kernel-fxtec-pro1x/drivers/pcmcia/cistpl.c
Dominik Brodowski 7ab2485548 pcmcia: add locking to pcmcia_{read,write}_cis_mem
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
2010-02-17 18:00:07 +01:00

1699 lines
40 KiB
C

/*
* cistpl.c -- 16-bit PCMCIA Card Information Structure parser
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* The initial developer of the original code is David A. Hinds
* <dahinds@users.sourceforge.net>. Portions created by David A. Hinds
* are Copyright (C) 1999 David A. Hinds. All Rights Reserved.
*
* (C) 1999 David A. Hinds
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/major.h>
#include <linux/errno.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <asm/byteorder.h>
#include <asm/unaligned.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/ss.h>
#include <pcmcia/cs.h>
#include <pcmcia/cisreg.h>
#include <pcmcia/cistpl.h>
#include "cs_internal.h"
static const u_char mantissa[] = {
10, 12, 13, 15, 20, 25, 30, 35,
40, 45, 50, 55, 60, 70, 80, 90
};
static const u_int exponent[] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000
};
/* Convert an extended speed byte to a time in nanoseconds */
#define SPEED_CVT(v) \
(mantissa[(((v)>>3)&15)-1] * exponent[(v)&7] / 10)
/* Convert a power byte to a current in 0.1 microamps */
#define POWER_CVT(v) \
(mantissa[((v)>>3)&15] * exponent[(v)&7] / 10)
#define POWER_SCALE(v) (exponent[(v)&7])
/* Upper limit on reasonable # of tuples */
#define MAX_TUPLES 200
/*====================================================================*/
/* Parameters that can be set with 'insmod' */
/* 16-bit CIS? */
static int cis_width;
module_param(cis_width, int, 0444);
void release_cis_mem(struct pcmcia_socket *s)
{
mutex_lock(&s->ops_mutex);
if (s->cis_mem.flags & MAP_ACTIVE) {
s->cis_mem.flags &= ~MAP_ACTIVE;
s->ops->set_mem_map(s, &s->cis_mem);
if (s->cis_mem.res) {
release_resource(s->cis_mem.res);
kfree(s->cis_mem.res);
s->cis_mem.res = NULL;
}
iounmap(s->cis_virt);
s->cis_virt = NULL;
}
mutex_unlock(&s->ops_mutex);
}
/*
* Map the card memory at "card_offset" into virtual space.
* If flags & MAP_ATTRIB, map the attribute space, otherwise
* map the memory space.
*
* Must be called with ops_mutex held.
*/
static void __iomem *
set_cis_map(struct pcmcia_socket *s, unsigned int card_offset, unsigned int flags)
{
pccard_mem_map *mem = &s->cis_mem;
int ret;
if (!(s->features & SS_CAP_STATIC_MAP) && (mem->res == NULL)) {
mem->res = pcmcia_find_mem_region(0, s->map_size, s->map_size, 0, s);
if (mem->res == NULL) {
dev_printk(KERN_NOTICE, &s->dev,
"cs: unable to map card memory!\n");
return NULL;
}
s->cis_virt = NULL;
}
if (!(s->features & SS_CAP_STATIC_MAP) && (!s->cis_virt))
s->cis_virt = ioremap(mem->res->start, s->map_size);
mem->card_start = card_offset;
mem->flags = flags;
ret = s->ops->set_mem_map(s, mem);
if (ret) {
iounmap(s->cis_virt);
s->cis_virt = NULL;
return NULL;
}
if (s->features & SS_CAP_STATIC_MAP) {
if (s->cis_virt)
iounmap(s->cis_virt);
s->cis_virt = ioremap(mem->static_start, s->map_size);
}
return s->cis_virt;
}
/*======================================================================
Low-level functions to read and write CIS memory. I think the
write routine is only useful for writing one-byte registers.
======================================================================*/
/* Bits in attr field */
#define IS_ATTR 1
#define IS_INDIRECT 8
int pcmcia_read_cis_mem(struct pcmcia_socket *s, int attr, u_int addr,
u_int len, void *ptr)
{
void __iomem *sys, *end;
unsigned char *buf = ptr;
dev_dbg(&s->dev, "pcmcia_read_cis_mem(%d, %#x, %u)\n", attr, addr, len);
mutex_lock(&s->ops_mutex);
if (attr & IS_INDIRECT) {
/* Indirect accesses use a bunch of special registers at fixed
locations in common memory */
u_char flags = ICTRL0_COMMON|ICTRL0_AUTOINC|ICTRL0_BYTEGRAN;
if (attr & IS_ATTR) {
addr *= 2;
flags = ICTRL0_AUTOINC;
}
sys = set_cis_map(s, 0, MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0));
if (!sys) {
dev_dbg(&s->dev, "could not map memory\n");
memset(ptr, 0xff, len);
mutex_unlock(&s->ops_mutex);
return -1;
}
writeb(flags, sys+CISREG_ICTRL0);
writeb(addr & 0xff, sys+CISREG_IADDR0);
writeb((addr>>8) & 0xff, sys+CISREG_IADDR1);
writeb((addr>>16) & 0xff, sys+CISREG_IADDR2);
writeb((addr>>24) & 0xff, sys+CISREG_IADDR3);
for ( ; len > 0; len--, buf++)
*buf = readb(sys+CISREG_IDATA0);
} else {
u_int inc = 1, card_offset, flags;
if (addr > CISTPL_MAX_CIS_SIZE)
dev_dbg(&s->dev, "attempt to read CIS mem at addr %#x", addr);
flags = MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0);
if (attr) {
flags |= MAP_ATTRIB;
inc++;
addr *= 2;
}
card_offset = addr & ~(s->map_size-1);
while (len) {
sys = set_cis_map(s, card_offset, flags);
if (!sys) {
dev_dbg(&s->dev, "could not map memory\n");
memset(ptr, 0xff, len);
mutex_unlock(&s->ops_mutex);
return -1;
