAMP_SHIFT));
/* Main bias enable, VMID=2x40k */
snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_1,
WM8994_BIAS_ENA |
WM8994_VMID_SEL_MASK,
WM8994_BIAS_ENA | 0x2);
msleep(20);
}
/* VMID=2x500k */
snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_1,
WM8994_VMID_SEL_MASK, 0x4);
break;
case SND_SOC_BIAS_OFF:
if (codec->dapm.bias_level == SND_SOC_BIAS_STANDBY) {
/* Switch over to startup biases */
snd_soc_update_bits(codec, WM8994_ANTIPOP_2,
WM8994_BIAS_SRC |
WM8994_STARTUP_BIAS_ENA |
WM8994_VMID_BUF_ENA |
WM8994_VMID_RAMP_MASK,
WM8994_BIAS_SRC |
WM8994_STARTUP_BIAS_ENA |
WM8994_VMID_BUF_ENA |
(1 << WM8994_VMID_RAMP_SHIFT));
/* Disable main biases */
snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_1,
WM8994_BIAS_ENA |
WM8994_VMID_SEL_MASK, 0);
/* Discharge line */
snd_soc_update_bits(codec, WM8994_ANTIPOP_1,
WM8994_LINEOUT1_DISCH |
WM8994_LINEOUT2_DISCH,
WM8994_LINEOUT1_DISCH |
WM8994_LINEOUT2_DISCH);
msleep(5);
/* Switch off startup biases */
snd_soc_update_bits(codec, WM8994_ANTIPOP_2,
WM8994_BIAS_SRC |
WM8994_STARTUP_BIAS_ENA |
WM8994_VMID_BUF_ENA |
WM8994_VMID_RAMP_MASK, 0);
wm8994->cur_fw = NULL;
pm_runtime_put(codec->dev);
}
break;
}
codec->dapm.bias_level = level;
return 0;
}
static int wm8994_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_codec *codec = dai->codec;
struct wm8994 *control = codec->control_data;
int ms_reg;
int aif1_reg;
int ms = 0;
int aif1 = 0;
switch (dai->id) {
case 1:
ms_reg = WM8994_AIF1_MASTER_SLAVE;
aif1_reg = WM8994_AIF1_CONTROL_1;
break;
case 2:
ms_reg = WM8994_AIF2_MASTER_SLAVE;
aif1_reg = WM8994_AIF2_CONTROL_1;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
break;
case SND_SOC_DAIFMT_CBM_CFM:
ms = WM8994_AIF1_MSTR;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_DSP_B:
aif1 |= WM8994_AIF1_LRCLK_INV;
case SND_SOC_DAIFMT_DSP_A:
aif1 |= 0x18;
break;
case SND_SOC_DAIFMT_I2S:
aif1 |= 0x10;
break;
case SND_SOC_DAIFMT_RIGHT_J:
break;
case SND_SOC_DAIFMT_LEFT_J:
aif1 |= 0x8;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_DSP_A:
case SND_SOC_DAIFMT_DSP_B:
/* frame inversion not valid for DSP modes */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
aif1 |= WM8994_AIF1_BCLK_INV;
break;
default:
return -EINVAL;
}
break;
case SND_SOC_DAIFMT_I2S:
case SND_SOC_DAIFMT_RIGHT_J:
case SND_SOC_DAIFMT_LEFT_J:
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_IF:
aif1 |= WM8994_AIF1_BCLK_INV | WM8994_AIF1_LRCLK_INV;
break;
case SND_SOC_DAIFMT_IB_NF:
aif1 |= WM8994_AIF1_BCLK_INV;
break;
case SND_SOC_DAIFMT_NB_IF:
aif1 |= WM8994_AIF1_LRCLK_INV;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
/* The AIF2 format configuration needs to be mirrored to AIF3
* on WM8958 if it's in use so just do it all the time. */
if (control->type == WM8958 && dai->id == 2)
snd_soc_update_bits(codec, WM8958_AIF3_CONTROL_1,
WM8994_AIF1_LRCLK_INV |
WM8958_AIF3_FMT_MASK, aif1);
snd_soc_update_bits(codec, aif1_reg,
WM8994_AIF1_BCLK_INV | WM8994_AIF1_LRCLK_INV |
WM8994_AIF1_FMT_MASK,
aif1);
snd_soc_update_bits(codec, ms_reg, WM8994_AIF1_MSTR,
ms);
return 0;
}
static struct {
int val, rate;
} srs[] = {
{ 0, 8000 },
{ 1, 11025 },
{ 2, 12000 },
{ 3, 16000 },
{ 4, 22050 },
{ 5, 24000 },
{ 6, 32000 },
{ 7, 44100 },
{ 8, 48000 },
{ 9, 88200 },
{ 10, 96000 },
};
static int fs_ratios[] = {
64, 128, 192, 256, 348, 512, 768, 1024, 1408, 1536
};
static int bclk_divs[] = {
10, 15, 20, 30, 40, 50, 60, 80, 110, 120, 160, 220, 240, 320, 440, 480,
640, 880, 960, 1280, 1760, 1920
};
static int wm8994_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
struct wm8994 *control = codec->control_data;
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
int aif1_reg;
int aif2_reg;
int bclk_reg;
int lrclk_reg;
int rate_reg;
int aif1 = 0;
int aif2 = 0;
int bclk = 0;
int lrclk = 0;
int rate_val = 0;
int id = dai->id - 1;
int i, cur_val, best_val, bclk_rate, best;
switch (dai->id) {
case 1:
aif1_reg = WM8994_AIF1_CONTROL_1;
aif2_reg = WM8994_AIF1_CONTROL_2;
bclk_reg = WM8994_AIF1_BCLK;
rate_reg = WM8994_AIF1_RATE;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK ||
wm8994->lrclk_shared[0]) {
lrclk_reg = WM8994_AIF1DAC_LRCLK;
} else {
lrclk_reg = WM8994_AIF1ADC_LRCLK;
dev_dbg(codec->dev, "AIF1 using split LRCLK\n");
}
break;
case 2:
aif1_reg = WM8994_AIF2_CONTROL_1;
aif2_reg = WM8994_AIF2_CONTROL_2;
bclk_reg = WM8994_AIF2_BCLK;
