kernel-fxtec-pro1x/fs/nfs/nfs4filelayoutdev.c
Weston Andros Adamson 7e574f0d39 NFS: pnfs: loop over multipath addrs on connect
Don't just use the first addr in the multipath list - instead, loop
over addresses when calling nfs4_set_ds_client() (which calls connect)
until it is successful.

Although this is not real multipath support, it's a quick fix to handle when
an MDS sends a list of addresses for a DS and some of the addr families are
unsupported or misconfigured (like no routable ipv6 addr assigned).
This will attempt all paths to the DS before giving up, instead of immediately
falling back to the MDS.

As before, an error encountered after a successful connect() will cause all
i/o to fall back to the MDS.

Signed-off-by: Weston Andros Adamson <dros@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2011-07-12 13:40:27 -04:00

860 lines
21 KiB
C

/*
* Device operations for the pnfs nfs4 file layout driver.
*
* Copyright (c) 2002
* The Regents of the University of Michigan
* All Rights Reserved
*
* Dean Hildebrand <dhildebz@umich.edu>
* Garth Goodson <Garth.Goodson@netapp.com>
*
* Permission is granted to use, copy, create derivative works, and
* redistribute this software and such derivative works for any purpose,
* so long as the name of the University of Michigan is not used in
* any advertising or publicity pertaining to the use or distribution
* of this software without specific, written prior authorization. If
* the above copyright notice or any other identification of the
* University of Michigan is included in any copy of any portion of
* this software, then the disclaimer below must also be included.
*
* This software is provided as is, without representation or warranty
* of any kind either express or implied, including without limitation
* the implied warranties of merchantability, fitness for a particular
* purpose, or noninfringement. The Regents of the University of
* Michigan shall not be liable for any damages, including special,
* indirect, incidental, or consequential damages, with respect to any
* claim arising out of or in connection with the use of the software,
* even if it has been or is hereafter advised of the possibility of
* such damages.
*/
#include <linux/nfs_fs.h>
#include <linux/vmalloc.h>
#include "internal.h"
#include "nfs4filelayout.h"
#define NFSDBG_FACILITY NFSDBG_PNFS_LD
/*
* Data server cache
*
* Data servers can be mapped to different device ids.
* nfs4_pnfs_ds reference counting
* - set to 1 on allocation
* - incremented when a device id maps a data server already in the cache.
* - decremented when deviceid is removed from the cache.
*/
DEFINE_SPINLOCK(nfs4_ds_cache_lock);
static LIST_HEAD(nfs4_data_server_cache);
/* Debug routines */
void
print_ds(struct nfs4_pnfs_ds *ds)
{
if (ds == NULL) {
printk("%s NULL device\n", __func__);
return;
}
printk(" ds %s\n"
" ref count %d\n"
" client %p\n"
" cl_exchange_flags %x\n",
ds->ds_remotestr,
atomic_read(&ds->ds_count), ds->ds_clp,
ds->ds_clp ? ds->ds_clp->cl_exchange_flags : 0);
}
static bool
same_sockaddr(struct sockaddr *addr1, struct sockaddr *addr2)
{
struct sockaddr_in *a, *b;
struct sockaddr_in6 *a6, *b6;
if (addr1->sa_family != addr2->sa_family)
return false;
switch (addr1->sa_family) {
case AF_INET:
a = (struct sockaddr_in *)addr1;
b = (struct sockaddr_in *)addr2;
if (a->sin_addr.s_addr == b->sin_addr.s_addr &&
a->sin_port == b->sin_port)
return true;
break;
case AF_INET6:
a6 = (struct sockaddr_in6 *)addr1;
b6 = (struct sockaddr_in6 *)addr2;
/* LINKLOCAL addresses must have matching scope_id */
if (ipv6_addr_scope(&a6->sin6_addr) ==
IPV6_ADDR_SCOPE_LINKLOCAL &&
a6->sin6_scope_id != b6->sin6_scope_id)
return false;
if (ipv6_addr_equal(&a6->sin6_addr, &b6->sin6_addr) &&
a6->sin6_port == b6->sin6_port)
return true;
break;
default:
dprintk("%s: unhandled address family: %u\n",
__func__, addr1->sa_family);
return false;
}
return false;
}
/*
* Lookup DS by addresses. The first matching address returns true.
