kernel-fxtec-pro1x/arch/x86/kernel/dumpstack.c
Huang Ying 81e88fdc43 ACPI, APEI, Generic Hardware Error Source POLL/IRQ/NMI notification type support
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.

This patch adds POLL/IRQ/NMI notification types support.

Because the memory area used to transfer hardware error information
from BIOS to Linux can be determined only in NMI, IRQ or timer
handler, but general ioremap can not be used in atomic context, so a
special version of atomic ioremap is implemented for that.

Known issue:

- Error information can not be printed for recoverable errors notified
  via NMI, because printk is not NMI-safe. Will fix this via delay
  printing to IRQ context via irq_work or make printk NMI-safe.

v2:

- adjust printk format per comments.

Signed-off-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2011-01-12 03:06:19 -05:00

381 lines
8.5 KiB
C

/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
*/
#include <linux/kallsyms.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/utsname.h>
#include <linux/hardirq.h>
#include <linux/kdebug.h>
#include <linux/module.h>
#include <linux/ptrace.h>
#include <linux/ftrace.h>
#include <linux/kexec.h>
#include <linux/bug.h>
#include <linux/nmi.h>
#include <linux/sysfs.h>
#include <asm/stacktrace.h>
int panic_on_unrecovered_nmi;
int panic_on_io_nmi;
unsigned int code_bytes = 64;
int kstack_depth_to_print = 3 * STACKSLOTS_PER_LINE;
static int die_counter;
void printk_address(unsigned long address, int reliable)
{
printk(" [<%p>] %s%pS\n", (void *) address,
reliable ? "" : "? ", (void *) address);
}
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static void
print_ftrace_graph_addr(unsigned long addr, void *data,
const struct stacktrace_ops *ops,
struct thread_info *tinfo, int *graph)
{
struct task_struct *task = tinfo->task;
unsigned long ret_addr;
int index = task->curr_ret_stack;
if (addr != (unsigned long)return_to_handler)
return;
if (!task->ret_stack || index < *graph)
return;
index -= *graph;
ret_addr = task->ret_stack[index].ret;
ops->address(data, ret_addr, 1);
(*graph)++;
}
#else
static inline void
print_ftrace_graph_addr(unsigned long addr, void *data,
const struct stacktrace_ops *ops,
struct thread_info *tinfo, int *graph)
{ }
#endif
/*
* x86-64 can have up to three kernel stacks:
* process stack
* interrupt stack
* severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
*/
static inline int valid_stack_ptr(struct thread_info *tinfo,
void *p, unsigned int size, void *end)
{
void *t = tinfo;
if (end) {
if (p < end && p >= (end-THREAD_SIZE))
return 1;
else
return 0;
}
return p > t && p < t + THREAD_SIZE - size;
}
unsigned long
print_context_stack(struct thread_info *tinfo,
unsigned long *stack, unsigned long bp,
const struct stacktrace_ops *ops, void *data,
unsigned long *end, int *graph)
{
struct stack_frame *frame = (struct stack_frame *)bp;
while (valid_stack_ptr(tinfo, stack, sizeof(*stack), end)) {
unsigned long addr;
addr = *stack;
if (__kernel_text_address(addr)) {
if ((unsigned long) stack == bp + sizeof(long)) {
ops->address(data, addr, 1);
frame = frame->next_frame;
bp = (unsigned long) frame;
} else {
ops->address(data, addr, 0);
}
print_ftrace_graph_addr(addr, data, ops, tinfo, graph);
}
stack++;
}
return bp;
}
EXPORT_SYMBOL_GPL(print_context_stack);
unsigned long
print_context_stack_bp(struct thread_info *tinfo,
unsigned long *stack, unsigned long bp,
const struct stacktrace_ops *ops, void *data,
unsigned long *end, int *graph)
{
struct stack_frame *frame = (struct stack_frame *)bp;
unsigned long *ret_addr = &frame->return_address;
while (valid_stack_ptr(tinfo, ret_addr, sizeof(*ret_addr), end)) {
unsigned long addr = *ret_addr;
if (!__kernel_text_address(addr))
break;
ops->address(data, addr, 1);
frame = frame->next_frame;
ret_addr = &frame->return_address;
print_ftrace_graph_addr(addr, data, ops, tinfo, graph);
}
return (unsigned long)frame;
}
EXPORT_SYMBOL_GPL(print_context_stack_bp);
static void
print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
{
printk(data);
print_symbol(msg, symbol);
printk("\n");
}
static void print_trace_warning(void *data, char *msg)
{
printk("%s%s\n", (char *)data, msg);
}
static int print_trace_stack(void *data, char *name)
{
printk("%s <%s> ", (char *)data, name);
return 0;
}
/*
* Print one address/symbol entries per line.
*/
static void print_trace_address(void *data, unsigned long addr, int reliable)
{
touch_nmi_watchdog();
printk(data);
printk_address(addr, reliable);
}
static const struct stacktrace_ops print_trace_ops = {
