kernel-fxtec-pro1x/include/linux/slab.h
Christoph Lameter 0aa817f078 Slab allocators: define common size limitations
Currently we have a maze of configuration variables that determine the
maximum slab size.  Worst of all it seems to vary between SLAB and SLUB.

So define a common maximum size for kmalloc.  For conveniences sake we use
the maximum size ever supported which is 32 MB.  We limit the maximum size
to a lower limit if MAX_ORDER does not allow such large allocations.

For many architectures this patch will have the effect of adding large
kmalloc sizes.  x86_64 adds 5 new kmalloc sizes.  So a small amount of
memory will be needed for these caches (contemporary SLAB has dynamically
sizeable node and cpu structure so the waste is less than in the past)

Most architectures will then be able to allocate object with sizes up to
MAX_ORDER.  We have had repeated breakage (in fact whenever we doubled the
number of supported processors) on IA64 because one or the other struct
grew beyond what the slab allocators supported.  This will avoid future
issues and f.e.  avoid fixes for 2k and 4k cpu support.

CONFIG_LARGE_ALLOCS is no longer necessary so drop it.

It fixes sparc64 with SLAB.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-17 05:23:04 -07:00

250 lines
8 KiB
C

/*
* Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
*
* (C) SGI 2006, Christoph Lameter <clameter@sgi.com>
* Cleaned up and restructured to ease the addition of alternative
* implementations of SLAB allocators.
*/
#ifndef _LINUX_SLAB_H
#define _LINUX_SLAB_H
#ifdef __KERNEL__
#include <linux/gfp.h>
#include <linux/types.h>
typedef struct kmem_cache kmem_cache_t __deprecated;
/*
* Flags to pass to kmem_cache_create().
* The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
*/
#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
/*
* struct kmem_cache related prototypes
*/
void __init kmem_cache_init(void);
int slab_is_available(void);
struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
unsigned long,
void (*)(void *, struct kmem_cache *, unsigned long),
void (*)(void *, struct kmem_cache *, unsigned long));
void kmem_cache_destroy(struct kmem_cache *);
int kmem_cache_shrink(struct kmem_cache *);
void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
void *kmem_cache_zalloc(struct kmem_cache *, gfp_t);
void kmem_cache_free(struct kmem_cache *, void *);
unsigned int kmem_cache_size(struct kmem_cache *);
const char *kmem_cache_name(struct kmem_cache *);
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr);
/*
* Please use this macro to create slab caches. Simply specify the
* name of the structure and maybe some flags that are listed above.
*
* The alignment of the struct determines object alignment. If you
* f.e. add ____cacheline_aligned_in_smp to the struct declaration
* then the objects will be properly aligned in SMP configurations.
*/
#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
sizeof(struct __struct), __alignof__(struct __struct),\
(__flags), NULL, NULL)
#ifdef CONFIG_NUMA
extern void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
#else
static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
gfp_t flags, int node)
{
return kmem_cache_alloc(cachep, flags);
}
#endif
/*
* The largest kmalloc size supported by the slab allocators is
* 32 megabyte (2^25) or the maximum allocatable page order if that is
* less than 32 MB.
*
* WARNING: Its not easy to increase this value since the allocators have
* to do various tricks to work around compiler limitations in order to
* ensure proper constant folding.
*/
#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT) <= 25 ? \
(MAX_ORDER + PAGE_SHIFT) : 25)
#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH)
#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
/*
* Common kmalloc functions provided by all allocators
*/
void *__kmalloc(size_t, gfp_t);
void *__kzalloc(size_t, gfp_t);
void * __must_check krealloc(const void *, size_t, gfp_t);
void kfree(const void *);
size_t ksize(const void *);
/**
* kcalloc - allocate memory for an array. The memory is set to zero.
* @n: number of elements.
* @size: element size.
* @flags: the type of memory to allocate.