* nfs4_ds_cache_lock is held
*/
static struct nfs4_pnfs_ds *
_data_server_lookup_locked(struct list_head *dsaddrs)
{
struct nfs4_pnfs_ds *ds;
struct nfs4_pnfs_ds_addr *da1, *da2;
list_for_each_entry(da1, dsaddrs, da_node) {
list_for_each_entry(ds, &nfs4_data_server_cache, ds_node) {
list_for_each_entry(da2, &ds->ds_addrs, da_node) {
if (same_sockaddr(
(struct sockaddr *)&da1->da_addr,
(struct sockaddr *)&da2->da_addr))
return ds;
}
}
}
return NULL;
}
/*
* Compare two lists of addresses.
*/
static bool
_data_server_match_all_addrs_locked(struct list_head *dsaddrs1,
struct list_head *dsaddrs2)
{
struct nfs4_pnfs_ds_addr *da1, *da2;
size_t count1 = 0,
count2 = 0;
list_for_each_entry(da1, dsaddrs1, da_node)
count1++;
list_for_each_entry(da2, dsaddrs2, da_node) {
bool found = false;
count2++;
list_for_each_entry(da1, dsaddrs1, da_node) {
if (same_sockaddr((struct sockaddr *)&da1->da_addr,
(struct sockaddr *)&da2->da_addr)) {
found = true;
break;
}
}
if (!found)
return false;
}
return (count1 == count2);
}
/*
* Create an rpc connection to the nfs4_pnfs_ds data server
* Currently only support IPv4
*/
static int
nfs4_ds_connect(struct nfs_server *mds_srv, struct nfs4_pnfs_ds *ds)
{
struct nfs_client *clp = ERR_PTR(-EIO);
struct nfs4_pnfs_ds_addr *da;
int status = 0;
dprintk("--> %s DS %s au_flavor %d\n", __func__, ds->ds_remotestr,
mds_srv->nfs_client->cl_rpcclient->cl_auth->au_flavor);
BUG_ON(list_empty(&ds->ds_addrs));
list_for_each_entry(da, &ds->ds_addrs, da_node) {
dprintk("%s: DS %s: trying address %s\n",
__func__, ds->ds_remotestr, da->da_remotestr);
clp = nfs4_set_ds_client(mds_srv->nfs_client,
(struct sockaddr *)&da->da_addr,
da->da_addrlen, IPPROTO_TCP);
if (!IS_ERR(clp))
break;
}
if (IS_ERR(clp)) {
status = PTR_ERR(clp);
goto out;
}
if ((clp->cl_exchange_flags & EXCHGID4_FLAG_MASK_PNFS) != 0) {
if (!is_ds_client(clp)) {
status = -ENODEV;
goto out_put;
}
ds->ds_clp = clp;
dprintk("%s [existing] server=%s\n", __func__,
ds->ds_remotestr);
goto out;
}
/*
* Do not set NFS_CS_CHECK_LEASE_TIME instead set the DS lease to
* be equal to the MDS lease. Renewal is scheduled in create_session.