}
end = sys + s->map_size;
sys = sys + (addr & (s->map_size-1));
for ( ; len > 0; len--, buf++, sys += inc) {
if (sys == end)
break;
*buf = readb(sys);
}
card_offset += s->map_size;
addr = 0;
}
}
mutex_unlock(&s->ops_mutex);
dev_dbg(&s->dev, " %#2.2x %#2.2x %#2.2x %#2.2x ...\n",
*(u_char *)(ptr+0), *(u_char *)(ptr+1),
*(u_char *)(ptr+2), *(u_char *)(ptr+3));
return 0;
}
void pcmcia_write_cis_mem(struct pcmcia_socket *s, int attr, u_int addr,
u_int len, void *ptr)
{
void __iomem *sys, *end;
unsigned char *buf = ptr;
dev_dbg(&s->dev, "pcmcia_write_cis_mem(%d, %#x, %u)\n", attr, addr, len);
mutex_lock(&s->ops_mutex);
if (attr & IS_INDIRECT) {
/* Indirect accesses use a bunch of special registers at fixed
locations in common memory */
u_char flags = ICTRL0_COMMON|ICTRL0_AUTOINC|ICTRL0_BYTEGRAN;
if (attr & IS_ATTR) {
addr *= 2;
flags = ICTRL0_AUTOINC;
}
sys = set_cis_map(s, 0, MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0));
if (!sys) {
dev_dbg(&s->dev, "could not map memory\n");
mutex_unlock(&s->ops_mutex);
return; /* FIXME: Error */
}
writeb(flags, sys+CISREG_ICTRL0);
writeb(addr & 0xff, sys+CISREG_IADDR0);
writeb((addr>>8) & 0xff, sys+CISREG_IADDR1);
writeb((addr>>16) & 0xff, sys+CISREG_IADDR2);
writeb((addr>>24) & 0xff, sys+CISREG_IADDR3);
for ( ; len > 0; len--, buf++)
writeb(*buf, sys+CISREG_IDATA0);
} else {
u_int inc = 1, card_offset, flags;
flags = MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0);
if (attr & IS_ATTR) {
flags |= MAP_ATTRIB;
inc++;
addr *= 2;
}
card_offset = addr & ~(s->map_size-1);
while (len) {
sys = set_cis_map(s, card_offset, flags);
if (!sys) {
dev_dbg(&s->dev, "could not map memory\n");
mutex_unlock(&s->ops_mutex);
return; /* FIXME: error */
}
end = sys + s->map_size;
sys = sys + (addr & (s->map_size-1));
for ( ; len > 0; len--, buf++, sys += inc) {
if (sys == end)
break;
writeb(*buf, sys);
}
card_offset += s->map_size;
addr = 0;
}
}
mutex_unlock(&s->ops_mutex);
}
/*======================================================================
This is a wrapper around read_cis_mem, with the same interface,
but which caches information, for cards whose CIS may not be
readable all the time.
======================================================================*/
static void read_cis_cache(struct pcmcia_socket *s, int attr, u_int addr,
size_t len, void *ptr)
{
struct cis_cache_entry *cis;
int ret;
if (s->state & SOCKET_CARDBUS)
return;
mutex_lock(&s->ops_mutex);
if (s->fake_cis) {
if (s->fake_cis_len >= addr+len)
memcpy(ptr, s->fake_cis+addr, len);
else
memset(ptr, 0xff, len);
mutex_unlock(&s->ops_mutex);
return;
}
list_for_each_entry(cis, &s->cis_cache, node) {
if (cis->addr == addr && cis->len == len && cis->attr == attr) {
memcpy(ptr, cis->cache, len);
mutex_unlock(&s->ops_mutex);
return;
}
}
mutex_unlock(&s->ops_mutex);
ret = pcmcia_read_cis_mem(s, attr, addr, len, ptr);
if (ret == 0) {
/* Copy data into the cache */
cis = kmalloc(sizeof(struct cis_cache_entry) + len, GFP_KERNEL);
if (cis) {
cis->addr = addr;
cis->len = len;
cis->attr = attr;
memcpy(cis->cache, ptr, len);
mutex_lock(&s->ops_mutex);
list_add(&cis->node, &s->cis_cache);
mutex_unlock(&s->ops_mutex);
}
}
}
static void
remove_cis_cache(struct pcmcia_socket *s, int attr, u_int addr, u_int len)
{
struct cis_cache_entry *cis;
mutex_lock(&s->ops_mutex);
list_for_each_entry(cis, &s->cis_cache, node)
if (cis->addr == addr && cis->len == len && cis->attr == attr) {
list_del(&cis->node);
kfree(cis);
break;
}
mutex_unlock(&s->ops_mutex);
}
/**
* destroy_cis_cache() - destroy the CIS cache
* @s: pcmcia_socket for which CIS cache shall be destroyed
*
* This destroys the CIS cache but keeps any fake CIS alive. Must be
* called with ops_mutex held.
*/
void destroy_cis_cache(struct pcmcia_socket *s)
{
struct list_head *l, *n;
struct cis_cache_entry *cis;
list_for_each_safe(l, n, &s->cis_cache) {
cis = list_entry(l, struct cis_cache_entry, node);
list_del(&cis->node);
kfree(cis);
}
}
/*======================================================================
This verifies if the CIS of a card matches what is in the CIS
cache.
======================================================================*/
int verify_cis_cache(struct pcmcia_socket *s)
{
struct cis_cache_entry *cis;
char *buf;
if (s->state & SOCKET_CARDBUS)
return -EINVAL;
buf = kmalloc(256, GFP_KERNEL);
if (buf == NULL) {
dev_printk(KERN_WARNING, &s->dev,
"no memory for verifying CIS\n");
return -ENOMEM;
}
list_for_each_entry(cis, &s->cis_cache, node) {
int len = cis->len;
if (len > 256)
len = 256;
pcmcia_read_cis_mem(s, cis->attr, cis->addr, len, buf);
if (memcmp(buf, cis->cache, len) != 0) {
kfree(buf);
return -1;
}
}
kfree(buf);
return 0;
}
/*======================================================================
For really bad cards, we provide a facility for uploading a
replacement CIS.