rate_reg = WM8994_AIF2_RATE;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK ||
wm8994->lrclk_shared[1]) {
lrclk_reg = WM8994_AIF2DAC_LRCLK;
} else {
lrclk_reg = WM8994_AIF2ADC_LRCLK;
dev_dbg(codec->dev, "AIF2 using split LRCLK\n");
}
break;
case 3:
switch (control->type) {
case WM8958:
aif1_reg = WM8958_AIF3_CONTROL_1;
break;
default:
return 0;
}
default:
return -EINVAL;
}
bclk_rate = params_rate(params) * 2;
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
bclk_rate *= 16;
break;
case SNDRV_PCM_FORMAT_S20_3LE:
bclk_rate *= 20;
aif1 |= 0x20;
break;
case SNDRV_PCM_FORMAT_S24_LE:
bclk_rate *= 24;
aif1 |= 0x40;
break;
case SNDRV_PCM_FORMAT_S32_LE:
bclk_rate *= 32;
aif1 |= 0x60;
break;
default:
return -EINVAL;
}
/* Try to find an appropriate sample rate; look for an exact match. */
for (i = 0; i < ARRAY_SIZE(srs); i++)
if (srs[i].rate == params_rate(params))
break;
if (i == ARRAY_SIZE(srs))
return -EINVAL;
rate_val |= srs[i].val << WM8994_AIF1_SR_SHIFT;
dev_dbg(dai->dev, "Sample rate is %dHz\n", srs[i].rate);
dev_dbg(dai->dev, "AIF%dCLK is %dHz, target BCLK %dHz\n",
dai->id, wm8994->aifclk[id], bclk_rate);
if (params_channels(params) == 1 &&
(snd_soc_read(codec, aif1_reg) & 0x18) == 0x18)
aif2 |= WM8994_AIF1_MONO;
if (wm8994->aifclk[id] == 0) {
dev_err(dai->dev, "AIF%dCLK not configured\n", dai->id);
return -EINVAL;
}
/* AIFCLK/fs ratio; look for a close match in either direction */
best = 0;
best_val = abs((fs_ratios[0] * params_rate(params))
- wm8994->aifclk[id]);
for (i = 1; i < ARRAY_SIZE(fs_ratios); i++) {
cur_val = abs((fs_ratios[i] * params_rate(params))
- wm8994->aifclk[id]);
if (cur_val >= best_val)
continue;
best = i;
best_val = cur_val;
}
dev_dbg(dai->dev, "Selected AIF%dCLK/fs = %d\n",
dai->id, fs_ratios[best]);
rate_val |= best;
/* We may not get quite the right frequency if using
* approximate clocks so look for the closest match that is
* higher than the target (we need to ensure that there enough
* BCLKs to clock out the samples).
*/
best = 0;
for (i = 0; i < ARRAY_SIZE(bclk_divs); i++) {
cur_val = (wm8994->aifclk[id] * 10 / bclk_divs[i]) - bclk_rate;
if (cur_val < 0) /* BCLK table is sorted */
break;
best = i;
}
bclk_rate = wm8994->aifclk[id] * 10 / bclk_divs[best];
dev_dbg(dai->dev, "Using BCLK_DIV %d for actual BCLK %dHz\n",
bclk_divs[best], bclk_rate);
bclk |= best << WM8994_AIF1_BCLK_DIV_SHIFT;
lrclk = bclk_rate / params_rate(params);
dev_dbg(dai->dev, "Using LRCLK rate %d for actual LRCLK %dHz\n",
lrclk, bclk_rate / lrclk);
snd_soc_update_bits(codec, aif1_reg, WM8994_AIF1_WL_MASK, aif1);
snd_soc_update_bits(codec, aif2_reg, WM8994_AIF1_MONO, aif2);
snd_soc_update_bits(codec, bclk_reg, WM8994_AIF1_BCLK_DIV_MASK, bclk);
snd_soc_update_bits(codec, lrclk_reg, WM8994_AIF1DAC_RATE_MASK,
lrclk);
snd_soc_update_bits(codec, rate_reg, WM8994_AIF1_SR_MASK |
WM8994_AIF1CLK_RATE_MASK, rate_val);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
switch (dai->id) {
case 1:
wm8994->dac_rates[0] = params_rate(params);
wm8994_set_retune_mobile(codec, 0);
wm8994_set_retune_mobile(codec, 1);
break;
case 2:
wm8994->dac_rates[1] = params_rate(params);
wm8994_set_retune_mobile(codec, 2);
break;
}
}
return 0;
}
static int wm8994_aif3_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
struct wm8994 *control = codec->control_data;
int aif1_reg;
int aif1 = 0;
switch (dai->id) {
case 3:
switch (control->type) {
case WM8958:
aif1_reg = WM8958_AIF3_CONTROL_1;
break;
default:
return 0;
}
default:
return 0;
}
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
break;
case SNDRV_PCM_FORMAT_S20_3LE:
aif1 |= 0x20;
break;
case SNDRV_PCM_FORMAT_S24_LE:
aif1 |= 0x40;
break;
case SNDRV_PCM_FORMAT_S32_LE:
aif1 |= 0x60;
break;
default:
return -EINVAL;
}
return snd_soc_update_bits(codec, aif1_reg, WM8994_AIF1_WL_MASK, aif1);
}
static int wm8994_aif_mute(struct snd_soc_dai *codec_dai, int mute)
{
struct snd_soc_codec *codec = codec_dai->codec;
int mute_reg;
int reg;
switch (codec_dai->id) {
case 1:
mute_reg = WM8994_AIF1_DAC1_FILTERS_1;
break;
case 2:
mute_reg = WM8994_AIF2_DAC_FILTERS_1;
break;
default:
return -EINVAL;
}
if (mute)
reg = WM8994_AIF1DAC1_MUTE;
else
reg = 0;
snd_soc_update_bits(codec, mute_reg, WM8994_AIF1DAC1_MUTE, reg);
return 0;
}
static int wm8994_set_tristate(struct snd_soc_dai *codec_dai, int tristate)
{
struct snd_soc_codec *codec = codec_dai->codec;
int reg, val, mask;