*/
spin_lock(&mds_srv->nfs_client->cl_lock);
clp->cl_lease_time = mds_srv->nfs_client->cl_lease_time;
spin_unlock(&mds_srv->nfs_client->cl_lock);
clp->cl_last_renewal = jiffies;
/* New nfs_client */
status = nfs4_init_ds_session(clp);
if (status)
goto out_put;
ds->ds_clp = clp;
dprintk("%s [new] addr: %s\n", __func__, ds->ds_remotestr);
out:
return status;
out_put:
nfs_put_client(clp);
goto out;
}
static void
destroy_ds(struct nfs4_pnfs_ds *ds)
{
struct nfs4_pnfs_ds_addr *da;
dprintk("--> %s\n", __func__);
ifdebug(FACILITY)
print_ds(ds);
if (ds->ds_clp)
nfs_put_client(ds->ds_clp);
while (!list_empty(&ds->ds_addrs)) {
da = list_first_entry(&ds->ds_addrs,
struct nfs4_pnfs_ds_addr,
da_node);
list_del_init(&da->da_node);
kfree(da->da_remotestr);
kfree(da);
}
kfree(ds->ds_remotestr);
kfree(ds);
}
void
nfs4_fl_free_deviceid(struct nfs4_file_layout_dsaddr *dsaddr)
{
struct nfs4_pnfs_ds *ds;
int i;
nfs4_print_deviceid(&dsaddr->id_node.deviceid);
for (i = 0; i < dsaddr->ds_num; i++) {
ds = dsaddr->ds_list[i];
if (ds != NULL) {
if (atomic_dec_and_lock(&ds->ds_count,
&nfs4_ds_cache_lock)) {
list_del_init(&ds->ds_node);
spin_unlock(&nfs4_ds_cache_lock);
destroy_ds(ds);
}
}
}
kfree(dsaddr->stripe_indices);
kfree(dsaddr);
}
/*
* Create a string with a human readable address and port to avoid
* complicated setup around many dprinks.
*/
static char *
nfs4_pnfs_remotestr(struct list_head *dsaddrs, gfp_t gfp_flags)
{
struct nfs4_pnfs_ds_addr *da;
char *remotestr;
size_t len;
char *p;
len = 3; /* '{', '}' and eol */
list_for_each_entry(da, dsaddrs, da_node) {
len += strlen(da->da_remotestr) + 1; /* string plus comma */
}
remotestr = kzalloc(len, gfp_flags);
if (!remotestr)
return NULL;
p = remotestr;
*(p++) = '{';
len--;
list_for_each_entry(da, dsaddrs, da_node) {
size_t ll = strlen(da->da_remotestr);
if (ll > len)
goto out_err;
memcpy(p, da->da_remotestr, ll);
p += ll;
len -= ll;
if (len < 1)
goto out_err;
(*p++) = ',';
len--;
}
if (len < 2)
goto out_err;
*(p++) = '}';
*p = '\0';
return remotestr;
out_err:
kfree(remotestr);
return NULL;
}
static struct nfs4_pnfs_ds *
nfs4_pnfs_ds_add(struct list_head *dsaddrs, gfp_t gfp_flags)
{
struct nfs4_pnfs_ds *tmp_ds, *ds = NULL;
char *remotestr;
if (list_empty(dsaddrs)) {
dprintk("%s: no addresses defined\n", __func__);
goto out;
}
ds = kzalloc(sizeof(*ds), gfp_flags);
if (!ds)
goto out;
/* this is only used for debugging, so it's ok if its NULL */
remotestr = nfs4_pnfs_remotestr(dsaddrs, gfp_flags);
spin_lock(&nfs4_ds_cache_lock);
tmp_ds = _data_server_lookup_locked(dsaddrs);
if (tmp_ds == NULL) {
INIT_LIST_HEAD(&ds->ds_addrs);
list_splice_init(dsaddrs, &ds->ds_addrs);
ds->ds_remotestr = remotestr;
atomic_set(&ds->ds_count, 1);
INIT_LIST_HEAD(&ds->ds_node);
ds->ds_clp = NULL;
list_add(&ds->ds_node, &nfs4_data_server_cache);
dprintk("%s add new data server %s\n", __func__,
ds->ds_remotestr);
} else {
if (!_data_server_match_all_addrs_locked(&tmp_ds->ds_addrs,
dsaddrs)) {
dprintk("%s: multipath address mismatch: %s != %s",
__func__, tmp_ds->ds_remotestr, remotestr);
}
kfree(remotestr);
kfree(ds);
atomic_inc(&tmp_ds->ds_count);
dprintk("%s data server %s found, inc'ed ds_count to %d\n",
__func__, tmp_ds->ds_remotestr,
atomic_read(&tmp_ds->ds_count));
ds = tmp_ds;
}
spin_unlock(&nfs4_ds_cache_lock);
out:
return ds;
}
/*
* Currently only supports ipv4, ipv6 and one multi-path address.