======================================================================*/
int pcmcia_replace_cis(struct pcmcia_socket *s,
const u8 *data, const size_t len)
{
if (len > CISTPL_MAX_CIS_SIZE) {
dev_printk(KERN_WARNING, &s->dev, "replacement CIS too big\n");
return -EINVAL;
}
mutex_lock(&s->ops_mutex);
kfree(s->fake_cis);
s->fake_cis = kmalloc(len, GFP_KERNEL);
if (s->fake_cis == NULL) {
dev_printk(KERN_WARNING, &s->dev, "no memory to replace CIS\n");
mutex_unlock(&s->ops_mutex);
return -ENOMEM;
}
s->fake_cis_len = len;
memcpy(s->fake_cis, data, len);
mutex_unlock(&s->ops_mutex);
return 0;
}
/*======================================================================
The high-level CIS tuple services
======================================================================*/
typedef struct tuple_flags {
u_int link_space:4;
u_int has_link:1;
u_int mfc_fn:3;
u_int space:4;
} tuple_flags;
#define LINK_SPACE(f) (((tuple_flags *)(&(f)))->link_space)
#define HAS_LINK(f) (((tuple_flags *)(&(f)))->has_link)
#define MFC_FN(f) (((tuple_flags *)(&(f)))->mfc_fn)
#define SPACE(f) (((tuple_flags *)(&(f)))->space)
int pccard_get_first_tuple(struct pcmcia_socket *s, unsigned int function, tuple_t *tuple)
{
if (!s)
return -EINVAL;
if (!(s->state & SOCKET_PRESENT) || (s->state & SOCKET_CARDBUS))
return -ENODEV;
tuple->TupleLink = tuple->Flags = 0;
/* Assume presence of a LONGLINK_C to address 0 */
tuple->CISOffset = tuple->LinkOffset = 0;
SPACE(tuple->Flags) = HAS_LINK(tuple->Flags) = 1;
if ((s->functions > 1) && !(tuple->Attributes & TUPLE_RETURN_COMMON)) {
cisdata_t req = tuple->DesiredTuple;
tuple->DesiredTuple = CISTPL_LONGLINK_MFC;
if (pccard_get_next_tuple(s, function, tuple) == 0) {
tuple->DesiredTuple = CISTPL_LINKTARGET;
if (pccard_get_next_tuple(s, function, tuple) != 0)
return -ENOSPC;
} else
tuple->CISOffset = tuple->TupleLink = 0;
tuple->DesiredTuple = req;
}
return pccard_get_next_tuple(s, function, tuple);
}
static int follow_link(struct pcmcia_socket *s, tuple_t *tuple)
{
u_char link[5];
u_int ofs;
if (MFC_FN(tuple->Flags)) {
/* Get indirect link from the MFC tuple */
read_cis_cache(s, LINK_SPACE(tuple->Flags),
tuple->LinkOffset, 5, link);
ofs = get_unaligned_le32(link + 1);
SPACE(tuple->Flags) = (link[0] == CISTPL_MFC_ATTR);
/* Move to the next indirect link */
tuple->LinkOffset += 5;
MFC_FN(tuple->Flags)--;
} else if (HAS_LINK(tuple->Flags)) {
ofs = tuple->LinkOffset;
SPACE(tuple->Flags) = LINK_SPACE(tuple->Flags);
HAS_LINK(tuple->Flags) = 0;
} else {
return -1;
}
if (SPACE(tuple->Flags)) {
/* This is ugly, but a common CIS error is to code the long
link offset incorrectly, so we check the right spot... */
read_cis_cache(s, SPACE(tuple->Flags), ofs, 5, link);
if ((link[0] == CISTPL_LINKTARGET) && (link[1] >= 3) &&
(strncmp(link+2, "CIS", 3) == 0))
return ofs;
remove_cis_cache(s, SPACE(tuple->Flags), ofs, 5);
/* Then, we try the wrong spot... */
ofs = ofs >> 1;
}
read_cis_cache(s, SPACE(tuple->Flags), ofs, 5, link);
if ((link[0] == CISTPL_LINKTARGET) && (link[1] >= 3) &&
(strncmp(link+2, "CIS", 3) == 0))
return ofs;
remove_cis_cache(s, SPACE(tuple->Flags), ofs, 5);
return -1;
}
int pccard_get_next_tuple(struct pcmcia_socket *s, unsigned int function, tuple_t *tuple)
{
u_char link[2], tmp;
int ofs, i, attr;
if (!s)
return -EINVAL;
if (!(s->state & SOCKET_PRESENT) || (s->state & SOCKET_CARDBUS))
return -ENODEV;
link[1] = tuple->TupleLink;
ofs = tuple->CISOffset + tuple->TupleLink;
attr = SPACE(tuple->Flags);
for (i = 0; i < MAX_TUPLES; i++) {
if (link[1] == 0xff) {
link[0] = CISTPL_END;
} else {
read_cis_cache(s, attr, ofs, 2, link);
if (link[0] == CISTPL_NULL) {
ofs++; continue;
}
}
/* End of chain? Follow long link if possible */
if (link[0] == CISTPL_END) {
ofs = follow_link(s, tuple);
if (ofs < 0)
return -ENOSPC;
attr = SPACE(tuple->Flags);
read_cis_cache(s, attr, ofs, 2, link);
}
/* Is this a link tuple? Make a note of it */
if ((link[0] == CISTPL_LONGLINK_A) ||
(link[0] == CISTPL_LONGLINK_C) ||
(link[0] == CISTPL_LONGLINK_MFC) ||
(link[0] == CISTPL_LINKTARGET) ||
(link[0] == CISTPL_INDIRECT) ||
(link[0] == CISTPL_NO_LINK)) {
switch (link[0]) {
case CISTPL_LONGLINK_A:
HAS_LINK(tuple->Flags) = 1;
LINK_SPACE(tuple->Flags) = attr | IS_ATTR;
read_cis_cache(s, attr, ofs+2, 4, &tuple->LinkOffset);
break;
case CISTPL_LONGLINK_C:
HAS_LINK(tuple->Flags) = 1;
LINK_SPACE(tuple->Flags) = attr & ~IS_ATTR;
read_cis_cache(s, attr, ofs+2, 4, &tuple->LinkOffset);
break;
case CISTPL_INDIRECT:
HAS_LINK(tuple->Flags) = 1;
LINK_SPACE(tuple->Flags) = IS_ATTR | IS_INDIRECT;
tuple->LinkOffset = 0;
break;
case CISTPL_LONGLINK_MFC:
tuple->LinkOffset = ofs + 3;
LINK_SPACE(tuple->Flags) = attr;
