kernel-fxtec-pro1x/include/asm-sh/dma-mapping.h
Magnus Damm f93e97eaea sh: declared coherent memory support V2
This patch adds declared coherent memory support to the sh architecture. All
functions are based on the x86 implementation. Header files are adjusted to
use the new functions instead of the former consistent_alloc() code.

This version includes the few changes what were included in the fix patch
together with modifications based on feedback from Paul.

Signed-off-by: Magnus Damm <damm@igel.co.jp>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2008-01-28 13:19:04 +09:00

192 lines
5 KiB
C

#ifndef __ASM_SH_DMA_MAPPING_H
#define __ASM_SH_DMA_MAPPING_H
#include <linux/mm.h>
#include <linux/scatterlist.h>
#include <asm/cacheflush.h>
#include <asm/io.h>
extern struct bus_type pci_bus_type;
#define dma_supported(dev, mask) (1)
static inline int dma_set_mask(struct device *dev, u64 mask)
{
if (!dev->dma_mask || !dma_supported(dev, mask))
return -EIO;
*dev->dma_mask = mask;
return 0;
}
void *dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag);
void dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle);
void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction dir);
#define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
#define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
#define dma_is_consistent(d, h) (1)
static inline dma_addr_t dma_map_single(struct device *dev,
void *ptr, size_t size,
enum dma_data_direction dir)
{
#if defined(CONFIG_PCI) && !defined(CONFIG_SH_PCIDMA_NONCOHERENT)
if (dev->bus == &pci_bus_type)
return virt_to_phys(ptr);
#endif
dma_cache_sync(dev, ptr, size, dir);
return virt_to_phys(ptr);
}
#define dma_unmap_single(dev, addr, size, dir) do { } while (0)
static inline int dma_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir)
{
int i;
for (i = 0; i < nents; i++) {
#if !defined(CONFIG_PCI) || defined(CONFIG_SH_PCIDMA_NONCOHERENT)
dma_cache_sync(dev, sg_virt(&sg[i]), sg[i].length, dir);
#endif
sg[i].dma_address = sg_phys(&sg[i]);
}
return nents;
}
#define dma_unmap_sg(dev, sg, nents, dir) do { } while (0)
static inline dma_addr_t dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir)
{
return dma_map_single(dev, page_address(page) + offset, size, dir);
}
static inline void dma_unmap_page(struct device *dev, dma_addr_t dma_address,
size_t size, enum dma_data_direction dir)
{
dma_unmap_single(dev, dma_address, size, dir);
}
static inline void dma_sync_single(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir)
{
#if defined(CONFIG_PCI) && !defined(CONFIG_SH_PCIDMA_NONCOHERENT)
if (dev->bus == &pci_bus_type)
return;
#endif
dma_cache_sync(dev, phys_to_virt(dma_handle), size, dir);
}
static inline void dma_sync_single_range(struct device *dev,
dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction dir)
{
#if defined(CONFIG_PCI) && !defined(CONFIG_SH_PCIDMA_NONCOHERENT)
if (dev->bus == &pci_bus_type)
return;
#endif
dma_cache_sync(dev, phys_to_virt(dma_handle) + offset, size, dir);
}
static inline void dma_sync_sg(struct device *dev, struct scatterlist *sg,
int nelems, enum dma_data_direction dir)
{
int i;
for (i = 0; i < nelems; i++) {
#if !defined(CONFIG_PCI) || defined(CONFIG_SH_PCIDMA_NONCOHERENT)
dma_cache_sync(dev, sg_virt(&sg[i]), sg[i].length, dir);
#endif
sg[i].dma_address = sg_phys(&sg[i]);
}
}
static inline void dma_sync_single_for_cpu(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir)
{
dma_sync_single(dev, dma_handle, size, dir);
}
static inline void dma_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle,
size_t size,
enum dma_data_direction dir)
{
dma_sync_single(dev, dma_handle, size, dir);
}
static inline void dma_sync_single_range_for_cpu(struct device *dev,
dma_addr_t dma_handle,
unsigned long offset,
size_t size,
enum dma_data_direction direction)
{
dma_sync_single_for_cpu(dev, dma_handle+offset, size, direction);
}
static inline void dma_sync_single_range_for_device(struct device *dev,
dma_addr_t dma_handle,
unsigned long offset,
size_t size,
enum dma_data_direction direction)
{
dma_sync_single_for_device(dev, dma_handle+offset, size, direction);
}
static inline void dma_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sg, int nelems,
enum dma_data_direction dir)
{
dma_sync_sg(dev, sg, nelems, dir);
}
static inline void dma_sync_sg_for_device(struct device *dev,
struct scatterlist *sg, int nelems,
enum dma_data_direction dir)
{
dma_sync_sg(dev, sg, nelems, dir);
}
static inline int dma_get_cache_alignment(void)
{
/*
* Each processor family will define its own L1_CACHE_SHIFT,
* L1_CACHE_BYTES wraps to this, so this is always safe.
*/
return L1_CACHE_BYTES;
}
static inline int dma_mapping_error(dma_addr_t dma_addr)
{
return dma_addr == 0;
}
#define ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY
extern int
dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
dma_addr_t device_addr, size_t size, int flags);
extern void
dma_release_declared_memory(struct device *dev);
extern void *
dma_mark_declared_memory_occupied(struct device *dev,
dma_addr_t device_addr, size_t size);
#endif /* __ASM_SH_DMA_MAPPING_H */