kernel-fxtec-pro1x/arch/x86/kernel/process.c
Linus Torvalds 9977d9b379 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal
Pull big execve/kernel_thread/fork unification series from Al Viro:
 "All architectures are converted to new model.  Quite a bit of that
  stuff is actually shared with architecture trees; in such cases it's
  literally shared branch pulled by both, not a cherry-pick.

  A lot of ugliness and black magic is gone (-3KLoC total in this one):

   - kernel_thread()/kernel_execve()/sys_execve() redesign.

     We don't do syscalls from kernel anymore for either kernel_thread()
     or kernel_execve():

     kernel_thread() is essentially clone(2) with callback run before we
     return to userland, the callbacks either never return or do
     successful do_execve() before returning.

     kernel_execve() is a wrapper for do_execve() - it doesn't need to
     do transition to user mode anymore.

     As a result kernel_thread() and kernel_execve() are
     arch-independent now - they live in kernel/fork.c and fs/exec.c
     resp.  sys_execve() is also in fs/exec.c and it's completely
     architecture-independent.

   - daemonize() is gone, along with its parts in fs/*.c

   - struct pt_regs * is no longer passed to do_fork/copy_process/
     copy_thread/do_execve/search_binary_handler/->load_binary/do_coredump.

   - sys_fork()/sys_vfork()/sys_clone() unified; some architectures
     still need wrappers (ones with callee-saved registers not saved in
     pt_regs on syscall entry), but the main part of those suckers is in
     kernel/fork.c now."

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal: (113 commits)
  do_coredump(): get rid of pt_regs argument
  print_fatal_signal(): get rid of pt_regs argument
  ptrace_signal(): get rid of unused arguments
  get rid of ptrace_signal_deliver() arguments
  new helper: signal_pt_regs()
  unify default ptrace_signal_deliver
  flagday: kill pt_regs argument of do_fork()
  death to idle_regs()
  don't pass regs to copy_process()
  flagday: don't pass regs to copy_thread()
  bfin: switch to generic vfork, get rid of pointless wrappers
  xtensa: switch to generic clone()
  openrisc: switch to use of generic fork and clone
  unicore32: switch to generic clone(2)
  score: switch to generic fork/vfork/clone
  c6x: sanitize copy_thread(), get rid of clone(2) wrapper, switch to generic clone()
  take sys_fork/sys_vfork/sys_clone prototypes to linux/syscalls.h
  mn10300: switch to generic fork/vfork/clone
  h8300: switch to generic fork/vfork/clone
  tile: switch to generic clone()
  ...