*/
static struct nfs4_pnfs_ds_addr *
decode_ds_addr(struct xdr_stream *streamp, gfp_t gfp_flags)
{
struct nfs4_pnfs_ds_addr *da = NULL;
char *buf, *portstr;
u32 port;
int nlen, rlen;
int tmp[2];
__be32 *p;
char *netid, *match_netid;
size_t len, match_netid_len;
char *startsep = "";
char *endsep = "";
/* r_netid */
p = xdr_inline_decode(streamp, 4);
if (unlikely(!p))
goto out_err;
nlen = be32_to_cpup(p++);
p = xdr_inline_decode(streamp, nlen);
if (unlikely(!p))
goto out_err;
netid = kmalloc(nlen+1, gfp_flags);
if (unlikely(!netid))
goto out_err;
netid[nlen] = '\0';
memcpy(netid, p, nlen);
/* r_addr: ip/ip6addr with port in dec octets - see RFC 5665 */
p = xdr_inline_decode(streamp, 4);
if (unlikely(!p))
goto out_free_netid;
rlen = be32_to_cpup(p);
p = xdr_inline_decode(streamp, rlen);
if (unlikely(!p))
goto out_free_netid;
/* port is ".ABC.DEF", 8 chars max */
if (rlen > INET6_ADDRSTRLEN + IPV6_SCOPE_ID_LEN + 8) {
dprintk("%s: Invalid address, length %d\n", __func__,
rlen);
goto out_free_netid;
}
buf = kmalloc(rlen + 1, gfp_flags);
if (!buf) {
dprintk("%s: Not enough memory\n", __func__);
goto out_free_netid;
}
buf[rlen] = '\0';
memcpy(buf, p, rlen);
/* replace port '.' with '-' */
portstr = strrchr(buf, '.');
if (!portstr) {
dprintk("%s: Failed finding expected dot in port\n",
__func__);
goto out_free_buf;
}
*portstr = '-';
/* find '.' between address and port */
portstr = strrchr(buf, '.');
if (!portstr) {
dprintk("%s: Failed finding expected dot between address and "
"port\n", __func__);
goto out_free_buf;
}
*portstr = '\0';
da = kzalloc(sizeof(*da), gfp_flags);
if (unlikely(!da))
goto out_free_buf;
INIT_LIST_HEAD(&da->da_node);
if (!rpc_pton(buf, portstr-buf, (struct sockaddr *)&da->da_addr,
sizeof(da->da_addr))) {
dprintk("%s: error parsing address %s\n", __func__, buf);
goto out_free_da;
}
portstr++;
sscanf(portstr, "%d-%d", &tmp[0], &tmp[1]);
port = htons((tmp[0] << 8) | (tmp[1]));
switch (da->da_addr.ss_family) {
case AF_INET:
((struct sockaddr_in *)&da->da_addr)->sin_port = port;
da->da_addrlen = sizeof(struct sockaddr_in);
match_netid = "tcp";
match_netid_len = 3;
break;
case AF_INET6:
((struct sockaddr_in6 *)&da->da_addr)->sin6_port = port;
da->da_addrlen = sizeof(struct sockaddr_in6);
match_netid = "tcp6";
match_netid_len = 4;
startsep = "[";
endsep = "]";
break;
default:
dprintk("%s: unsupported address family: %u\n",
__func__, da->da_addr.ss_family);
goto out_free_da;
}
if (nlen != match_netid_len || strncmp(netid, match_netid, nlen)) {
dprintk("%s: ERROR: r_netid \"%s\" != \"%s\"\n",
__func__, netid, match_netid);
goto out_free_da;
}
/* save human readable address */
len = strlen(startsep) + strlen(buf) + strlen(endsep) + 7;
da->da_remotestr = kzalloc(len, gfp_flags);
/* NULL is ok, only used for dprintk */
if (da->da_remotestr)
snprintf(da->da_remotestr, len, "%s%s%s:%u", startsep,
buf, endsep, ntohs(port));
dprintk("%s: Parsed DS addr %s\n", __func__, da->da_remotestr);
kfree(buf);
kfree(netid);