switch (codec_dai->id) {
case 1:
reg = WM8994_AIF1_MASTER_SLAVE;
mask = WM8994_AIF1_TRI;
break;
case 2:
reg = WM8994_AIF2_MASTER_SLAVE;
mask = WM8994_AIF2_TRI;
break;
case 3:
reg = WM8994_POWER_MANAGEMENT_6;
mask = WM8994_AIF3_TRI;
break;
default:
return -EINVAL;
}
if (tristate)
val = mask;
else
val = 0;
return snd_soc_update_bits(codec, reg, mask, val);
}
#define WM8994_RATES SNDRV_PCM_RATE_8000_96000
#define WM8994_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE |\
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
static struct snd_soc_dai_ops wm8994_aif1_dai_ops = {
.set_sysclk = wm8994_set_dai_sysclk,
.set_fmt = wm8994_set_dai_fmt,
.hw_params = wm8994_hw_params,
.digital_mute = wm8994_aif_mute,
.set_pll = wm8994_set_fll,
.set_tristate = wm8994_set_tristate,
};
static struct snd_soc_dai_ops wm8994_aif2_dai_ops = {
.set_sysclk = wm8994_set_dai_sysclk,
.set_fmt = wm8994_set_dai_fmt,
.hw_params = wm8994_hw_params,
.digital_mute = wm8994_aif_mute,
.set_pll = wm8994_set_fll,
.set_tristate = wm8994_set_tristate,
};
static struct snd_soc_dai_ops wm8994_aif3_dai_ops = {
.hw_params = wm8994_aif3_hw_params,
.set_tristate = wm8994_set_tristate,
};
static struct snd_soc_dai_driver wm8994_dai[] = {
{
.name = "wm8994-aif1",
.id = 1,
.playback = {
.stream_name = "AIF1 Playback",
.channels_min = 1,
.channels_max = 2,
.rates = WM8994_RATES,
.formats = WM8994_FORMATS,
},
.capture = {
.stream_name = "AIF1 Capture",
.channels_min = 1,
.channels_max = 2,
.rates = WM8994_RATES,
.formats = WM8994_FORMATS,
},
.ops = &wm8994_aif1_dai_ops,
},
{
.name = "wm8994-aif2",
.id = 2,
.playback = {
.stream_name = "AIF2 Playback",
.channels_min = 1,
.channels_max = 2,
.rates = WM8994_RATES,
.formats = WM8994_FORMATS,
},
.capture = {
.stream_name = "AIF2 Capture",
.channels_min = 1,
.channels_max = 2,
.rates = WM8994_RATES,
.formats = WM8994_FORMATS,
},
.ops = &wm8994_aif2_dai_ops,
},
{
.name = "wm8994-aif3",
.id = 3,
.playback = {
.stream_name = "AIF3 Playback",
.channels_min = 1,
.channels_max = 2,
.rates = WM8994_RATES,
.formats = WM8994_FORMATS,
},
.capture = {
.stream_name = "AIF3 Capture",
.channels_min = 1,
.channels_max = 2,
.rates = WM8994_RATES,
.formats = WM8994_FORMATS,
},
.ops = &wm8994_aif3_dai_ops,
}
};
#ifdef CONFIG_PM
static int wm8994_suspend(struct snd_soc_codec *codec, pm_message_t state)
{
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
struct wm8994 *control = codec->control_data;
int i, ret;
switch (control->type) {
case WM8994:
snd_soc_update_bits(codec, WM8994_MICBIAS, WM8994_MICD_ENA, 0);
break;
case WM8958:
snd_soc_update_bits(codec, WM8958_MIC_DETECT_1,
WM8958_MICD_ENA, 0);
break;
}
for (i = 0; i < ARRAY_SIZE(wm8994->fll); i++) {
memcpy(&wm8994->fll_suspend[i], &wm8994->fll[i],
sizeof(struct wm8994_fll_config));
ret = _wm8994_set_fll(codec, i + 1, 0, 0, 0);
if (ret < 0)
dev_warn(codec->dev, "Failed to stop FLL%d: %d\n",
i + 1, ret);
}
wm8994_set_bias_level(codec, SND_SOC_BIAS_OFF);
return 0;
}
static int wm8994_resume(struct snd_soc_codec *codec)
{
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
struct wm8994 *control = codec->control_data;
int i, ret;
unsigned int val, mask;
if (wm8994->revision < 4) {
/* force a HW read */
val = wm8994_reg_read(codec->control_data,
WM8994_POWER_MANAGEMENT_5);
/* modify the cache only */
codec->cache_only = 1;
mask = WM8994_DAC1R_ENA | WM8994_DAC1L_ENA |
WM8994_DAC2R_ENA | WM8994_DAC2L_ENA;
val &= mask;
snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_5,
mask, val);
codec->cache_only = 0;
}
/* Restore the registers */
ret = snd_soc_cache_sync(codec);
if (ret != 0)
dev_err(codec->dev, "Failed to sync cache: %d\n", ret);
wm8994_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
for (i = 0; i < ARRAY_SIZE(wm8994->fll); i++) {
if (!wm8994->fll_suspend[i].out)
continue;
ret = _wm8994_set_fll(codec, i + 1,
wm8994->fll_suspend[i].src,
wm8994->fll_suspend[i].in,
wm8994->fll_suspend[i].out);
if (ret < 0)
dev_warn(codec->dev, "Failed to restore FLL%d: %d\n",
i + 1, ret);
}
switch (control->type) {
case WM8994:
if (wm8994->micdet[0].jack || wm8994->micdet[1].jack)
snd_soc_update_bits(codec, WM8994_MICBIAS,
WM8994_MICD_ENA, WM8994_MICD_ENA);
break;
case WM8958:
if (wm8994->jack_cb)
snd_soc_update_bits(codec, WM8958_MIC_DETECT_1,
WM8958_MICD_ENA, WM8958_MICD_ENA);
break;
}
return 0;
}
#else
#define wm8994_suspend NULL