.warning = print_trace_warning,
.warning_symbol = print_trace_warning_symbol,
.stack = print_trace_stack,
.address = print_trace_address,
.walk_stack = print_context_stack,
};
void
show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
unsigned long *stack, unsigned long bp, char *log_lvl)
{
printk("%sCall Trace:\n", log_lvl);
dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl);
}
void show_trace(struct task_struct *task, struct pt_regs *regs,
unsigned long *stack, unsigned long bp)
{
show_trace_log_lvl(task, regs, stack, bp, "");
}
void show_stack(struct task_struct *task, unsigned long *sp)
{
show_stack_log_lvl(task, NULL, sp, 0, "");
}
/*
* The architecture-independent dump_stack generator
*/
void dump_stack(void)
{
unsigned long bp = 0;
unsigned long stack;
#ifdef CONFIG_FRAME_POINTER
if (!bp)
get_bp(bp);
#endif
printk("Pid: %d, comm: %.20s %s %s %.*s\n",
current->pid, current->comm, print_tainted(),
init_utsname()->release,
(int)strcspn(init_utsname()->version, " "),
init_utsname()->version);
show_trace(NULL, NULL, &stack, bp);
}
EXPORT_SYMBOL(dump_stack);
static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
static int die_owner = -1;
static unsigned int die_nest_count;
unsigned __kprobes long oops_begin(void)
{
int cpu;
unsigned long flags;
oops_enter();
/* racy, but better than risking deadlock. */
raw_local_irq_save(flags);
cpu = smp_processor_id();
if (!arch_spin_trylock(&die_lock)) {
if (cpu == die_owner)
/* nested oops. should stop eventually */;
else
arch_spin_lock(&die_lock);
}
die_nest_count++;
die_owner = cpu;
console_verbose();
bust_spinlocks(1);
return flags;
}
EXPORT_SYMBOL_GPL(oops_begin);
void __kprobes oops_end(unsigned long flags, struct pt_regs *regs, int signr)
{
if (regs && kexec_should_crash(current))
crash_kexec(regs);
bust_spinlocks(0);
die_owner = -1;
add_taint(TAINT_DIE);
die_nest_count--;
if (!die_nest_count)
/* Nest count reaches zero, release the lock. */
arch_spin_unlock(&die_lock);
raw_local_irq_restore(flags);
oops_exit();
if (!signr)
return;
if (in_interrupt())
panic("Fatal exception in interrupt");
if (panic_on_oops)
panic("Fatal exception");
do_exit(signr);
}
int __kprobes __die(const char *str, struct pt_regs *regs, long err)
{
#ifdef CONFIG_X86_32
unsigned short ss;
unsigned long sp;
#endif
printk(KERN_EMERG "%s: %04lx [#%d] ", str, err & 0xffff, ++die_counter);
#ifdef CONFIG_PREEMPT
printk("PREEMPT ");
#endif
#ifdef CONFIG_SMP
printk("SMP ");
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
printk("DEBUG_PAGEALLOC");
#endif
printk("\n");
sysfs_printk_last_file();
if (notify_die(DIE_OOPS, str, regs, err,
current->thread.trap_no, SIGSEGV) == NOTIFY_STOP)
return 1;
show_registers(regs);
#ifdef CONFIG_X86_32
if (user_mode_vm(regs)) {
sp = regs->sp;
ss = regs->ss & 0xffff;
} else {
sp = kernel_stack_pointer(regs);
savesegment(ss, ss);
}
printk(KERN_EMERG "EIP: [<%08lx>] ", regs->ip);
print_symbol("%s", regs->ip);
printk(" SS:ESP %04x:%08lx\n", ss, sp);
#else
/* Executive summary in case the oops scrolled away */
printk(KERN_ALERT "RIP ");
printk_address(regs->ip, 1);
printk(" RSP <%016lx>\n", regs->sp);
#endif
return 0;
}
/*
* This is gone through when something in the kernel has done something bad
* and is about to be terminated:
*/
void die(const char *str, struct pt_regs *regs, long err)
{
unsigned long flags = oops_begin();
int sig = SIGSEGV;
if (!user_mode_vm(regs))
report_bug(regs->ip, regs);
if (__die(str, regs, err))
sig = 0;
oops_end(flags, regs, sig);
}
void notrace __kprobes
die_nmi(char *str, struct pt_regs *regs, int do_panic)
{
unsigned long flags;
if (notify_die(DIE_NMIWATCHDOG, str, regs, 0, 2, SIGINT) == NOTIFY_STOP)
return;
/*
* We are in trouble anyway, lets at least try
* to get a message out.
*/
flags = oops_begin();
printk(KERN_EMERG "%s", str);
printk(" on CPU%d, ip %08lx, registers:\n",
smp_processor_id(), regs->ip);
show_registers(regs);
oops_end(flags, regs, 0);
if (do_panic || panic_on_oops)
panic("Non maskable interrupt");
nmi_exit();
local_irq_enable();
do_exit(SIGBUS);
}
static int __init oops_setup(char *s)
{
if (!s)
return -EINVAL;
if (!strcmp(s, "panic"))
panic_on_oops = 1;
return 0;
}
early_param("oops", oops_setup);
static int __init kstack_setup(char *s)
{
if (!s)
return -EINVAL;
kstack_depth_to_print = simple_strtoul(s, NULL, 0);
return 0;
}
early_param("kstack", kstack_setup);
static int __init code_bytes_setup(char *s)
{
code_bytes = simple_strtoul(s, NULL, 0);
if (code_bytes > 8192)
code_bytes = 8192;
return 1;
}
__setup("code_bytes=", code_bytes_setup);