return da;
out_free_da:
kfree(da);
out_free_buf:
dprintk("%s: Error parsing DS addr: %s\n", __func__, buf);
kfree(buf);
out_free_netid:
kfree(netid);
out_err:
return NULL;
}
/* Decode opaque device data and return the result */
static struct nfs4_file_layout_dsaddr*
decode_device(struct inode *ino, struct pnfs_device *pdev, gfp_t gfp_flags)
{
int i;
u32 cnt, num;
u8 *indexp;
__be32 *p;
u8 *stripe_indices;
u8 max_stripe_index;
struct nfs4_file_layout_dsaddr *dsaddr = NULL;
struct xdr_stream stream;
struct xdr_buf buf;
struct page *scratch;
struct list_head dsaddrs;
struct nfs4_pnfs_ds_addr *da;
/* set up xdr stream */
scratch = alloc_page(gfp_flags);
if (!scratch)
goto out_err;
xdr_init_decode_pages(&stream, &buf, pdev->pages, pdev->pglen);
xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
/* Get the stripe count (number of stripe index) */
p = xdr_inline_decode(&stream, 4);
if (unlikely(!p))
goto out_err_free_scratch;
cnt = be32_to_cpup(p);
dprintk("%s stripe count %d\n", __func__, cnt);
if (cnt > NFS4_PNFS_MAX_STRIPE_CNT) {
printk(KERN_WARNING "%s: stripe count %d greater than "
"supported maximum %d\n", __func__,
cnt, NFS4_PNFS_MAX_STRIPE_CNT);
goto out_err_free_scratch;
}
/* read stripe indices */
stripe_indices = kcalloc(cnt, sizeof(u8), gfp_flags);
if (!stripe_indices)
goto out_err_free_scratch;
p = xdr_inline_decode(&stream, cnt << 2);
if (unlikely(!p))
goto out_err_free_stripe_indices;
indexp = &stripe_indices[0];
max_stripe_index = 0;
for (i = 0; i < cnt; i++) {
*indexp = be32_to_cpup(p++);
max_stripe_index = max(max_stripe_index, *indexp);
indexp++;
}
/* Check the multipath list count */
p = xdr_inline_decode(&stream, 4);
if (unlikely(!p))
goto out_err_free_stripe_indices;
num = be32_to_cpup(p);
dprintk("%s ds_num %u\n", __func__, num);
if (num > NFS4_PNFS_MAX_MULTI_CNT) {
printk(KERN_WARNING "%s: multipath count %d greater than "
"supported maximum %d\n", __func__,
num, NFS4_PNFS_MAX_MULTI_CNT);
goto out_err_free_stripe_indices;
}
/* validate stripe indices are all < num */
if (max_stripe_index >= num) {
printk(KERN_WARNING "%s: stripe index %u >= num ds %u\n",
__func__, max_stripe_index, num);
goto out_err_free_stripe_indices;
}
dsaddr = kzalloc(sizeof(*dsaddr) +
(sizeof(struct nfs4_pnfs_ds *) * (num - 1)),
gfp_flags);
if (!dsaddr)
goto out_err_free_stripe_indices;
dsaddr->stripe_count = cnt;
dsaddr->stripe_indices = stripe_indices;
stripe_indices = NULL;
dsaddr->ds_num = num;
nfs4_init_deviceid_node(&dsaddr->id_node,
NFS_SERVER(ino)->pnfs_curr_ld,
NFS_SERVER(ino)->nfs_client,
&pdev->dev_id);
INIT_LIST_HEAD(&dsaddrs);
for (i = 0; i < dsaddr->ds_num; i++) {
int j;
u32 mp_count;
p = xdr_inline_decode(&stream, 4);
if (unlikely(!p))
goto out_err_free_deviceid;
mp_count = be32_to_cpup(p); /* multipath count */
for (j = 0; j < mp_count; j++) {
da = decode_ds_addr(&stream, gfp_flags);
if (da)
list_add_tail(&da->da_node, &dsaddrs);
}
if (list_empty(&dsaddrs)) {
dprintk("%s: no suitable DS addresses found\n",
