kernel-fxtec-pro1x/arch/sparc/kernel/sun4m_smp.c
Linus Torvalds bf67f3a5c4 Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull smp hotplug cleanups from Thomas Gleixner:
 "This series is merily a cleanup of code copied around in arch/* and
  not changing any of the real cpu hotplug horrors yet.  I wish I'd had
  something more substantial for 3.5, but I underestimated the lurking
  horror..."

Fix up trivial conflicts in arch/{arm,sparc,x86}/Kconfig and
arch/sparc/include/asm/thread_info_32.h

* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (79 commits)
  um: Remove leftover declaration of alloc_task_struct_node()
  task_allocator: Use config switches instead of magic defines
  sparc: Use common threadinfo allocator
  score: Use common threadinfo allocator
  sh-use-common-threadinfo-allocator
  mn10300: Use common threadinfo allocator
  powerpc: Use common threadinfo allocator
  mips: Use common threadinfo allocator
  hexagon: Use common threadinfo allocator
  m32r: Use common threadinfo allocator
  frv: Use common threadinfo allocator
  cris: Use common threadinfo allocator
  x86: Use common threadinfo allocator
  c6x: Use common threadinfo allocator
  fork: Provide kmemcache based thread_info allocator
  tile: Use common threadinfo allocator
  fork: Provide weak arch_release_[task_struct|thread_info] functions
  fork: Move thread info gfp flags to header
  fork: Remove the weak insanity
  sh: Remove cpu_idle_wait()
  ...
2012-05-21 19:43:57 -07:00