Conflicts:
	arch/microblaze/include/asm/Kbuild
2012-12-12 12:22:13 -08:00

647 lines
15 KiB
C

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/prctl.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/pm.h>
#include <linux/clockchips.h>
#include <linux/random.h>
#include <linux/user-return-notifier.h>
#include <linux/dmi.h>
#include <linux/utsname.h>
#include <linux/stackprotector.h>
#include <linux/tick.h>
#include <linux/cpuidle.h>
#include <trace/events/power.h>
#include <linux/hw_breakpoint.h>
#include <asm/cpu.h>
#include <asm/apic.h>
#include <asm/syscalls.h>
#include <asm/idle.h>
#include <asm/uaccess.h>
#include <asm/i387.h>
#include <asm/fpu-internal.h>
#include <asm/debugreg.h>
#include <asm/nmi.h>
/*
* per-CPU TSS segments. Threads are completely 'soft' on Linux,
* no more per-task TSS's. The TSS size is kept cacheline-aligned
* so they are allowed to end up in the .data..cacheline_aligned
* section. Since TSS's are completely CPU-local, we want them
* on exact cacheline boundaries, to eliminate cacheline ping-pong.
*/
DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
#ifdef CONFIG_X86_64
static DEFINE_PER_CPU(unsigned char, is_idle);
static ATOMIC_NOTIFIER_HEAD(idle_notifier);
void idle_notifier_register(struct notifier_block *n)
{
atomic_notifier_chain_register(&idle_notifier, n);
}
EXPORT_SYMBOL_GPL(idle_notifier_register);
void idle_notifier_unregister(struct notifier_block *n)
{
atomic_notifier_chain_unregister(&idle_notifier, n);
}
EXPORT_SYMBOL_GPL(idle_notifier_unregister);
#endif
struct kmem_cache *task_xstate_cachep;
EXPORT_SYMBOL_GPL(task_xstate_cachep);
/*
* this gets called so that we can store lazy state into memory and copy the
* current task into the new thread.
*/
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
int ret;
*dst = *src;
if (fpu_allocated(&src->thread.fpu)) {
memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
ret = fpu_alloc(&dst->thread.fpu);
if (ret)
return ret;
fpu_copy(dst, src);
}
return 0;
}
void free_thread_xstate(struct task_struct *tsk)
{
fpu_free(&tsk->thread.fpu);
}
void arch_release_task_struct(struct task_struct *tsk)
{
free_thread_xstate(tsk);
}
void arch_task_cache_init(void)
{
task_xstate_cachep =
kmem_cache_create("task_xstate", xstate_size,
__alignof__(union thread_xstate),
SLAB_PANIC | SLAB_NOTRACK, NULL);
}
/*
* Free current thread data structures etc..
*/
void exit_thread(void)
{
struct task_struct *me = current;
struct thread_struct *t = &me->thread;
unsigned long *bp = t->io_bitmap_ptr;
if (bp) {
struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
t->io_bitmap_ptr = NULL;
clear_thread_flag(TIF_IO_BITMAP);
/*
* Careful, clear this in the TSS too:
*/
memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
t->io_bitmap_max = 0;
put_cpu();
kfree(bp);
}
drop_fpu(me);
}
void show_regs_common(void)
{
const char *vendor, *product, *board;
vendor = dmi_get_system_info(DMI_SYS_VENDOR);
if (!vendor)
vendor = "";
product = dmi_get_system_info(DMI_PRODUCT_NAME);
if (!product)
product = "";
/* Board Name is optional */
board = dmi_get_system_info(DMI_BOARD_NAME);
printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s %s%s%s\n",
current->pid, current->comm, print_tainted(),
init_utsname()->release,
(int)strcspn(init_utsname()->version, " "),
init_utsname()->version,
vendor, product,
board ? "/" : "",
board ? board : "");
}
void flush_thread(void)
{
struct task_struct *tsk = current;
flush_ptrace_hw_breakpoint(tsk);
memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
drop_init_fpu(tsk);
/*
* Free the FPU state for non xsave platforms. They get reallocated
* lazily at the first use.
*/
if (!use_eager_fpu())
free_thread_xstate(tsk);
}
static void hard_disable_TSC(void)
{
write_cr4(read_cr4() | X86_CR4_TSD);
}
void disable_TSC(void)
{
preempt_disable();
if (!test_and_set_thread_flag(TIF_NOTSC))
/*
* Must flip the CPU state synchronously with
* TIF_NOTSC in the current running context.
*/
hard_disable_TSC();
preempt_enable();
}
static void hard_enable_TSC(void)
{
write_cr4(read_cr4() & ~X86_CR4_TSD);
}
static void enable_TSC(void)
{
preempt_disable();
if (test_and_clear_thread_flag(TIF_NOTSC))
/*
* Must flip the CPU state synchronously with
* TIF_NOTSC in the current running context.
*/
hard_enable_TSC();
preempt_enable();
}
int get_tsc_mode(unsigned long adr)
{
unsigned int val;
if (test_thread_flag(TIF_NOTSC))
val = PR_TSC_SIGSEGV;
else
val = PR_TSC_ENABLE;
return put_user(val, (unsigned int __user *)adr);
}
int set_tsc_mode(unsigned int val)
{
if (val == PR_TSC_SIGSEGV)
disable_TSC();
else if (val == PR_TSC_ENABLE)
enable_TSC();
else
return -EINVAL;
return 0;
}
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
struct tss_struct *tss)
{
struct thread_struct *prev, *next;
prev = &prev_p->thread;
next = &next_p->thread;
if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