if (function == BIND_FN_ALL) {
/* Follow all the MFC links */
read_cis_cache(s, attr, ofs+2, 1, &tmp);
MFC_FN(tuple->Flags) = tmp;
} else {
/* Follow exactly one of the links */
MFC_FN(tuple->Flags) = 1;
tuple->LinkOffset += function * 5;
}
break;
case CISTPL_NO_LINK:
HAS_LINK(tuple->Flags) = 0;
break;
}
if ((tuple->Attributes & TUPLE_RETURN_LINK) &&
(tuple->DesiredTuple == RETURN_FIRST_TUPLE))
break;
} else
if (tuple->DesiredTuple == RETURN_FIRST_TUPLE)
break;
if (link[0] == tuple->DesiredTuple)
break;
ofs += link[1] + 2;
}
if (i == MAX_TUPLES) {
dev_dbg(&s->dev, "cs: overrun in pcmcia_get_next_tuple\n");
return -ENOSPC;
}
tuple->TupleCode = link[0];
tuple->TupleLink = link[1];
tuple->CISOffset = ofs + 2;
return 0;
}
/*====================================================================*/
#define _MIN(a, b) (((a) < (b)) ? (a) : (b))
int pccard_get_tuple_data(struct pcmcia_socket *s, tuple_t *tuple)
{
u_int len;
if (!s)
return -EINVAL;
if (tuple->TupleLink < tuple->TupleOffset)
return -ENOSPC;
len = tuple->TupleLink - tuple->TupleOffset;
tuple->TupleDataLen = tuple->TupleLink;
if (len == 0)
return 0;
read_cis_cache(s, SPACE(tuple->Flags),
tuple->CISOffset + tuple->TupleOffset,
_MIN(len, tuple->TupleDataMax), tuple->TupleData);
return 0;
}
/*======================================================================
Parsing routines for individual tuples
======================================================================*/
static int parse_device(tuple_t *tuple, cistpl_device_t *device)
{
int i;
u_char scale;
u_char *p, *q;
p = (u_char *)tuple->TupleData;
q = p + tuple->TupleDataLen;
device->ndev = 0;
for (i = 0; i < CISTPL_MAX_DEVICES; i++) {
if (*p == 0xff)
break;
device->dev[i].type = (*p >> 4);
device->dev[i].wp = (*p & 0x08) ? 1 : 0;
switch (*p & 0x07) {
case 0:
device->dev[i].speed = 0;
break;
case 1:
device->dev[i].speed = 250;
break;
case 2:
device->dev[i].speed = 200;
break;
case 3:
device->dev[i].speed = 150;
break;
case 4:
device->dev[i].speed = 100;
break;
case 7:
if (++p == q)
return -EINVAL;
device->dev[i].speed = SPEED_CVT(*p);
while (*p & 0x80)
if (++p == q)
return -EINVAL;
break;
default:
return -EINVAL;
}
if (++p == q)
return -EINVAL;
if (*p == 0xff)
break;
scale = *p & 7;
if (scale == 7)
return -EINVAL;
device->dev[i].size = ((*p >> 3) + 1) * (512 << (scale*2));
device->ndev++;
if (++p == q)
break;
}
return 0;
}
/*====================================================================*/
static int parse_checksum(tuple_t *tuple, cistpl_checksum_t *csum)
{
u_char *p;
if (tuple->TupleDataLen < 5)
return -EINVAL;
p = (u_char *) tuple->TupleData;
csum->addr = tuple->CISOffset + get_unaligned_le16(p) - 2;
csum->len = get_unaligned_le16(p + 2);
csum->sum = *(p + 4);
return 0;
}
/*====================================================================*/
static int parse_longlink(tuple_t *tuple, cistpl_longlink_t *link)
{
if (tuple->TupleDataLen < 4)
return -EINVAL;
link->addr = get_unaligned_le32(tuple->TupleData);
return 0;
}
/*====================================================================*/
static int parse_longlink_mfc(tuple_t *tuple,
cistpl_longlink_mfc_t *link)
{
u_char *p;
int i;
p = (u_char *)tuple->TupleData;
link->nfn = *p; p++;
if (tuple->TupleDataLen <= link->nfn*5)
return -EINVAL;
for (i = 0; i < link->nfn; i++) {
link->fn[i].space = *p; p++;
link->fn[i].addr = get_unaligned_le32(p);
p += 4;
}
return 0;
}
/*====================================================================*/
static int parse_strings(u_char *p, u_char *q, int max,
char *s, u_char *ofs, u_char *found)
{
int i, j, ns;
if (p == q)
return -EINVAL;
ns = 0; j = 0;
for (i = 0; i < max; i++) {
if (*p == 0xff)
break;
ofs[i] = j;
ns++;
for (;;) {
s[j++] = (*p == 0xff) ? '\0' : *p;
if ((*p == '\0') || (*p == 0xff))
break;
if (++p == q)
return -EINVAL;
}
if ((*p == 0xff) || (++p == q))
break;
}
if (found) {
*found = ns;
return 0;
} else {
return (ns == max) ? 0 : -EINVAL;
}
}
/*====================================================================*/
static int parse_vers_1(tuple_t *tuple, cistpl_vers_1_t *vers_1)
{
u_char *p, *q;
p = (u_char *)tuple->TupleData;
q = p + tuple->TupleDataLen;
vers_1->major = *p; p++;
vers_1->minor = *p; p++;
if (p >= q)
return -EINVAL;
return parse_strings(p, q, CISTPL_VERS_1_MAX_PROD_STRINGS,
vers_1->str, vers_1->ofs, &vers_1->ns);
}
/*====================================================================*/
static int parse_altstr(tuple_t *tuple, cistpl_altstr_t *altstr)
{
u_char *p, *q;
p = (u_char *)tuple->TupleData;
q = p + tuple->TupleDataLen;
return parse_strings(p, q, CISTPL_MAX_ALTSTR_STRINGS,
altstr->str, altstr->ofs, &altstr->ns);
}
