kernel-fxtec-pro1x/drivers/infiniband/hw/mthca/mthca_memfree.c
Alexey Dobriyan e8edc6e03a Detach sched.h from mm.h
First thing mm.h does is including sched.h solely for can_do_mlock() inline
function which has "current" dereference inside. By dealing with can_do_mlock()
mm.h can be detached from sched.h which is good. See below, why.

This patch
a) removes unconditional inclusion of sched.h from mm.h
b) makes can_do_mlock() normal function in mm/mlock.c
c) exports can_do_mlock() to not break compilation
d) adds sched.h inclusions back to files that were getting it indirectly.
e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were
   getting them indirectly

Net result is:
a) mm.h users would get less code to open, read, preprocess, parse, ... if
   they don't need sched.h
b) sched.h stops being dependency for significant number of files:
   on x86_64 allmodconfig touching sched.h results in recompile of 4083 files,
   after patch it's only 3744 (-8.3%).

Cross-compile tested on

	all arm defconfigs, all mips defconfigs, all powerpc defconfigs,
	alpha alpha-up
	arm
	i386 i386-up i386-defconfig i386-allnoconfig
	ia64 ia64-up
	m68k
	mips
	parisc parisc-up
	powerpc powerpc-up
	s390 s390-up
	sparc sparc-up
	sparc64 sparc64-up
	um-x86_64
	x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig

as well as my two usual configs.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-21 09:18:19 -07:00