unsigned long debugctl = get_debugctlmsr();
debugctl &= ~DEBUGCTLMSR_BTF;
if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
debugctl |= DEBUGCTLMSR_BTF;
update_debugctlmsr(debugctl);
}
if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
test_tsk_thread_flag(next_p, TIF_NOTSC)) {
/* prev and next are different */
if (test_tsk_thread_flag(next_p, TIF_NOTSC))
hard_disable_TSC();
else
hard_enable_TSC();
}
if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
/*
* Copy the relevant range of the IO bitmap.
* Normally this is 128 bytes or less:
*/
memcpy(tss->io_bitmap, next->io_bitmap_ptr,
max(prev->io_bitmap_max, next->io_bitmap_max));
} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
/*
* Clear any possible leftover bits:
*/
memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
}
propagate_user_return_notify(prev_p, next_p);
}
/*
* Idle related variables and functions
*/
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
EXPORT_SYMBOL(boot_option_idle_override);
/*
* Powermanagement idle function, if any..
*/
void (*pm_idle)(void);
#ifdef CONFIG_APM_MODULE
EXPORT_SYMBOL(pm_idle);
#endif
#ifndef CONFIG_SMP
static inline void play_dead(void)
{
BUG();
}
#endif
#ifdef CONFIG_X86_64
void enter_idle(void)
{
this_cpu_write(is_idle, 1);
atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
}
static void __exit_idle(void)
{
if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
return;
atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
}
/* Called from interrupts to signify idle end */
void exit_idle(void)
{
/* idle loop has pid 0 */
if (current->pid)
return;
__exit_idle();
}
#endif
/*
* The idle thread. There's no useful work to be
* done, so just try to conserve power and have a
* low exit latency (ie sit in a loop waiting for
* somebody to say that they'd like to reschedule)
*/
void cpu_idle(void)
{
/*
* If we're the non-boot CPU, nothing set the stack canary up
* for us. CPU0 already has it initialized but no harm in
* doing it again. This is a good place for updating it, as
* we wont ever return from this function (so the invalid
* canaries already on the stack wont ever trigger).
*/
boot_init_stack_canary();
current_thread_info()->status |= TS_POLLING;
while (1) {
tick_nohz_idle_enter();
while (!need_resched()) {
rmb();
if (cpu_is_offline(smp_processor_id()))
play_dead();
/*
* Idle routines should keep interrupts disabled
* from here on, until they go to idle.
* Otherwise, idle callbacks can misfire.
*/
local_touch_nmi();
local_irq_disable();
enter_idle();
/* Don't trace irqs off for idle */
stop_critical_timings();
/* enter_idle() needs rcu for notifiers */
rcu_idle_enter();
if (cpuidle_idle_call())
pm_idle();
rcu_idle_exit();
start_critical_timings();
/* In many cases the interrupt that ended idle
has already called exit_idle. But some idle
loops can be woken up without interrupt. */
__exit_idle();
}
tick_nohz_idle_exit();
preempt_enable_no_resched();
schedule();
preempt_disable();
}
}
/*
* We use this if we don't have any better
* idle routine..
*/
void default_idle(void)
{
trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
trace_cpu_idle_rcuidle(1, smp_processor_id());
current_thread_info()->status &= ~TS_POLLING;
/*
* TS_POLLING-cleared state must be visible before we
* test NEED_RESCHED:
*/
smp_mb();
if (!need_resched())
safe_halt(); /* enables interrupts racelessly */
else
local_irq_enable();
current_thread_info()->status |= TS_POLLING;
trace_power_end_rcuidle(smp_processor_id());
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
}
#ifdef CONFIG_APM_MODULE
EXPORT_SYMBOL(default_idle);
#endif
bool set_pm_idle_to_default(void)
{
bool ret = !!pm_idle;
pm_idle = default_idle;
return ret;
}
void stop_this_cpu(void *dummy)
{
local_irq_disable();
/*
* Remove this CPU:
*/
set_cpu_online(smp_processor_id(), false);
disable_local_APIC();
for (;;) {
if (hlt_works(smp_processor_id()))
halt();
}
}
/* Default MONITOR/MWAIT with no hints, used for default C1 state */
static void mwait_idle(void)
{
if (!need_resched()) {
trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
trace_cpu_idle_rcuidle(1, smp_processor_id());
if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
clflush((void *)&current_thread_info()->flags);
__monitor((void *)&current_thread_info()->flags, 0, 0);
smp_mb();
if (!need_resched())
__sti_mwait(0, 0);
else
local_irq_enable();
trace_power_end_rcuidle(smp_processor_id());
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
} else
local_irq_enable();
}
/*
* On SMP it's slightly faster (but much more power-consuming!)
* to poll the ->work.need_resched flag instead of waiting for the
* cross-CPU IPI to arrive. Use this option with caution.
*/
static void poll_idle(void)
{
trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
trace_cpu_idle_rcuidle(0, smp_processor_id());
local_irq_enable();
while (!need_resched())