#define wm8994_resume NULL
#endif
static void wm8994_handle_retune_mobile_pdata(struct wm8994_priv *wm8994)
{
struct snd_soc_codec *codec = wm8994->codec;
struct wm8994_pdata *pdata = wm8994->pdata;
struct snd_kcontrol_new controls[] = {
SOC_ENUM_EXT("AIF1.1 EQ Mode",
wm8994->retune_mobile_enum,
wm8994_get_retune_mobile_enum,
wm8994_put_retune_mobile_enum),
SOC_ENUM_EXT("AIF1.2 EQ Mode",
wm8994->retune_mobile_enum,
wm8994_get_retune_mobile_enum,
wm8994_put_retune_mobile_enum),
SOC_ENUM_EXT("AIF2 EQ Mode",
wm8994->retune_mobile_enum,
wm8994_get_retune_mobile_enum,
wm8994_put_retune_mobile_enum),
};
int ret, i, j;
const char **t;
/* We need an array of texts for the enum API but the number
* of texts is likely to be less than the number of
* configurations due to the sample rate dependency of the
* configurations. */
wm8994->num_retune_mobile_texts = 0;
wm8994->retune_mobile_texts = NULL;
for (i = 0; i < pdata->num_retune_mobile_cfgs; i++) {
for (j = 0; j < wm8994->num_retune_mobile_texts; j++) {
if (strcmp(pdata->retune_mobile_cfgs[i].name,
wm8994->retune_mobile_texts[j]) == 0)
break;
}
if (j != wm8994->num_retune_mobile_texts)
continue;
/* Expand the array... */
t = krealloc(wm8994->retune_mobile_texts,
sizeof(char *) *
(wm8994->num_retune_mobile_texts + 1),
GFP_KERNEL);
if (t == NULL)
continue;
/* ...store the new entry... */
t[wm8994->num_retune_mobile_texts] =
pdata->retune_mobile_cfgs[i].name;
/* ...and remember the new version. */
wm8994->num_retune_mobile_texts++;
wm8994->retune_mobile_texts = t;
}
dev_dbg(codec->dev, "Allocated %d unique ReTune Mobile names\n",
wm8994->num_retune_mobile_texts);
wm8994->retune_mobile_enum.max = wm8994->num_retune_mobile_texts;
wm8994->retune_mobile_enum.texts = wm8994->retune_mobile_texts;
ret = snd_soc_add_controls(wm8994->codec, controls,
ARRAY_SIZE(controls));
if (ret != 0)
dev_err(wm8994->codec->dev,
"Failed to add ReTune Mobile controls: %d\n", ret);
}
static void wm8994_handle_pdata(struct wm8994_priv *wm8994)
{
struct snd_soc_codec *codec = wm8994->codec;
struct wm8994_pdata *pdata = wm8994->pdata;
int ret, i;
if (!pdata)
return;
wm_hubs_handle_analogue_pdata(codec, pdata->lineout1_diff,
pdata->lineout2_diff,
pdata->lineout1fb,
pdata->lineout2fb,
pdata->jd_scthr,
pdata->jd_thr,
pdata->micbias1_lvl,
pdata->micbias2_lvl);
dev_dbg(codec->dev, "%d DRC configurations\n", pdata->num_drc_cfgs);
if (pdata->num_drc_cfgs) {
struct snd_kcontrol_new controls[] = {
SOC_ENUM_EXT("AIF1DRC1 Mode", wm8994->drc_enum,
wm8994_get_drc_enum, wm8994_put_drc_enum),
SOC_ENUM_EXT("AIF1DRC2 Mode", wm8994->drc_enum,
wm8994_get_drc_enum, wm8994_put_drc_enum),
SOC_ENUM_EXT("AIF2DRC Mode", wm8994->drc_enum,
wm8994_get_drc_enum, wm8994_put_drc_enum),
};
/* We need an array of texts for the enum API */
wm8994->drc_texts = kmalloc(sizeof(char *)
* pdata->num_drc_cfgs, GFP_KERNEL);
if (!wm8994->drc_texts) {
dev_err(wm8994->codec->dev,
"Failed to allocate %d DRC config texts\n",
pdata->num_drc_cfgs);
return;
}
for (i = 0; i < pdata->num_drc_cfgs; i++)
wm8994->drc_texts[i] = pdata->drc_cfgs[i].name;
wm8994->drc_enum.max = pdata->num_drc_cfgs;
wm8994->drc_enum.texts = wm8994->drc_texts;
ret = snd_soc_add_controls(wm8994->codec, controls,
ARRAY_SIZE(controls));
if (ret != 0)
dev_err(wm8994->codec->dev,
"Failed to add DRC mode controls: %d\n", ret);
for (i = 0; i < WM8994_NUM_DRC; i++)
wm8994_set_drc(codec, i);
}
dev_dbg(codec->dev, "%d ReTune Mobile configurations\n",
pdata->num_retune_mobile_cfgs);
if (pdata->num_retune_mobile_cfgs)
wm8994_handle_retune_mobile_pdata(wm8994);
else
snd_soc_add_controls(wm8994->codec, wm8994_eq_controls,
ARRAY_SIZE(wm8994_eq_controls));
for (i = 0; i < ARRAY_SIZE(pdata->micbias); i++) {
if (pdata->micbias[i]) {
snd_soc_write(codec, WM8958_MICBIAS1 + i,
pdata->micbias[i] & 0xffff);
}
}
}
/**
* wm8994_mic_detect - Enable microphone detection via the WM8994 IRQ
*
* @codec: WM8994 codec
* @jack: jack to report detection events on
* @micbias: microphone bias to detect on
* @det: value to report for presence detection
* @shrt: value to report for short detection
*
* Enable microphone detection via IRQ on the WM8994. If GPIOs are
* being used to bring out signals to the processor then only platform
* data configuration is needed for WM8994 and processor GPIOs should
* be configured using snd_soc_jack_add_gpios() instead.