*/
static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
{
if (n != 0 && size > ULONG_MAX / n)
return NULL;
return __kzalloc(n * size, flags);
}
/*
* Allocator specific definitions. These are mainly used to establish optimized
* ways to convert kmalloc() calls to kmem_cache_alloc() invocations by selecting
* the appropriate general cache at compile time.
*/
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB)
#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
#else
#include <linux/slab_def.h>
#endif /* !CONFIG_SLUB */
#else
/*
* Fallback definitions for an allocator not wanting to provide
* its own optimized kmalloc definitions (like SLOB).
*/
/**
* kmalloc - allocate memory
* @size: how many bytes of memory are required.
* @flags: the type of memory to allocate.
*
* kmalloc is the normal method of allocating memory
* in the kernel.
*
* The @flags argument may be one of:
*
* %GFP_USER - Allocate memory on behalf of user. May sleep.
*
* %GFP_KERNEL - Allocate normal kernel ram. May sleep.
*
* %GFP_ATOMIC - Allocation will not sleep.
* For example, use this inside interrupt handlers.
*
* %GFP_HIGHUSER - Allocate pages from high memory.
*
* %GFP_NOIO - Do not do any I/O at all while trying to get memory.
*
* %GFP_NOFS - Do not make any fs calls while trying to get memory.
*
* Also it is possible to set different flags by OR'ing
* in one or more of the following additional @flags:
*
* %__GFP_COLD - Request cache-cold pages instead of
* trying to return cache-warm pages.
*
* %__GFP_DMA - Request memory from the DMA-capable zone.
*
* %__GFP_HIGH - This allocation has high priority and may use emergency pools.
*
* %__GFP_HIGHMEM - Allocated memory may be from highmem.
*
* %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
* (think twice before using).
*
* %__GFP_NORETRY - If memory is not immediately available,
* then give up at once.
*
* %__GFP_NOWARN - If allocation fails, don't issue any warnings.
*
* %__GFP_REPEAT - If allocation fails initially, try once more before failing.
*/
static inline void *kmalloc(size_t size, gfp_t flags)
{
return __kmalloc(size, flags);
}
/**
* kzalloc - allocate memory. The memory is set to zero.
* @size: how many bytes of memory are required.
* @flags: the type of memory to allocate (see kmalloc).
*/
static inline void *kzalloc(size_t size, gfp_t flags)
{
return __kzalloc(size, flags);
}
#endif
#ifndef CONFIG_NUMA
static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
return kmalloc(size, flags);
}
static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
return __kmalloc(size, flags);
}
#endif /* !CONFIG_NUMA */
/*
* kmalloc_track_caller is a special version of kmalloc that records the
* calling function of the routine calling it for slab leak tracking instead
* of just the calling function (confusing, eh?).
* It's useful when the call to kmalloc comes from a widely-used standard
* allocator where we care about the real place the memory allocation
* request comes from.
*/
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
extern void *__kmalloc_track_caller(size_t, gfp_t, void*);
#define kmalloc_track_caller(size, flags) \
__kmalloc_track_caller(size, flags, __builtin_return_address(0))
#else
#define kmalloc_track_caller(size, flags) \
__kmalloc(size, flags)
#endif /* DEBUG_SLAB */
#ifdef CONFIG_NUMA
/*
* kmalloc_node_track_caller is a special version of kmalloc_node that
* records the calling function of the routine calling it for slab leak
* tracking instead of just the calling function (confusing, eh?).
* It's useful when the call to kmalloc_node comes from a widely-used
* standard allocator where we care about the real place the memory
* allocation request comes from.
*/
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, void *);
#define kmalloc_node_track_caller(size, flags, node) \
__kmalloc_node_track_caller(size, flags, node, \
__builtin_return_address(0))
#else
#define kmalloc_node_track_caller(size, flags, node) \
__kmalloc_node(size, flags, node)
#endif
#else /* CONFIG_NUMA */
#define kmalloc_node_track_caller(size, flags, node) \
kmalloc_track_caller(size, flags)
#endif /* DEBUG_SLAB */
#endif /* __KERNEL__ */
#endif /* _LINUX_SLAB_H */