/*====================================================================*/
static int parse_jedec(tuple_t *tuple, cistpl_jedec_t *jedec)
{
u_char *p, *q;
int nid;
p = (u_char *)tuple->TupleData;
q = p + tuple->TupleDataLen;
for (nid = 0; nid < CISTPL_MAX_DEVICES; nid++) {
if (p > q-2)
break;
jedec->id[nid].mfr = p[0];
jedec->id[nid].info = p[1];
p += 2;
}
jedec->nid = nid;
return 0;
}
/*====================================================================*/
static int parse_manfid(tuple_t *tuple, cistpl_manfid_t *m)
{
if (tuple->TupleDataLen < 4)
return -EINVAL;
m->manf = get_unaligned_le16(tuple->TupleData);
m->card = get_unaligned_le16(tuple->TupleData + 2);
return 0;
}
/*====================================================================*/
static int parse_funcid(tuple_t *tuple, cistpl_funcid_t *f)
{
u_char *p;
if (tuple->TupleDataLen < 2)
return -EINVAL;
p = (u_char *)tuple->TupleData;
f->func = p[0];
f->sysinit = p[1];
return 0;
}
/*====================================================================*/
static int parse_funce(tuple_t *tuple, cistpl_funce_t *f)
{
u_char *p;
int i;
if (tuple->TupleDataLen < 1)
return -EINVAL;
p = (u_char *)tuple->TupleData;
f->type = p[0];
for (i = 1; i < tuple->TupleDataLen; i++)
f->data[i-1] = p[i];
return 0;
}
/*====================================================================*/
static int parse_config(tuple_t *tuple, cistpl_config_t *config)
{
int rasz, rmsz, i;
u_char *p;
p = (u_char *)tuple->TupleData;
rasz = *p & 0x03;
rmsz = (*p & 0x3c) >> 2;
if (tuple->TupleDataLen < rasz+rmsz+4)
return -EINVAL;
config->last_idx = *(++p);
p++;
config->base = 0;
for (i = 0; i <= rasz; i++)
config->base += p[i] << (8*i);
p += rasz+1;
for (i = 0; i < 4; i++)
config->rmask[i] = 0;
for (i = 0; i <= rmsz; i++)
config->rmask[i>>2] += p[i] << (8*(i%4));
config->subtuples = tuple->TupleDataLen - (rasz+rmsz+4);
return 0;
}
/*======================================================================
The following routines are all used to parse the nightmarish
config table entries.
======================================================================*/
static u_char *parse_power(u_char *p, u_char *q,
cistpl_power_t *pwr)
{
int i;
u_int scale;
if (p == q)
return NULL;
pwr->present = *p;
pwr->flags = 0;
p++;
for (i = 0; i < 7; i++)
if (pwr->present & (1<<i)) {
if (p == q)
return NULL;
pwr->param[i] = POWER_CVT(*p);
scale = POWER_SCALE(*p);
while (*p & 0x80) {
if (++p == q)
return NULL;
if ((*p & 0x7f) < 100)
pwr->param[i] += (*p & 0x7f) * scale / 100;
else if (*p == 0x7d)
pwr->flags |= CISTPL_POWER_HIGHZ_OK;
else if (*p == 0x7e)
pwr->param[i] = 0;
else if (*p == 0x7f)
pwr->flags |= CISTPL_POWER_HIGHZ_REQ;
else
return NULL;
}
p++;
}
return p;
}
/*====================================================================*/
static u_char *parse_timing(u_char *p, u_char *q,
cistpl_timing_t *timing)
{
u_char scale;
if (p == q)
return NULL;
scale = *p;
if ((scale & 3) != 3) {
if (++p == q)
return NULL;
timing->wait = SPEED_CVT(*p);
timing->waitscale = exponent[scale & 3];
} else
timing->wait = 0;
scale >>= 2;
if ((scale & 7) != 7) {
if (++p == q)
return NULL;
timing->ready = SPEED_CVT(*p);
timing->rdyscale = exponent[scale & 7];
} else
timing->ready = 0;
scale >>= 3;
if (scale != 7) {
if (++p == q)
return NULL;
timing->reserved = SPEED_CVT(*p);
timing->rsvscale = exponent[scale];
} else
timing->reserved = 0;
p++;
return p;
}
/*====================================================================*/
static u_char *parse_io(u_char *p, u_char *q, cistpl_io_t *io)
{
int i, j, bsz, lsz;
if (p == q)
return NULL;
io->flags = *p;
if (!(*p & 0x80)) {
io->nwin = 1;
io->win[0].base = 0;
io->win[0].len = (1 << (io->flags & CISTPL_IO_LINES_MASK));
return p+1;
}
if (++p == q)
return NULL;
io->nwin = (*p & 0x0f) + 1;
bsz = (*p & 0x30) >> 4;
if (bsz == 3)
bsz++;
lsz = (*p & 0xc0) >> 6;
if (lsz == 3)
lsz++;
p++;
for (i = 0; i < io->nwin; i++) {
io->win[i].base = 0;
io->win[i].len = 1;
for (j = 0; j < bsz; j++, p++) {
if (p == q)
return NULL;
io->win[i].base += *p << (j*8);
}
for (j = 0; j < lsz; j++, p++) {
if (p == q)
return NULL;
io->win[i].len += *p << (j*8);
}
}
return p;
}
/*====================================================================*/
static u_char *parse_mem(u_char *p, u_char *q, cistpl_mem_t *mem)
{
int i, j, asz, lsz, has_ha;
u_int len, ca, ha;
if (p == q)
return NULL;
mem->nwin = (*p & 0x07) + 1;
lsz = (*p & 0x18) >> 3;
asz = (*p & 0x60) >> 5;
has_ha = (*p & 0x80);
if (++p == q)
return NULL;
for (i = 0; i < mem->nwin; i++) {
len = ca = ha = 0;
for (j = 0; j < lsz; j++, p++) {
if (p == q)
return NULL;
len += *p << (j*8);
}
for (j = 0; j < asz; j++, p++) {
if (p == q)
return NULL;
ca += *p << (j*8);
}
