kernel-fxtec-pro1x/include/asm-generic/mutex-dec.h
Nick Piggin a8ddac7e53 mutex: speed up generic mutex implementations
- atomic operations which both modify the variable and return something imply
  full smp memory barriers before and after the memory operations involved
  (failing atomic_cmpxchg, atomic_add_unless, etc don't imply a barrier because
  they don't modify the target). See Documentation/atomic_ops.txt.
  So remove extra barriers and branches.

- All architectures support atomic_cmpxchg. This has no relation to
  __HAVE_ARCH_CMPXCHG. We can just take the atomic_cmpxchg path unconditionally

This reduces a simple single threaded fastpath lock+unlock test from 590 cycles
to 203 cycles on a ppc970 system.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-23 09:18:20 -07:00

90 lines
2.9 KiB
C

/*
* include/asm-generic/mutex-dec.h
*
* Generic implementation of the mutex fastpath, based on atomic
* decrement/increment.
*/
#ifndef _ASM_GENERIC_MUTEX_DEC_H
#define _ASM_GENERIC_MUTEX_DEC_H
/**
* __mutex_fastpath_lock - try to take the lock by moving the count
* from 1 to a 0 value
* @count: pointer of type atomic_t
* @fail_fn: function to call if the original value was not 1
*
* Change the count from 1 to a value lower than 1, and call <fail_fn> if
* it wasn't 1 originally. This function MUST leave the value lower than
* 1 even when the "1" assertion wasn't true.
*/
static inline void
__mutex_fastpath_lock(atomic_t *count, void (*fail_fn)(atomic_t *))
{
if (unlikely(atomic_dec_return(count) < 0))
fail_fn(count);
}
/**
* __mutex_fastpath_lock_retval - try to take the lock by moving the count
* from 1 to a 0 value
* @count: pointer of type atomic_t
* @fail_fn: function to call if the original value was not 1
*
* Change the count from 1 to a value lower than 1, and call <fail_fn> if
* it wasn't 1 originally. This function returns 0 if the fastpath succeeds,
* or anything the slow path function returns.
*/
static inline int
__mutex_fastpath_lock_retval(atomic_t *count, int (*fail_fn)(atomic_t *))
{
if (unlikely(atomic_dec_return(count) < 0))
return fail_fn(count);
return 0;
}
/**
* __mutex_fastpath_unlock - try to promote the count from 0 to 1
* @count: pointer of type atomic_t
* @fail_fn: function to call if the original value was not 0
*
* Try to promote the count from 0 to 1. If it wasn't 0, call <fail_fn>.
* In the failure case, this function is allowed to either set the value to
* 1, or to set it to a value lower than 1.
*
* If the implementation sets it to a value of lower than 1, then the
* __mutex_slowpath_needs_to_unlock() macro needs to return 1, it needs
* to return 0 otherwise.
*/
static inline void
__mutex_fastpath_unlock(atomic_t *count, void (*fail_fn)(atomic_t *))
{
if (unlikely(atomic_inc_return(count) <= 0))
fail_fn(count);
}
#define __mutex_slowpath_needs_to_unlock() 1
/**
* __mutex_fastpath_trylock - try to acquire the mutex, without waiting
*
* @count: pointer of type atomic_t
* @fail_fn: fallback function
*
* Change the count from 1 to a value lower than 1, and return 0 (failure)
* if it wasn't 1 originally, or return 1 (success) otherwise. This function
* MUST leave the value lower than 1 even when the "1" assertion wasn't true.
* Additionally, if the value was < 0 originally, this function must not leave
* it to 0 on failure.
*
* If the architecture has no effective trylock variant, it should call the
* <fail_fn> spinlock-based trylock variant unconditionally.
*/
static inline int
__mutex_fastpath_trylock(atomic_t *count, int (*fail_fn)(atomic_t *))
{
if (likely(atomic_cmpxchg(count, 1, 0) == 1))
return 1;
return 0;
}
#endif