*
* Configuration of detection levels is available via the micbias1_lvl
* and micbias2_lvl platform data members.
*/
int wm8994_mic_detect(struct snd_soc_codec *codec, struct snd_soc_jack *jack,
int micbias, int det, int shrt)
{
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
struct wm8994_micdet *micdet;
struct wm8994 *control = codec->control_data;
int reg;
if (control->type != WM8994)
return -EINVAL;
switch (micbias) {
case 1:
micdet = &wm8994->micdet[0];
break;
case 2:
micdet = &wm8994->micdet[1];
break;
default:
return -EINVAL;
}
dev_dbg(codec->dev, "Configuring microphone detection on %d: %x %x\n",
micbias, det, shrt);
/* Store the configuration */
micdet->jack = jack;
micdet->det = det;
micdet->shrt = shrt;
/* If either of the jacks is set up then enable detection */
if (wm8994->micdet[0].jack || wm8994->micdet[1].jack)
reg = WM8994_MICD_ENA;
else
reg = 0;
snd_soc_update_bits(codec, WM8994_MICBIAS, WM8994_MICD_ENA, reg);
return 0;
}
EXPORT_SYMBOL_GPL(wm8994_mic_detect);
static irqreturn_t wm8994_mic_irq(int irq, void *data)
{
struct wm8994_priv *priv = data;
struct snd_soc_codec *codec = priv->codec;
int reg;
int report;
#ifndef CONFIG_SND_SOC_WM8994_MODULE
trace_snd_soc_jack_irq(dev_name(codec->dev));
#endif
reg = snd_soc_read(codec, WM8994_INTERRUPT_RAW_STATUS_2);
if (reg < 0) {
dev_err(codec->dev, "Failed to read microphone status: %d\n",
reg);
return IRQ_HANDLED;
}
dev_dbg(codec->dev, "Microphone status: %x\n", reg);
report = 0;
if (reg & WM8994_MIC1_DET_STS)
report |= priv->micdet[0].det;
if (reg & WM8994_MIC1_SHRT_STS)
report |= priv->micdet[0].shrt;
snd_soc_jack_report(priv->micdet[0].jack, report,
priv->micdet[0].det | priv->micdet[0].shrt);
report = 0;
if (reg & WM8994_MIC2_DET_STS)
report |= priv->micdet[1].det;
if (reg & WM8994_MIC2_SHRT_STS)
report |= priv->micdet[1].shrt;
snd_soc_jack_report(priv->micdet[1].jack, report,
priv->micdet[1].det | priv->micdet[1].shrt);
return IRQ_HANDLED;
}
/* Default microphone detection handler for WM8958 - the user can
* override this if they wish.
*/
static void wm8958_default_micdet(u16 status, void *data)
{
struct snd_soc_codec *codec = data;
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
int report = 0;
/* If nothing present then clear our statuses */
if (!(status & WM8958_MICD_STS))
goto done;
report = SND_JACK_MICROPHONE;
/* Everything else is buttons; just assign slots */
if (status & 0x1c0)
report |= SND_JACK_BTN_0;
done:
snd_soc_jack_report(wm8994->micdet[0].jack, report,
SND_JACK_BTN_0 | SND_JACK_MICROPHONE);
}
/**
* wm8958_mic_detect - Enable microphone detection via the WM8958 IRQ
*
* @codec: WM8958 codec
* @jack: jack to report detection events on
*
* Enable microphone detection functionality for the WM8958. By
* default simple detection which supports the detection of up to 6
* buttons plus video and microphone functionality is supported.
*
* The WM8958 has an advanced jack detection facility which is able to
* support complex accessory detection, especially when used in
* conjunction with external circuitry. In order to provide maximum
* flexiblity a callback is provided which allows a completely custom
* detection algorithm.