if (has_ha)
for (j = 0; j < asz; j++, p++) {
if (p == q)
return NULL;
ha += *p << (j*8);
}
mem->win[i].len = len << 8;
mem->win[i].card_addr = ca << 8;
mem->win[i].host_addr = ha << 8;
}
return p;
}
/*====================================================================*/
static u_char *parse_irq(u_char *p, u_char *q, cistpl_irq_t *irq)
{
if (p == q)
return NULL;
irq->IRQInfo1 = *p; p++;
if (irq->IRQInfo1 & IRQ_INFO2_VALID) {
if (p+2 > q)
return NULL;
irq->IRQInfo2 = (p[1]<<8) + p[0];
p += 2;
}
return p;
}
/*====================================================================*/
static int parse_cftable_entry(tuple_t *tuple,
cistpl_cftable_entry_t *entry)
{
u_char *p, *q, features;
p = tuple->TupleData;
q = p + tuple->TupleDataLen;
entry->index = *p & 0x3f;
entry->flags = 0;
if (*p & 0x40)
entry->flags |= CISTPL_CFTABLE_DEFAULT;
if (*p & 0x80) {
if (++p == q)
return -EINVAL;
if (*p & 0x10)
entry->flags |= CISTPL_CFTABLE_BVDS;
if (*p & 0x20)
entry->flags |= CISTPL_CFTABLE_WP;
if (*p & 0x40)
entry->flags |= CISTPL_CFTABLE_RDYBSY;
if (*p & 0x80)
entry->flags |= CISTPL_CFTABLE_MWAIT;
entry->interface = *p & 0x0f;
} else
entry->interface = 0;
/* Process optional features */
if (++p == q)
return -EINVAL;
features = *p; p++;
/* Power options */
if ((features & 3) > 0) {
p = parse_power(p, q, &entry->vcc);
if (p == NULL)
return -EINVAL;
} else
entry->vcc.present = 0;
if ((features & 3) > 1) {
p = parse_power(p, q, &entry->vpp1);
if (p == NULL)
return -EINVAL;
} else
entry->vpp1.present = 0;
if ((features & 3) > 2) {
p = parse_power(p, q, &entry->vpp2);
if (p == NULL)
return -EINVAL;
} else
entry->vpp2.present = 0;
/* Timing options */
if (features & 0x04) {
p = parse_timing(p, q, &entry->timing);
if (p == NULL)
return -EINVAL;
} else {
entry->timing.wait = 0;
entry->timing.ready = 0;
entry->timing.reserved = 0;
}
/* I/O window options */
if (features & 0x08) {
p = parse_io(p, q, &entry->io);
if (p == NULL)
return -EINVAL;
} else
entry->io.nwin = 0;
/* Interrupt options */
if (features & 0x10) {
p = parse_irq(p, q, &entry->irq);
if (p == NULL)
return -EINVAL;
} else
entry->irq.IRQInfo1 = 0;
switch (features & 0x60) {
case 0x00:
entry->mem.nwin = 0;
break;
case 0x20:
entry->mem.nwin = 1;
entry->mem.win[0].len = get_unaligned_le16(p) << 8;
entry->mem.win[0].card_addr = 0;
entry->mem.win[0].host_addr = 0;
p += 2;
if (p > q)
return -EINVAL;
break;
case 0x40:
entry->mem.nwin = 1;
entry->mem.win[0].len = get_unaligned_le16(p) << 8;
entry->mem.win[0].card_addr = get_unaligned_le16(p + 2) << 8;
entry->mem.win[0].host_addr = 0;
p += 4;
if (p > q)
return -EINVAL;
break;
case 0x60:
p = parse_mem(p, q, &entry->mem);
if (p == NULL)
return -EINVAL;
break;
}
/* Misc features */
if (features & 0x80) {
if (p == q)
return -EINVAL;
entry->flags |= (*p << 8);
while (*p & 0x80)
if (++p == q)
return -EINVAL;
p++;
}
entry->subtuples = q-p;
return 0;
}
/*====================================================================*/
static int parse_device_geo(tuple_t *tuple, cistpl_device_geo_t *geo)
{
u_char *p, *q;
int n;
p = (u_char *)tuple->TupleData;
q = p + tuple->TupleDataLen;
for (n = 0; n < CISTPL_MAX_DEVICES; n++) {
if (p > q-6)
break;
geo->geo[n].buswidth = p[0];
geo->geo[n].erase_block = 1 << (p[1]-1);
geo->geo[n].read_block = 1 << (p[2]-1);
geo->geo[n].write_block = 1 << (p[3]-1);
geo->geo[n].partition = 1 << (p[4]-1);
geo->geo[n].interleave = 1 << (p[5]-1);
p += 6;
}
geo->ngeo = n;
return 0;
}
/*====================================================================*/
static int parse_vers_2(tuple_t *tuple, cistpl_vers_2_t *v2)
{
u_char *p, *q;
if (tuple->TupleDataLen < 10)
return -EINVAL;
p = tuple->TupleData;
q = p + tuple->TupleDataLen;
v2->vers = p[0];
v2->comply = p[1];
v2->dindex = get_unaligned_le16(p + 2);
v2->vspec8 = p[6];
v2->vspec9 = p[7];
v2->nhdr = p[8];
p += 9;
return parse_strings(p, q, 2, v2->str, &v2->vendor, NULL);
}
/*====================================================================*/
static int parse_org(tuple_t *tuple, cistpl_org_t *org)
{
u_char *p, *q;
int i;
p = tuple->TupleData;
q = p + tuple->TupleDataLen;
if (p == q)
return -EINVAL;
org->data_org = *p;
if (++p == q)
return -EINVAL;
for (i = 0; i < 30; i++) {
org->desc[i] = *p;
if (*p == '\0')
break;
if (++p == q)
return -EINVAL;
}
return 0;
}
/*====================================================================*/
static int parse_format(tuple_t *tuple, cistpl_format_t *fmt)
{
u_char *p;
if (tuple->TupleDataLen < 10)
return -EINVAL;
p = tuple->TupleData;
fmt->type = p[0];
fmt->edc = p[1];
fmt->offset = get_unaligned_le32(p + 2);
fmt->length = get_unaligned_le32(p + 6);
return 0;
}
/*====================================================================*/