cpu_relax();
trace_power_end_rcuidle(smp_processor_id());
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
}
/*
* mwait selection logic:
*
* It depends on the CPU. For AMD CPUs that support MWAIT this is
* wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
* then depend on a clock divisor and current Pstate of the core. If
* all cores of a processor are in halt state (C1) the processor can
* enter the C1E (C1 enhanced) state. If mwait is used this will never
* happen.
*
* idle=mwait overrides this decision and forces the usage of mwait.
*/
#define MWAIT_INFO 0x05
#define MWAIT_ECX_EXTENDED_INFO 0x01
#define MWAIT_EDX_C1 0xf0
int mwait_usable(const struct cpuinfo_x86 *c)
{
u32 eax, ebx, ecx, edx;
/* Use mwait if idle=mwait boot option is given */
if (boot_option_idle_override == IDLE_FORCE_MWAIT)
return 1;
/*
* Any idle= boot option other than idle=mwait means that we must not
* use mwait. Eg: idle=halt or idle=poll or idle=nomwait
*/
if (boot_option_idle_override != IDLE_NO_OVERRIDE)
return 0;
if (c->cpuid_level < MWAIT_INFO)
return 0;
cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
/* Check, whether EDX has extended info about MWAIT */
if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
return 1;
/*
* edx enumeratios MONITOR/MWAIT extensions. Check, whether
* C1 supports MWAIT
*/
return (edx & MWAIT_EDX_C1);
}
bool amd_e400_c1e_detected;
EXPORT_SYMBOL(amd_e400_c1e_detected);
static cpumask_var_t amd_e400_c1e_mask;
void amd_e400_remove_cpu(int cpu)
{
if (amd_e400_c1e_mask != NULL)
cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
}
/*
* AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
* pending message MSR. If we detect C1E, then we handle it the same
* way as C3 power states (local apic timer and TSC stop)
*/
static void amd_e400_idle(void)
{
if (need_resched())
return;
if (!amd_e400_c1e_detected) {
u32 lo, hi;
rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
if (lo & K8_INTP_C1E_ACTIVE_MASK) {
amd_e400_c1e_detected = true;
if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
mark_tsc_unstable("TSC halt in AMD C1E");
pr_info("System has AMD C1E enabled\n");
}
}
if (amd_e400_c1e_detected) {
int cpu = smp_processor_id();
if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
cpumask_set_cpu(cpu, amd_e400_c1e_mask);
/*
* Force broadcast so ACPI can not interfere.
*/
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
&cpu);
pr_info("Switch to broadcast mode on CPU%d\n", cpu);
}
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
default_idle();
/*
* The switch back from broadcast mode needs to be
* called with interrupts disabled.
*/
local_irq_disable();
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
local_irq_enable();
} else
default_idle();
}
void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
if (pm_idle == poll_idle && smp_num_siblings > 1) {
pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
}
#endif
if (pm_idle)
return;
if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
/*
* One CPU supports mwait => All CPUs supports mwait
*/
pr_info("using mwait in idle threads\n");
pm_idle = mwait_idle;
} else if (cpu_has_amd_erratum(amd_erratum_400)) {
/* E400: APIC timer interrupt does not wake up CPU from C1e */
pr_info("using AMD E400 aware idle routine\n");
pm_idle = amd_e400_idle;
} else
pm_idle = default_idle;
}
void __init init_amd_e400_c1e_mask(void)
{
/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
if (pm_idle == amd_e400_idle)
zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
}
static int __init idle_setup(char *str)
{
if (!str)
return -EINVAL;
if (!strcmp(str, "poll")) {
pr_info("using polling idle threads\n");
pm_idle = poll_idle;
boot_option_idle_override = IDLE_POLL;
} else if (!strcmp(str, "mwait")) {
boot_option_idle_override = IDLE_FORCE_MWAIT;
WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
} else if (!strcmp(str, "halt")) {
/*
* When the boot option of idle=halt is added, halt is
* forced to be used for CPU idle. In such case CPU C2/C3
* won't be used again.
* To continue to load the CPU idle driver, don't touch
* the boot_option_idle_override.
*/
pm_idle = default_idle;
boot_option_idle_override = IDLE_HALT;
} else if (!strcmp(str, "nomwait")) {
/*
* If the boot option of "idle=nomwait" is added,
* it means that mwait will be disabled for CPU C2/C3
* states. In such case it won't touch the variable
* of boot_option_idle_override.
*/
boot_option_idle_override = IDLE_NOMWAIT;
} else
return -1;
return 0;
}
early_param("idle", idle_setup);
unsigned long arch_align_stack(unsigned long sp)
{
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
sp -= get_random_int() % 8192;
return sp & ~0xf;
}
unsigned long arch_randomize_brk(struct mm_struct *mm)
{
unsigned long range_end = mm->brk + 0x02000000;
return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
}