kernel-fxtec-pro1x/arch/x86/include/asm/perf_event.h
Cyrill Gorcunov a072738e04 perf, x86: Implement initial P4 PMU driver
The netburst PMU is way different from the "architectural
perfomance monitoring" specification that current CPUs use.
P4 uses a tuple of ESCR+CCCR+COUNTER MSR registers to handle
perfomance monitoring events.

A few implementational details:

1) We need a separate x86_pmu::hw_config helper in struct
   x86_pmu since register bit-fields are quite different from P6,
   Core and later cpu series.

2) For the same reason is a x86_pmu::schedule_events helper
   introduced.

3) hw_perf_event::config consists of packed ESCR+CCCR values.
   It's allowed since in reality both registers only use a half
   of their size. Of course before making a real write into a
   particular MSR we need to unpack the value and extend it to
   a proper size.

4) The tuple of packed ESCR+CCCR in hw_perf_event::config
   doesn't describe the memory address of ESCR MSR register
   so that we need to keep a mapping between these tuples
   used and available ESCR (various P4 events may use same
   ESCRs but not simultaneously), for this sake every active
   event has a per-cpu map of hw_perf_event::idx <--> ESCR
   addresses.

5) Since hw_perf_event::idx is an offset to counter/control register
   we need to lift X86_PMC_MAX_GENERIC up, otherwise kernel
   strips it down to 8 registers and event armed may never be turned
   off (ie the bit in active_mask is set but the loop never reaches
   this index to check), thanks to Peter Zijlstra

Restrictions:

 - No cascaded counters support (do we ever need them?)
 - No dependent events support (so PERF_COUNT_HW_INSTRUCTIONS
   doesn't work for now)
 - There are events with same counters which can't work simultaneously
   (need to use intersected ones due to broken counter 1)
 - No PERF_COUNT_HW_CACHE_ events yet

Todo:

 - Implement dependent events
 - Need proper hashing for event opcodes (no linear search, good for
   debugging stage but not in real loads)
 - Some events counted during a clock cycle -- need to set threshold
   for them and count every clock cycle just to get summary statistics
   (ie to behave the same way as other PMUs do)
 - Need to swicth to use event_constraints
 - To support RAW events we need to encode a global list of P4 events
   into p4_templates
 - Cache events need to be added

Event support status matrix:

 Event			status
 -----------------------------
 cycles			works
 cache-references	works
 cache-misses		works
 branch-misses		works
 bus-cycles		partially (does not work on 64bit cpu with HT enabled)
 instruction		doesnt work (needs dependent event [mop tagging])
 branches		doesnt work

Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <20100311165439.GB5129@lenovo>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-03-11 18:51:08 +01:00