int pcmcia_parse_tuple(tuple_t *tuple, cisparse_t *parse)
{
int ret = 0;
if (tuple->TupleDataLen > tuple->TupleDataMax)
return -EINVAL;
switch (tuple->TupleCode) {
case CISTPL_DEVICE:
case CISTPL_DEVICE_A:
ret = parse_device(tuple, &parse->device);
break;
case CISTPL_CHECKSUM:
ret = parse_checksum(tuple, &parse->checksum);
break;
case CISTPL_LONGLINK_A:
case CISTPL_LONGLINK_C:
ret = parse_longlink(tuple, &parse->longlink);
break;
case CISTPL_LONGLINK_MFC:
ret = parse_longlink_mfc(tuple, &parse->longlink_mfc);
break;
case CISTPL_VERS_1:
ret = parse_vers_1(tuple, &parse->version_1);
break;
case CISTPL_ALTSTR:
ret = parse_altstr(tuple, &parse->altstr);
break;
case CISTPL_JEDEC_A:
case CISTPL_JEDEC_C:
ret = parse_jedec(tuple, &parse->jedec);
break;
case CISTPL_MANFID:
ret = parse_manfid(tuple, &parse->manfid);
break;
case CISTPL_FUNCID:
ret = parse_funcid(tuple, &parse->funcid);
break;
case CISTPL_FUNCE:
ret = parse_funce(tuple, &parse->funce);
break;
case CISTPL_CONFIG:
ret = parse_config(tuple, &parse->config);
break;
case CISTPL_CFTABLE_ENTRY:
ret = parse_cftable_entry(tuple, &parse->cftable_entry);
break;
case CISTPL_DEVICE_GEO:
case CISTPL_DEVICE_GEO_A:
ret = parse_device_geo(tuple, &parse->device_geo);
break;
case CISTPL_VERS_2:
ret = parse_vers_2(tuple, &parse->vers_2);
break;
case CISTPL_ORG:
ret = parse_org(tuple, &parse->org);
break;
case CISTPL_FORMAT:
case CISTPL_FORMAT_A:
ret = parse_format(tuple, &parse->format);
break;
case CISTPL_NO_LINK:
case CISTPL_LINKTARGET:
ret = 0;
break;
default:
ret = -EINVAL;
break;
}
if (ret)
pr_debug("parse_tuple failed %d\n", ret);
return ret;
}
EXPORT_SYMBOL(pcmcia_parse_tuple);
/*======================================================================
This is used internally by Card Services to look up CIS stuff.
======================================================================*/
int pccard_read_tuple(struct pcmcia_socket *s, unsigned int function, cisdata_t code, void *parse)
{
tuple_t tuple;
cisdata_t *buf;
int ret;
buf = kmalloc(256, GFP_KERNEL);
if (buf == NULL) {
dev_printk(KERN_WARNING, &s->dev, "no memory to read tuple\n");
return -ENOMEM;
}
tuple.DesiredTuple = code;
tuple.Attributes = 0;
if (function == BIND_FN_ALL)
tuple.Attributes = TUPLE_RETURN_COMMON;
ret = pccard_get_first_tuple(s, function, &tuple);
if (ret != 0)
goto done;
tuple.TupleData = buf;
tuple.TupleOffset = 0;
tuple.TupleDataMax = 255;
ret = pccard_get_tuple_data(s, &tuple);
if (ret != 0)
goto done;
ret = pcmcia_parse_tuple(&tuple, parse);
done:
kfree(buf);
return ret;
}
/**
* pccard_loop_tuple() - loop over tuples in the CIS
* @s: the struct pcmcia_socket where the card is inserted
* @function: the device function we loop for
* @code: which CIS code shall we look for?
* @parse: buffer where the tuple shall be parsed (or NULL, if no parse)
* @priv_data: private data to be passed to the loop_tuple function.
* @loop_tuple: function to call for each CIS entry of type @function. IT
* gets passed the raw tuple, the paresed tuple (if @parse is
* set) and @priv_data.
*
* pccard_loop_tuple() loops over all CIS entries of type @function, and
* calls the @loop_tuple function for each entry. If the call to @loop_tuple
* returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
*/
int pccard_loop_tuple(struct pcmcia_socket *s, unsigned int function,
cisdata_t code, cisparse_t *parse, void *priv_data,
int (*loop_tuple) (tuple_t *tuple,
cisparse_t *parse,
void *priv_data))
{
tuple_t tuple;
cisdata_t *buf;
int ret;
buf = kzalloc(256, GFP_KERNEL);
if (buf == NULL) {
dev_printk(KERN_WARNING, &s->dev, "no memory to read tuple\n");
return -ENOMEM;
}
tuple.TupleData = buf;
tuple.TupleDataMax = 255;
tuple.TupleOffset = 0;
tuple.DesiredTuple = code;
tuple.Attributes = 0;
ret = pccard_get_first_tuple(s, function, &tuple);
while (!ret) {
if (pccard_get_tuple_data(s, &tuple))
goto next_entry;
if (parse)
if (pcmcia_parse_tuple(&tuple, parse))
goto next_entry;
ret = loop_tuple(&tuple, parse, priv_data);
if (!ret)
break;
next_entry:
ret = pccard_get_next_tuple(s, function, &tuple);
}
kfree(buf);
return ret;
}
/**
* pccard_validate_cis() - check whether card has a sensible CIS
* @s: the struct pcmcia_socket we are to check
* @info: returns the number of tuples in the (valid) CIS, or 0
*
* This tries to determine if a card has a sensible CIS. In @info, it
* returns the number of tuples in the CIS, or 0 if the CIS looks bad. The
* checks include making sure several critical tuples are present and
* valid; seeing if the total number of tuples is reasonable; and
* looking for tuples that use reserved codes.
*
* The function returns 0 on success.