287 lines
6.2 KiB
C

/*
* sun4m SMP support.
*
* Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
*/
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/profile.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/cpu.h>
#include <asm/cacheflush.h>
#include <asm/switch_to.h>
#include <asm/tlbflush.h>
#include <asm/timer.h>
#include <asm/oplib.h>
#include "irq.h"
#include "kernel.h"
#define IRQ_IPI_SINGLE 12
#define IRQ_IPI_MASK 13
#define IRQ_IPI_RESCHED 14
#define IRQ_CROSS_CALL 15
static inline unsigned long
swap_ulong(volatile unsigned long *ptr, unsigned long val)
{
__asm__ __volatile__("swap [%1], %0\n\t" :
"=&r" (val), "=&r" (ptr) :
"0" (val), "1" (ptr));
return val;
}
void __cpuinit smp4m_callin(void)
{
int cpuid = hard_smp_processor_id();
local_ops->cache_all();
local_ops->tlb_all();
notify_cpu_starting(cpuid);
register_percpu_ce(cpuid);
calibrate_delay();
smp_store_cpu_info(cpuid);
local_ops->cache_all();
local_ops->tlb_all();
/*
* Unblock the master CPU _only_ when the scheduler state
* of all secondary CPUs will be up-to-date, so after
* the SMP initialization the master will be just allowed
* to call the scheduler code.
*/
/* Allow master to continue. */
swap_ulong(&cpu_callin_map[cpuid], 1);
/* XXX: What's up with all the flushes? */
local_ops->cache_all();
local_ops->tlb_all();
/* Fix idle thread fields. */
__asm__ __volatile__("ld [%0], %%g6\n\t"
: : "r" (&current_set[cpuid])
: "memory" /* paranoid */);
/* Attach to the address space of init_task. */
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
mb();
local_irq_enable();
set_cpu_online(cpuid, true);
}
/*
* Cycle through the processors asking the PROM to start each one.
*/
void __init smp4m_boot_cpus(void)
{
sun4m_unmask_profile_irq();
local_ops->cache_all();
}
int __cpuinit smp4m_boot_one_cpu(int i, struct task_struct *idle)
{
unsigned long *entry = &sun4m_cpu_startup;
int timeout;
int cpu_node;
cpu_find_by_mid(i, &cpu_node);
current_set[i] = task_thread_info(idle);
/* See trampoline.S for details... */
entry += ((i - 1) * 3);
/*
* Initialize the contexts table
* Since the call to prom_startcpu() trashes the structure,
* we need to re-initialize it for each cpu
*/
smp_penguin_ctable.which_io = 0;
smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
smp_penguin_ctable.reg_size = 0;
/* whirrr, whirrr, whirrrrrrrrr... */
printk(KERN_INFO "Starting CPU %d at %p\n", i, entry);
local_ops->cache_all();
prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry);
/* wheee... it's going... */
for (timeout = 0; timeout < 10000; timeout++) {
if (cpu_callin_map[i])
break;
udelay(200);
}
if (!(cpu_callin_map[i])) {
printk(KERN_ERR "Processor %d is stuck.\n", i);
return -ENODEV;
}
local_ops->cache_all();
return 0;
}
void __init smp4m_smp_done(void)
{
int i, first;
int *prev;
/* setup cpu list for irq rotation */
first = 0;
prev = &first;
for_each_online_cpu(i) {
*prev = i;
prev = &cpu_data(i).next;
}
*prev = first;
local_ops->cache_all();
/* Ok, they are spinning and ready to go. */
}
static void sun4m_send_ipi(int cpu, int level)
{
sbus_writel(SUN4M_SOFT_INT(level), &sun4m_irq_percpu[cpu]->set);
}
static void sun4m_ipi_resched(int cpu)
{
sun4m_send_ipi(cpu, IRQ_IPI_RESCHED);
}
static void sun4m_ipi_single(int cpu)
{
sun4m_send_ipi(cpu, IRQ_IPI_SINGLE);
}
static void sun4m_ipi_mask_one(int cpu)
{
sun4m_send_ipi(cpu, IRQ_IPI_MASK);
}
static struct smp_funcall {
smpfunc_t func;
unsigned long arg1;
unsigned long arg2;
unsigned long arg3;
unsigned long arg4;
unsigned long arg5;
unsigned long processors_in[SUN4M_NCPUS]; /* Set when ipi entered. */
unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
} ccall_info;
static DEFINE_SPINLOCK(cross_call_lock);
/* Cross calls must be serialized, at least currently. */
static void sun4m_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1,
unsigned long arg2, unsigned long arg3,
unsigned long arg4)
{
register int ncpus = SUN4M_NCPUS;
unsigned long flags;
spin_lock_irqsave(&cross_call_lock, flags);
/* Init function glue. */
ccall_info.func = func;
ccall_info.arg1 = arg1;
ccall_info.arg2 = arg2;
ccall_info.arg3 = arg3;
ccall_info.arg4 = arg4;
ccall_info.arg5 = 0;
/* Init receive/complete mapping, plus fire the IPI's off. */
{
register int i;
cpumask_clear_cpu(smp_processor_id(), &mask);
cpumask_and(&mask, cpu_online_mask, &mask);
for (i = 0; i < ncpus; i++) {
if (cpumask_test_cpu(i, &mask)) {
ccall_info.processors_in[i] = 0;
ccall_info.processors_out[i] = 0;
sun4m_send_ipi(i, IRQ_CROSS_CALL);
} else {
ccall_info.processors_in[i] = 1;
ccall_info.processors_out[i] = 1;
}
}
}
{
register int i;
i = 0;
do {
if (!cpumask_test_cpu(i, &mask))
continue;
while (!ccall_info.processors_in[i])
barrier();
} while (++i < ncpus);
i = 0;
do {
if (!cpumask_test_cpu(i, &mask))
continue;
while (!ccall_info.processors_out[i])
barrier();
} while (++i < ncpus);
}
spin_unlock_irqrestore(&cross_call_lock, flags);
}
/* Running cross calls. */
void smp4m_cross_call_irq(void)
{
int i = smp_processor_id();
ccall_info.processors_in[i] = 1;
ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
ccall_info.arg4, ccall_info.arg5);
ccall_info.processors_out[i] = 1;
}
void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
{
struct pt_regs *old_regs;
struct clock_event_device *ce;
int cpu = smp_processor_id();
old_regs = set_irq_regs(regs);
ce = &per_cpu(sparc32_clockevent, cpu);
if (ce->mode & CLOCK_EVT_MODE_PERIODIC)
sun4m_clear_profile_irq(cpu);
else
sparc_config.load_profile_irq(cpu, 0); /* Is this needless? */
irq_enter();
ce->event_handler(ce);
irq_exit();
set_irq_regs(old_regs);
}
static const struct sparc32_ipi_ops sun4m_ipi_ops = {
.cross_call = sun4m_cross_call,
.resched = sun4m_ipi_resched,
.single = sun4m_ipi_single,
.mask_one = sun4m_ipi_mask_one,
};
void __init sun4m_init_smp(void)
{
sparc32_ipi_ops = &sun4m_ipi_ops;
}