__func__);
goto out_err_free_deviceid;
}
dsaddr->ds_list[i] = nfs4_pnfs_ds_add(&dsaddrs, gfp_flags);
if (!dsaddr->ds_list[i])
goto out_err_drain_dsaddrs;
/* If DS was already in cache, free ds addrs */
while (!list_empty(&dsaddrs)) {
da = list_first_entry(&dsaddrs,
struct nfs4_pnfs_ds_addr,
da_node);
list_del_init(&da->da_node);
kfree(da->da_remotestr);
kfree(da);
}
}
__free_page(scratch);
return dsaddr;
out_err_drain_dsaddrs:
while (!list_empty(&dsaddrs)) {
da = list_first_entry(&dsaddrs, struct nfs4_pnfs_ds_addr,
da_node);
list_del_init(&da->da_node);
kfree(da->da_remotestr);
kfree(da);
}
out_err_free_deviceid:
nfs4_fl_free_deviceid(dsaddr);
/* stripe_indicies was part of dsaddr */
goto out_err_free_scratch;
out_err_free_stripe_indices:
kfree(stripe_indices);
out_err_free_scratch:
__free_page(scratch);
out_err:
dprintk("%s ERROR: returning NULL\n", __func__);
return NULL;
}
/*
* Decode the opaque device specified in 'dev' and add it to the cache of
* available devices.
*/
static struct nfs4_file_layout_dsaddr *
decode_and_add_device(struct inode *inode, struct pnfs_device *dev, gfp_t gfp_flags)
{
struct nfs4_deviceid_node *d;
struct nfs4_file_layout_dsaddr *n, *new;
new = decode_device(inode, dev, gfp_flags);
if (!new) {
printk(KERN_WARNING "%s: Could not decode or add device\n",
__func__);
return NULL;
}
d = nfs4_insert_deviceid_node(&new->id_node);
n = container_of(d, struct nfs4_file_layout_dsaddr, id_node);
if (n != new) {
nfs4_fl_free_deviceid(new);
return n;
}
return new;
}
/*
* Retrieve the information for dev_id, add it to the list
* of available devices, and return it.
*/
struct nfs4_file_layout_dsaddr *
get_device_info(struct inode *inode, struct nfs4_deviceid *dev_id, gfp_t gfp_flags)
{
struct pnfs_device *pdev = NULL;
u32 max_resp_sz;
int max_pages;
struct page **pages = NULL;
struct nfs4_file_layout_dsaddr *dsaddr = NULL;
int rc, i;
struct nfs_server *server = NFS_SERVER(inode);
/*
* Use the session max response size as the basis for setting
* GETDEVICEINFO's maxcount
*/
max_resp_sz = server->nfs_client->cl_session->fc_attrs.max_resp_sz;
max_pages = max_resp_sz >> PAGE_SHIFT;
dprintk("%s inode %p max_resp_sz %u max_pages %d\n",
__func__, inode, max_resp_sz, max_pages);
pdev = kzalloc(sizeof(struct pnfs_device), gfp_flags);
if (pdev == NULL)
return NULL;
pages = kzalloc(max_pages * sizeof(struct page *), gfp_flags);
if (pages == NULL) {
kfree(pdev);
return NULL;
}
for (i = 0; i < max_pages; i++) {
pages[i] = alloc_page(gfp_flags);
if (!pages[i])
goto out_free;
}
memcpy(&pdev->dev_id, dev_id, sizeof(*dev_id));
pdev->layout_type = LAYOUT_NFSV4_1_FILES;
pdev->pages = pages;
pdev->pgbase = 0;
pdev->pglen = PAGE_SIZE * max_pages;
pdev->mincount = 0;
rc = nfs4_proc_getdeviceinfo(server, pdev);
dprintk("%s getdevice info returns %d\n", __func__, rc);
if (rc)
goto out_free;
/*
* Found new device, need to decode it and then add it to the
* list of known devices for this mountpoint.