*/
int wm8958_mic_detect(struct snd_soc_codec *codec, struct snd_soc_jack *jack,
wm8958_micdet_cb cb, void *cb_data)
{
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
struct wm8994 *control = codec->control_data;
if (control->type != WM8958)
return -EINVAL;
if (jack) {
if (!cb) {
dev_dbg(codec->dev, "Using default micdet callback\n");
cb = wm8958_default_micdet;
cb_data = codec;
}
wm8994->micdet[0].jack = jack;
wm8994->jack_cb = cb;
wm8994->jack_cb_data = cb_data;
snd_soc_update_bits(codec, WM8958_MIC_DETECT_1,
WM8958_MICD_ENA, WM8958_MICD_ENA);
} else {
snd_soc_update_bits(codec, WM8958_MIC_DETECT_1,
WM8958_MICD_ENA, 0);
}
return 0;
}
EXPORT_SYMBOL_GPL(wm8958_mic_detect);
static irqreturn_t wm8958_mic_irq(int irq, void *data)
{
struct wm8994_priv *wm8994 = data;
struct snd_soc_codec *codec = wm8994->codec;
int reg;
reg = snd_soc_read(codec, WM8958_MIC_DETECT_3);
if (reg < 0) {
dev_err(codec->dev, "Failed to read mic detect status: %d\n",
reg);
return IRQ_NONE;
}
if (!(reg & WM8958_MICD_VALID)) {
dev_dbg(codec->dev, "Mic detect data not valid\n");
goto out;
}
#ifndef CONFIG_SND_SOC_WM8994_MODULE
trace_snd_soc_jack_irq(dev_name(codec->dev));
#endif
if (wm8994->jack_cb)
wm8994->jack_cb(reg, wm8994->jack_cb_data);
else
dev_warn(codec->dev, "Accessory detection with no callback\n");
out:
return IRQ_HANDLED;
}
static int wm8994_codec_probe(struct snd_soc_codec *codec)
{
struct wm8994 *control;
struct wm8994_priv *wm8994;
struct snd_soc_dapm_context *dapm = &codec->dapm;
int ret, i;
codec->control_data = dev_get_drvdata(codec->dev->parent);
control = codec->control_data;
wm8994 = kzalloc(sizeof(struct wm8994_priv), GFP_KERNEL);
if (wm8994 == NULL)
return -ENOMEM;
snd_soc_codec_set_drvdata(codec, wm8994);
wm8994->pdata = dev_get_platdata(codec->dev->parent);
wm8994->codec = codec;
if (wm8994->pdata && wm8994->pdata->micdet_irq)
wm8994->micdet_irq = wm8994->pdata->micdet_irq;
else if (wm8994->pdata && wm8994->pdata->irq_base)
wm8994->micdet_irq = wm8994->pdata->irq_base +
WM8994_IRQ_MIC1_DET;
pm_runtime_enable(codec->dev);
pm_runtime_resume(codec->dev);
/* Read our current status back from the chip - we don't want to
* reset as this may interfere with the GPIO or LDO operation. */
for (i = 0; i < WM8994_CACHE_SIZE; i++) {
if (!wm8994_readable(codec, i) || wm8994_volatile(codec, i))
continue;
ret = wm8994_reg_read(codec->control_data, i);
if (ret <= 0)
continue;
ret = snd_soc_cache_write(codec, i, ret);
if (ret != 0) {
dev_err(codec->dev,
"Failed to initialise cache for 0x%x: %d\n",
i, ret);
goto err;
}
}
/* Set revision-specific configuration */
wm8994->revision = snd_soc_read(codec, WM8994_CHIP_REVISION);
switch (control->type) {
case WM8994:
switch (wm8994->revision) {
case 2:
case 3:
wm8994->hubs.dcs_codes = -5;
wm8994->hubs.hp_startup_mode = 1;
wm8994->hubs.dcs_readback_mode = 1;
wm8994->hubs.series_startup = 1;
break;
default:
wm8994->hubs.dcs_readback_mode = 1;
break;
}
case WM8958:
wm8994->hubs.dcs_readback_mode = 1;
break;
default:
break;
}
switch (control->type) {
case WM8994:
if (wm8994->micdet_irq) {
ret = request_threaded_irq(wm8994->micdet_irq, NULL,
wm8994_mic_irq,
IRQF_TRIGGER_RISING,
"Mic1 detect",
wm8994);
if (ret != 0)
dev_warn(codec->dev,
"Failed to request Mic1 detect IRQ: %d\n",
ret);
}
ret = wm8994_request_irq(codec->control_data,
WM8994_IRQ_MIC1_SHRT,
wm8994_mic_irq, "Mic 1 short",
wm8994);
if (ret != 0)
dev_warn(codec->dev,
"Failed to request Mic1 short IRQ: %d\n",
ret);
ret = wm8994_request_irq(codec->control_data,
WM8994_IRQ_MIC2_DET,
wm8994_mic_irq, "Mic 2 detect",
wm8994);
if (ret != 0)
dev_warn(codec->dev,
"Failed to request Mic2 detect IRQ: %d\n",
ret);
ret = wm8994_request_irq(codec->control_data,
WM8994_IRQ_MIC2_SHRT,
wm8994_mic_irq, "Mic 2 short",
wm8994);
if (ret != 0)
dev_warn(codec->dev,
"Failed to request Mic2 short IRQ: %d\n",
ret);
break;
case WM8958:
if (wm8994->micdet_irq) {
ret = request_threaded_irq(wm8994->micdet_irq, NULL,
wm8958_mic_irq,
IRQF_TRIGGER_RISING,
"Mic detect",
wm8994);
if (ret != 0)
dev_warn(codec->dev,
"Failed to request Mic detect IRQ: %d\n",
ret);
}
}
/* Remember if AIFnLRCLK is configured as a GPIO. This should be
* configured on init - if a system wants to do this dynamically
* at runtime we can deal with that then.