163 lines
4.3 KiB
C

#ifndef _ASM_X86_PERF_EVENT_H
#define _ASM_X86_PERF_EVENT_H
/*
* Performance event hw details:
*/
#define X86_PMC_MAX_GENERIC 32
#define X86_PMC_MAX_FIXED 3
#define X86_PMC_IDX_GENERIC 0
#define X86_PMC_IDX_FIXED 32
#define X86_PMC_IDX_MAX 64
#define MSR_ARCH_PERFMON_PERFCTR0 0xc1
#define MSR_ARCH_PERFMON_PERFCTR1 0xc2
#define MSR_ARCH_PERFMON_EVENTSEL0 0x186
#define MSR_ARCH_PERFMON_EVENTSEL1 0x187
#define ARCH_PERFMON_EVENTSEL_ENABLE (1 << 22)
#define ARCH_PERFMON_EVENTSEL_ANY (1 << 21)
#define ARCH_PERFMON_EVENTSEL_INT (1 << 20)
#define ARCH_PERFMON_EVENTSEL_OS (1 << 17)
#define ARCH_PERFMON_EVENTSEL_USR (1 << 16)
/*
* Includes eventsel and unit mask as well:
*/
#define INTEL_ARCH_EVTSEL_MASK 0x000000FFULL
#define INTEL_ARCH_UNIT_MASK 0x0000FF00ULL
#define INTEL_ARCH_EDGE_MASK 0x00040000ULL
#define INTEL_ARCH_INV_MASK 0x00800000ULL
#define INTEL_ARCH_CNT_MASK 0xFF000000ULL
#define INTEL_ARCH_EVENT_MASK (INTEL_ARCH_UNIT_MASK|INTEL_ARCH_EVTSEL_MASK)
/*
* filter mask to validate fixed counter events.
* the following filters disqualify for fixed counters:
* - inv
* - edge
* - cnt-mask
* The other filters are supported by fixed counters.
* The any-thread option is supported starting with v3.
*/
#define INTEL_ARCH_FIXED_MASK \
(INTEL_ARCH_CNT_MASK| \
INTEL_ARCH_INV_MASK| \
INTEL_ARCH_EDGE_MASK|\
INTEL_ARCH_UNIT_MASK|\
INTEL_ARCH_EVENT_MASK)
#define ARCH_PERFMON_UNHALTED_CORE_CYCLES_SEL 0x3c
#define ARCH_PERFMON_UNHALTED_CORE_CYCLES_UMASK (0x00 << 8)
#define ARCH_PERFMON_UNHALTED_CORE_CYCLES_INDEX 0
#define ARCH_PERFMON_UNHALTED_CORE_CYCLES_PRESENT \
(1 << (ARCH_PERFMON_UNHALTED_CORE_CYCLES_INDEX))
#define ARCH_PERFMON_BRANCH_MISSES_RETIRED 6
/*
* Intel "Architectural Performance Monitoring" CPUID
* detection/enumeration details:
*/
union cpuid10_eax {
struct {
unsigned int version_id:8;
unsigned int num_events:8;
unsigned int bit_width:8;
unsigned int mask_length:8;
} split;
unsigned int full;
};
union cpuid10_edx {
struct {
unsigned int num_events_fixed:4;
unsigned int reserved:28;
} split;
unsigned int full;
};
/*
* Fixed-purpose performance events:
*/
/*
* All 3 fixed-mode PMCs are configured via this single MSR:
*/
#define MSR_ARCH_PERFMON_FIXED_CTR_CTRL 0x38d
/*
* The counts are available in three separate MSRs:
*/
/* Instr_Retired.Any: */
#define MSR_ARCH_PERFMON_FIXED_CTR0 0x309
#define X86_PMC_IDX_FIXED_INSTRUCTIONS (X86_PMC_IDX_FIXED + 0)
/* CPU_CLK_Unhalted.Core: */
#define MSR_ARCH_PERFMON_FIXED_CTR1 0x30a
#define X86_PMC_IDX_FIXED_CPU_CYCLES (X86_PMC_IDX_FIXED + 1)
/* CPU_CLK_Unhalted.Ref: */
#define MSR_ARCH_PERFMON_FIXED_CTR2 0x30b
#define X86_PMC_IDX_FIXED_BUS_CYCLES (X86_PMC_IDX_FIXED + 2)
/*
* We model BTS tracing as another fixed-mode PMC.
*
* We choose a value in the middle of the fixed event range, since lower
* values are used by actual fixed events and higher values are used
* to indicate other overflow conditions in the PERF_GLOBAL_STATUS msr.
*/
#define X86_PMC_IDX_FIXED_BTS (X86_PMC_IDX_FIXED + 16)
/* IbsFetchCtl bits/masks */
#define IBS_FETCH_RAND_EN (1ULL<<57)
#define IBS_FETCH_VAL (1ULL<<49)
#define IBS_FETCH_ENABLE (1ULL<<48)
#define IBS_FETCH_CNT 0xFFFF0000ULL
#define IBS_FETCH_MAX_CNT 0x0000FFFFULL
/* IbsOpCtl bits */
#define IBS_OP_CNT_CTL (1ULL<<19)
#define IBS_OP_VAL (1ULL<<18)
#define IBS_OP_ENABLE (1ULL<<17)
#define IBS_OP_MAX_CNT 0x0000FFFFULL
#ifdef CONFIG_PERF_EVENTS
extern void init_hw_perf_events(void);
extern void perf_events_lapic_init(void);
#define PERF_EVENT_INDEX_OFFSET 0
/*
* Abuse bit 3 of the cpu eflags register to indicate proper PEBS IP fixups.
* This flag is otherwise unused and ABI specified to be 0, so nobody should
* care what we do with it.
*/
#define PERF_EFLAGS_EXACT (1UL << 3)
#define perf_misc_flags(regs) \
({ int misc = 0; \
if (user_mode(regs)) \
misc |= PERF_RECORD_MISC_USER; \
else \
misc |= PERF_RECORD_MISC_KERNEL; \
if (regs->flags & PERF_EFLAGS_EXACT) \
misc |= PERF_RECORD_MISC_EXACT; \
misc; })
#define perf_instruction_pointer(regs) ((regs)->ip)
#else
static inline void init_hw_perf_events(void) { }
static inline void perf_events_lapic_init(void) { }
#endif
#endif /* _ASM_X86_PERF_EVENT_H */