*/
dsaddr = decode_and_add_device(inode, pdev, gfp_flags);
out_free:
for (i = 0; i < max_pages; i++)
__free_page(pages[i]);
kfree(pages);
kfree(pdev);
dprintk("<-- %s dsaddr %p\n", __func__, dsaddr);
return dsaddr;
}
void
nfs4_fl_put_deviceid(struct nfs4_file_layout_dsaddr *dsaddr)
{
nfs4_put_deviceid_node(&dsaddr->id_node);
}
/*
* Want res = (offset - layout->pattern_offset)/ layout->stripe_unit
* Then: ((res + fsi) % dsaddr->stripe_count)
*/
u32
nfs4_fl_calc_j_index(struct pnfs_layout_segment *lseg, loff_t offset)
{
struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg);
u64 tmp;
tmp = offset - flseg->pattern_offset;
do_div(tmp, flseg->stripe_unit);
tmp += flseg->first_stripe_index;
return do_div(tmp, flseg->dsaddr->stripe_count);
}
u32
nfs4_fl_calc_ds_index(struct pnfs_layout_segment *lseg, u32 j)
{
return FILELAYOUT_LSEG(lseg)->dsaddr->stripe_indices[j];
}
struct nfs_fh *
nfs4_fl_select_ds_fh(struct pnfs_layout_segment *lseg, u32 j)
{
struct nfs4_filelayout_segment *flseg = FILELAYOUT_LSEG(lseg);
u32 i;
if (flseg->stripe_type == STRIPE_SPARSE) {
if (flseg->num_fh == 1)
i = 0;
else if (flseg->num_fh == 0)
/* Use the MDS OPEN fh set in nfs_read_rpcsetup */
return NULL;
else
i = nfs4_fl_calc_ds_index(lseg, j);
} else
i = j;
return flseg->fh_array[i];
}
static void
filelayout_mark_devid_negative(struct nfs4_file_layout_dsaddr *dsaddr,
int err, const char *ds_remotestr)
{
u32 *p = (u32 *)&dsaddr->id_node.deviceid;
printk(KERN_ERR "NFS: data server %s connection error %d."
" Deviceid [%x%x%x%x] marked out of use.\n",
ds_remotestr, err, p[0], p[1], p[2], p[3]);
spin_lock(&nfs4_ds_cache_lock);
dsaddr->flags |= NFS4_DEVICE_ID_NEG_ENTRY;
spin_unlock(&nfs4_ds_cache_lock);
}
struct nfs4_pnfs_ds *
nfs4_fl_prepare_ds(struct pnfs_layout_segment *lseg, u32 ds_idx)
{
struct nfs4_file_layout_dsaddr *dsaddr = FILELAYOUT_LSEG(lseg)->dsaddr;
struct nfs4_pnfs_ds *ds = dsaddr->ds_list[ds_idx];
if (ds == NULL) {
printk(KERN_ERR "%s: No data server for offset index %d\n",
__func__, ds_idx);
return NULL;
}
if (!ds->ds_clp) {
struct nfs_server *s = NFS_SERVER(lseg->pls_layout->plh_inode);
int err;
if (dsaddr->flags & NFS4_DEVICE_ID_NEG_ENTRY) {
/* Already tried to connect, don't try again */
dprintk("%s Deviceid marked out of use\n", __func__);
return NULL;
}
err = nfs4_ds_connect(s, ds);
if (err) {
filelayout_mark_devid_negative(dsaddr, err,
ds->ds_remotestr);
return NULL;
}
}
return ds;
}