*/
ret = wm8994_reg_read(codec->control_data, WM8994_GPIO_1);
if (ret < 0) {
dev_err(codec->dev, "Failed to read GPIO1 state: %d\n", ret);
goto err_irq;
}
if ((ret & WM8994_GPN_FN_MASK) != WM8994_GP_FN_PIN_SPECIFIC) {
wm8994->lrclk_shared[0] = 1;
wm8994_dai[0].symmetric_rates = 1;
} else {
wm8994->lrclk_shared[0] = 0;
}
ret = wm8994_reg_read(codec->control_data, WM8994_GPIO_6);
if (ret < 0) {
dev_err(codec->dev, "Failed to read GPIO6 state: %d\n", ret);
goto err_irq;
}
if ((ret & WM8994_GPN_FN_MASK) != WM8994_GP_FN_PIN_SPECIFIC) {
wm8994->lrclk_shared[1] = 1;
wm8994_dai[1].symmetric_rates = 1;
} else {
wm8994->lrclk_shared[1] = 0;
}
wm8994_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
/* Latch volume updates (right only; we always do left then right). */
snd_soc_update_bits(codec, WM8994_AIF1_DAC1_LEFT_VOLUME,
WM8994_AIF1DAC1_VU, WM8994_AIF1DAC1_VU);
snd_soc_update_bits(codec, WM8994_AIF1_DAC1_RIGHT_VOLUME,
WM8994_AIF1DAC1_VU, WM8994_AIF1DAC1_VU);
snd_soc_update_bits(codec, WM8994_AIF1_DAC2_LEFT_VOLUME,
WM8994_AIF1DAC2_VU, WM8994_AIF1DAC2_VU);
snd_soc_update_bits(codec, WM8994_AIF1_DAC2_RIGHT_VOLUME,
WM8994_AIF1DAC2_VU, WM8994_AIF1DAC2_VU);
snd_soc_update_bits(codec, WM8994_AIF2_DAC_LEFT_VOLUME,
WM8994_AIF2DAC_VU, WM8994_AIF2DAC_VU);
snd_soc_update_bits(codec, WM8994_AIF2_DAC_RIGHT_VOLUME,
WM8994_AIF2DAC_VU, WM8994_AIF2DAC_VU);
snd_soc_update_bits(codec, WM8994_AIF1_ADC1_LEFT_VOLUME,
WM8994_AIF1ADC1_VU, WM8994_AIF1ADC1_VU);
snd_soc_update_bits(codec, WM8994_AIF1_ADC1_RIGHT_VOLUME,
WM8994_AIF1ADC1_VU, WM8994_AIF1ADC1_VU);
snd_soc_update_bits(codec, WM8994_AIF1_ADC2_LEFT_VOLUME,
WM8994_AIF1ADC2_VU, WM8994_AIF1ADC2_VU);
snd_soc_update_bits(codec, WM8994_AIF1_ADC2_RIGHT_VOLUME,
WM8994_AIF1ADC2_VU, WM8994_AIF1ADC2_VU);
snd_soc_update_bits(codec, WM8994_AIF2_ADC_LEFT_VOLUME,
WM8994_AIF2ADC_VU, WM8994_AIF1ADC2_VU);
snd_soc_update_bits(codec, WM8994_AIF2_ADC_RIGHT_VOLUME,
WM8994_AIF2ADC_VU, WM8994_AIF1ADC2_VU);
snd_soc_update_bits(codec, WM8994_DAC1_LEFT_VOLUME,
WM8994_DAC1_VU, WM8994_DAC1_VU);
snd_soc_update_bits(codec, WM8994_DAC1_RIGHT_VOLUME,
WM8994_DAC1_VU, WM8994_DAC1_VU);
snd_soc_update_bits(codec, WM8994_DAC2_LEFT_VOLUME,
WM8994_DAC2_VU, WM8994_DAC2_VU);
snd_soc_update_bits(codec, WM8994_DAC2_RIGHT_VOLUME,
WM8994_DAC2_VU, WM8994_DAC2_VU);
/* Set the low bit of the 3D stereo depth so TLV matches */
snd_soc_update_bits(codec, WM8994_AIF1_DAC1_FILTERS_2,
1 << WM8994_AIF1DAC1_3D_GAIN_SHIFT,
1 << WM8994_AIF1DAC1_3D_GAIN_SHIFT);
snd_soc_update_bits(codec, WM8994_AIF1_DAC2_FILTERS_2,
1 << WM8994_AIF1DAC2_3D_GAIN_SHIFT,
1 << WM8994_AIF1DAC2_3D_GAIN_SHIFT);
snd_soc_update_bits(codec, WM8994_AIF2_DAC_FILTERS_2,
1 << WM8994_AIF2DAC_3D_GAIN_SHIFT,
1 << WM8994_AIF2DAC_3D_GAIN_SHIFT);
/* Unconditionally enable AIF1 ADC TDM mode on chips which can
* use this; it only affects behaviour on idle TDM clock
* cycles. */
switch (control->type) {
case WM8994:
case WM8958:
snd_soc_update_bits(codec, WM8994_AIF1_CONTROL_1,
WM8994_AIF1ADC_TDM, WM8994_AIF1ADC_TDM);
break;
default:
break;
}
wm8994_update_class_w(codec);
wm8994_handle_pdata(wm8994);
wm_hubs_add_analogue_controls(codec);
snd_soc_add_controls(codec, wm8994_snd_controls,
ARRAY_SIZE(wm8994_snd_controls));
snd_soc_dapm_new_controls(dapm, wm8994_dapm_widgets,
ARRAY_SIZE(wm8994_dapm_widgets));
switch (control->type) {
case WM8994:
snd_soc_dapm_new_controls(dapm, wm8994_specific_dapm_widgets,
ARRAY_SIZE(wm8994_specific_dapm_widgets));
if (wm8994->revision < 4) {
snd_soc_dapm_new_controls(dapm, wm8994_lateclk_revd_widgets,
ARRAY_SIZE(wm8994_lateclk_revd_widgets));
snd_soc_dapm_new_controls(dapm, wm8994_adc_revd_widgets,
ARRAY_SIZE(wm8994_adc_revd_widgets));
snd_soc_dapm_new_controls(dapm, wm8994_dac_revd_widgets,
ARRAY_SIZE(wm8994_dac_revd_widgets));
} else {
snd_soc_dapm_new_controls(dapm, wm8994_lateclk_widgets,
ARRAY_SIZE(wm8994_lateclk_widgets));
snd_soc_dapm_new_controls(dapm, wm8994_adc_widgets,
ARRAY_SIZE(wm8994_adc_widgets));
snd_soc_dapm_new_controls(dapm, wm8994_dac_widgets,
ARRAY_SIZE(wm8994_dac_widgets));
}
break;
case WM8958:
snd_soc_add_controls(codec, wm8958_snd_controls,
ARRAY_SIZE(wm8958_snd_controls));
snd_soc_dapm_new_controls(dapm, wm8958_dapm_widgets,