*/
int pccard_validate_cis(struct pcmcia_socket *s, unsigned int *info)
{
tuple_t *tuple;
cisparse_t *p;
unsigned int count = 0;
int ret, reserved, dev_ok = 0, ident_ok = 0;
if (!s)
return -EINVAL;
/* We do not want to validate the CIS cache... */
mutex_lock(&s->ops_mutex);
destroy_cis_cache(s);
mutex_unlock(&s->ops_mutex);
tuple = kmalloc(sizeof(*tuple), GFP_KERNEL);
if (tuple == NULL) {
dev_warn(&s->dev, "no memory to validate CIS\n");
return -ENOMEM;
}
p = kmalloc(sizeof(*p), GFP_KERNEL);
if (p == NULL) {
kfree(tuple);
dev_warn(&s->dev, "no memory to validate CIS\n");
return -ENOMEM;
}
count = reserved = 0;
tuple->DesiredTuple = RETURN_FIRST_TUPLE;
tuple->Attributes = TUPLE_RETURN_COMMON;
ret = pccard_get_first_tuple(s, BIND_FN_ALL, tuple);
if (ret != 0)
goto done;
/* First tuple should be DEVICE; we should really have either that
or a CFTABLE_ENTRY of some sort */
if ((tuple->TupleCode == CISTPL_DEVICE) ||
(!pccard_read_tuple(s, BIND_FN_ALL, CISTPL_CFTABLE_ENTRY, p)) ||
(!pccard_read_tuple(s, BIND_FN_ALL, CISTPL_CFTABLE_ENTRY_CB, p)))
dev_ok++;
/* All cards should have a MANFID tuple, and/or a VERS_1 or VERS_2
tuple, for card identification. Certain old D-Link and Linksys
cards have only a broken VERS_2 tuple; hence the bogus test. */
if ((pccard_read_tuple(s, BIND_FN_ALL, CISTPL_MANFID, p) == 0) ||
(pccard_read_tuple(s, BIND_FN_ALL, CISTPL_VERS_1, p) == 0) ||
(pccard_read_tuple(s, BIND_FN_ALL, CISTPL_VERS_2, p) != -ENOSPC))
ident_ok++;
if (!dev_ok && !ident_ok)
goto done;
for (count = 1; count < MAX_TUPLES; count++) {
ret = pccard_get_next_tuple(s, BIND_FN_ALL, tuple);
if (ret != 0)
break;
if (((tuple->TupleCode > 0x23) && (tuple->TupleCode < 0x40)) ||
((tuple->TupleCode > 0x47) && (tuple->TupleCode < 0x80)) ||
((tuple->TupleCode > 0x90) && (tuple->TupleCode < 0xff)))
reserved++;
}
if ((count == MAX_TUPLES) || (reserved > 5) ||
((!dev_ok || !ident_ok) && (count > 10)))
count = 0;
ret = 0;
done:
/* invalidate CIS cache on failure */
if (!dev_ok || !ident_ok || !count) {
mutex_lock(&s->ops_mutex);
destroy_cis_cache(s);
mutex_unlock(&s->ops_mutex);
ret = -EIO;
}
if (info)
*info = count;
kfree(tuple);
kfree(p);
return ret;
}
#define to_socket(_dev) container_of(_dev, struct pcmcia_socket, dev)
static ssize_t pccard_extract_cis(struct pcmcia_socket *s, char *buf,
loff_t off, size_t count)
{
tuple_t tuple;
int status, i;
loff_t pointer = 0;
ssize_t ret = 0;
u_char *tuplebuffer;
u_char *tempbuffer;
tuplebuffer = kmalloc(sizeof(u_char) * 256, GFP_KERNEL);
if (!tuplebuffer)
return -ENOMEM;
tempbuffer = kmalloc(sizeof(u_char) * 258, GFP_KERNEL);
if (!tempbuffer) {
ret = -ENOMEM;
goto free_tuple;
}
memset(&tuple, 0, sizeof(tuple_t));
tuple.Attributes = TUPLE_RETURN_LINK | TUPLE_RETURN_COMMON;
tuple.DesiredTuple = RETURN_FIRST_TUPLE;
tuple.TupleOffset = 0;
status = pccard_get_first_tuple(s, BIND_FN_ALL, &tuple);
while (!status) {
tuple.TupleData = tuplebuffer;
tuple.TupleDataMax = 255;
memset(tuplebuffer, 0, sizeof(u_char) * 255);
status = pccard_get_tuple_data(s, &tuple);
if (status)
break;
if (off < (pointer + 2 + tuple.TupleDataLen)) {
tempbuffer[0] = tuple.TupleCode & 0xff;
tempbuffer[1] = tuple.TupleLink & 0xff;
for (i = 0; i < tuple.TupleDataLen; i++)
tempbuffer[i + 2] = tuplebuffer[i] & 0xff;
for (i = 0; i < (2 + tuple.TupleDataLen); i++) {
if (((i + pointer) >= off) &&
(i + pointer) < (off + count)) {
buf[ret] = tempbuffer[i];
ret++;
}
}
}
pointer += 2 + tuple.TupleDataLen;
if (pointer >= (off + count))
break;
if (tuple.TupleCode == CISTPL_END)
break;
status = pccard_get_next_tuple(s, BIND_FN_ALL, &tuple);
}
kfree(tempbuffer);
free_tuple:
kfree(tuplebuffer);
return ret;
}
static ssize_t pccard_show_cis(struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t off, size_t count)
{
unsigned int size = 0x200;
if (off >= size)
count = 0;
else {
struct pcmcia_socket *s;
unsigned int chains;
if (off + count > size)
count = size - off;
s = to_socket(container_of(kobj, struct device, kobj));
if (!(s->state & SOCKET_PRESENT))
return -ENODEV;
if (pccard_validate_cis(s, &chains))
return -EIO;
if (!chains)
return -ENODATA;
count = pccard_extract_cis(s, buf, off, count);
}
return count;
}
static ssize_t pccard_store_cis(struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t off, size_t count)
{
struct pcmcia_socket *s;
int error;
s = to_socket(container_of(kobj, struct device, kobj));
if (off)
return -EINVAL;
if (count >= CISTPL_MAX_CIS_SIZE)
return -EINVAL;
if (!(s->state & SOCKET_PRESENT))
return -ENODEV;
error = pcmcia_replace_cis(s, buf, count);
if (error)
return -EIO;
pcmcia_parse_uevents(s, PCMCIA_UEVENT_REQUERY);
return count;
}
struct bin_attribute pccard_cis_attr = {
.attr = { .name = "cis", .mode = S_IRUGO | S_IWUSR },
.size = 0x200,
.read = pccard_show_cis,
.write = pccard_store_cis,
};