ARRAY_SIZE(wm8958_dapm_widgets));
if (wm8994->revision < 1) {
snd_soc_dapm_new_controls(dapm, wm8994_lateclk_revd_widgets,
ARRAY_SIZE(wm8994_lateclk_revd_widgets));
snd_soc_dapm_new_controls(dapm, wm8994_adc_revd_widgets,
ARRAY_SIZE(wm8994_adc_revd_widgets));
snd_soc_dapm_new_controls(dapm, wm8994_dac_revd_widgets,
ARRAY_SIZE(wm8994_dac_revd_widgets));
} else {
snd_soc_dapm_new_controls(dapm, wm8994_lateclk_widgets,
ARRAY_SIZE(wm8994_lateclk_widgets));
snd_soc_dapm_new_controls(dapm, wm8994_adc_widgets,
ARRAY_SIZE(wm8994_adc_widgets));
snd_soc_dapm_new_controls(dapm, wm8994_dac_widgets,
ARRAY_SIZE(wm8994_dac_widgets));
}
break;
}
wm_hubs_add_analogue_routes(codec, 0, 0);
snd_soc_dapm_add_routes(dapm, intercon, ARRAY_SIZE(intercon));
switch (control->type) {
case WM8994:
snd_soc_dapm_add_routes(dapm, wm8994_intercon,
ARRAY_SIZE(wm8994_intercon));
if (wm8994->revision < 4) {
snd_soc_dapm_add_routes(dapm, wm8994_revd_intercon,
ARRAY_SIZE(wm8994_revd_intercon));
snd_soc_dapm_add_routes(dapm, wm8994_lateclk_revd_intercon,
ARRAY_SIZE(wm8994_lateclk_revd_intercon));
} else {
snd_soc_dapm_add_routes(dapm, wm8994_lateclk_intercon,
ARRAY_SIZE(wm8994_lateclk_intercon));
}
break;
case WM8958:
if (wm8994->revision < 1) {
snd_soc_dapm_add_routes(dapm, wm8994_revd_intercon,
ARRAY_SIZE(wm8994_revd_intercon));
snd_soc_dapm_add_routes(dapm, wm8994_lateclk_revd_intercon,
ARRAY_SIZE(wm8994_lateclk_revd_intercon));
} else {
snd_soc_dapm_add_routes(dapm, wm8994_lateclk_intercon,
ARRAY_SIZE(wm8994_lateclk_intercon));
snd_soc_dapm_add_routes(dapm, wm8958_intercon,
ARRAY_SIZE(wm8958_intercon));
}
wm8958_dsp2_init(codec);
break;
}
return 0;
err_irq:
wm8994_free_irq(codec->control_data, WM8994_IRQ_MIC2_SHRT, wm8994);
wm8994_free_irq(codec->control_data, WM8994_IRQ_MIC2_DET, wm8994);
wm8994_free_irq(codec->control_data, WM8994_IRQ_MIC1_SHRT, wm8994);
if (wm8994->micdet_irq)
free_irq(wm8994->micdet_irq, wm8994);
err:
kfree(wm8994);
return ret;
}
static int wm8994_codec_remove(struct snd_soc_codec *codec)
{
struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec);
struct wm8994 *control = codec->control_data;
wm8994_set_bias_level(codec, SND_SOC_BIAS_OFF);
pm_runtime_disable(codec->dev);
switch (control->type) {
case WM8994:
if (wm8994->micdet_irq)
free_irq(wm8994->micdet_irq, wm8994);
wm8994_free_irq(codec->control_data, WM8994_IRQ_MIC2_DET,
wm8994);
wm8994_free_irq(codec->control_data, WM8994_IRQ_MIC1_SHRT,
wm8994);
wm8994_free_irq(codec->control_data, WM8994_IRQ_MIC1_DET,
wm8994);
break;
case WM8958:
if (wm8994->micdet_irq)
free_irq(wm8994->micdet_irq, wm8994);
break;
}
if (wm8994->mbc)
release_firmware(wm8994->mbc);
if (wm8994->mbc_vss)
release_firmware(wm8994->mbc_vss);
if (wm8994->enh_eq)
release_firmware(wm8994->enh_eq);
kfree(wm8994->retune_mobile_texts);
kfree(wm8994->drc_texts);
kfree(wm8994);
return 0;
}
static struct snd_soc_codec_driver soc_codec_dev_wm8994 = {
.probe = wm8994_codec_probe,
.remove = wm8994_codec_remove,
.suspend = wm8994_suspend,
.resume = wm8994_resume,
.read = wm8994_read,
.write = wm8994_write,
.readable_register = wm8994_readable,
.volatile_register = wm8994_volatile,
.set_bias_level = wm8994_set_bias_level,
.reg_cache_size = WM8994_CACHE_SIZE,
.reg_cache_default = wm8994_reg_defaults,
.reg_word_size = 2,
.compress_type = SND_SOC_RBTREE_COMPRESSION,
};
static int __devinit wm8994_probe(struct platform_device *pdev)
{
return snd_soc_register_codec(&pdev->dev, &soc_codec_dev_wm8994,
wm8994_dai, ARRAY_SIZE(wm8994_dai));
}
static int __devexit wm8994_remove(struct platform_device *pdev)
{
snd_soc_unregister_codec(&pdev->dev);
return 0;
}
static struct platform_driver wm8994_codec_driver = {
.driver = {
.name = "wm8994-codec",
.owner = THIS_MODULE,
},
.probe = wm8994_probe,
.remove = __devexit_p(wm8994_remove),
};
static __init int wm8994_init(void)
{
return platform_driver_register(&wm8994_codec_driver);
}
module_init(wm8994_init);
static __exit void wm8994_exit(void)
{
platform_driver_unregister(&wm8994_codec_driver);
}
module_exit(wm8994_exit);
MODULE_DESCRIPTION("ASoC WM8994 driver");
MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:wm8994-codec");