766 lines
18 KiB
C

/*
* Copyright (c) 2004, 2005 Topspin Communications. All rights reserved.
* Copyright (c) 2005 Cisco Systems. All rights reserved.
* Copyright (c) 2005 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* $Id$
*/
#include <linux/mm.h>
#include <linux/scatterlist.h>
#include <linux/sched.h>
#include <asm/page.h>
#include "mthca_memfree.h"
#include "mthca_dev.h"
#include "mthca_cmd.h"
/*
* We allocate in as big chunks as we can, up to a maximum of 256 KB
* per chunk.
*/
enum {
MTHCA_ICM_ALLOC_SIZE = 1 << 18,
MTHCA_TABLE_CHUNK_SIZE = 1 << 18
};
struct mthca_user_db_table {
struct mutex mutex;
struct {
u64 uvirt;
struct scatterlist mem;
int refcount;
} page[0];
};
static void mthca_free_icm_pages(struct mthca_dev *dev, struct mthca_icm_chunk *chunk)
{
int i;
if (chunk->nsg > 0)
pci_unmap_sg(dev->pdev, chunk->mem, chunk->npages,
PCI_DMA_BIDIRECTIONAL);
for (i = 0; i < chunk->npages; ++i)
__free_pages(chunk->mem[i].page,
get_order(chunk->mem[i].length));
}
static void mthca_free_icm_coherent(struct mthca_dev *dev, struct mthca_icm_chunk *chunk)
{
int i;
for (i = 0; i < chunk->npages; ++i) {
dma_free_coherent(&dev->pdev->dev, chunk->mem[i].length,
lowmem_page_address(chunk->mem[i].page),
sg_dma_address(&chunk->mem[i]));
}
}
void mthca_free_icm(struct mthca_dev *dev, struct mthca_icm *icm, int coherent)
{
struct mthca_icm_chunk *chunk, *tmp;
if (!icm)
return;
list_for_each_entry_safe(chunk, tmp, &icm->chunk_list, list) {
if (coherent)
mthca_free_icm_coherent(dev, chunk);
else
mthca_free_icm_pages(dev, chunk);
kfree(chunk);
}
kfree(icm);
}
static int mthca_alloc_icm_pages(struct scatterlist *mem, int order, gfp_t gfp_mask)
{
mem->page = alloc_pages(gfp_mask, order);
if (!mem->page)
return -ENOMEM;
mem->length = PAGE_SIZE << order;
mem->offset = 0;
return 0;
}
static int mthca_alloc_icm_coherent(struct device *dev, struct scatterlist *mem,
int order, gfp_t gfp_mask)
{
void *buf = dma_alloc_coherent(dev, PAGE_SIZE << order, &sg_dma_address(mem),
gfp_mask);
if (!buf)
return -ENOMEM;
sg_set_buf(mem, buf, PAGE_SIZE << order);
BUG_ON(mem->offset);
sg_dma_len(mem) = PAGE_SIZE << order;
return 0;
}
struct mthca_icm *mthca_alloc_icm(struct mthca_dev *dev, int npages,
gfp_t gfp_mask, int coherent)
{
struct mthca_icm *icm;
struct mthca_icm_chunk *chunk = NULL;
int cur_order;
int ret;
/* We use sg_set_buf for coherent allocs, which assumes low memory */
BUG_ON(coherent && (gfp_mask & __GFP_HIGHMEM));
icm = kmalloc(sizeof *icm, gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN));
if (!icm)
return icm;
icm->refcount = 0;
INIT_LIST_HEAD(&icm->chunk_list);
cur_order = get_order(MTHCA_ICM_ALLOC_SIZE);
while (npages > 0) {
if (!chunk) {
chunk = kmalloc(sizeof *chunk,
gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN));
if (!chunk)
goto fail;
chunk->npages = 0;
chunk->nsg = 0;
list_add_tail(&chunk->list, &icm->chunk_list);
}
while (1 << cur_order > npages)
--cur_order;
if (coherent)
ret = mthca_alloc_icm_coherent(&dev->pdev->dev,
&chunk->mem[chunk->npages],
cur_order, gfp_mask);
else
ret = mthca_alloc_icm_pages(&chunk->mem[chunk->npages],
cur_order, gfp_mask);
if (!ret) {
++chunk->npages;
if (coherent)
++chunk->nsg;
else if (chunk->npages == MTHCA_ICM_CHUNK_LEN) {
chunk->nsg = pci_map_sg(dev->pdev, chunk->mem,
chunk->npages,
PCI_DMA_BIDIRECTIONAL);
if (chunk->nsg <= 0)
goto fail;
}
if (chunk->npages == MTHCA_ICM_CHUNK_LEN)
chunk = NULL;
npages -= 1 << cur_order;
} else {
--cur_order;
if (cur_order < 0)
goto fail;
}
}
if (!coherent && chunk) {
chunk->nsg = pci_map_sg(dev->pdev, chunk->mem,
chunk->npages,
PCI_DMA_BIDIRECTIONAL);
if (chunk->nsg <= 0)
goto fail;
}
return icm;
fail:
mthca_free_icm(dev, icm, coherent);
return NULL;
}
int mthca_table_get(struct mthca_dev *dev, struct mthca_icm_table *table, int obj)
{
int i = (obj & (table->num_obj - 1)) * table->obj_size / MTHCA_TABLE_CHUNK_SIZE;
int ret = 0;
u8 status;
mutex_lock(&table->mutex);
if (table->icm[i]) {
++table->icm[i]->refcount;
goto out;
}
table->icm[i] = mthca_alloc_icm(dev, MTHCA_TABLE_CHUNK_SIZE >> PAGE_SHIFT,
(table->lowmem ? GFP_KERNEL : GFP_HIGHUSER) |
__GFP_NOWARN, table->coherent);
if (!table->icm[i]) {
ret = -ENOMEM;
goto out;
}
if (mthca_MAP_ICM(dev, table->icm[i], table->virt + i * MTHCA_TABLE_CHUNK_SIZE,
&status) || status) {
mthca_free_icm(dev, table->icm[i], table->coherent);
table->icm[i] = NULL;
ret = -ENOMEM;
goto out;
}
++table->icm[i]->refcount;
out:
mutex_unlock(&table->mutex);
return ret;
}
void mthca_table_put(struct mthca_dev *dev, struct mthca_icm_table *table, int obj)
{
int i;
u8 status;
if (!mthca_is_memfree(dev))
return;
i = (obj & (table->num_obj - 1)) * table->obj_size / MTHCA_TABLE_CHUNK_SIZE;
mutex_lock(&table->mutex);
if (--table->icm[i]->refcount == 0) {
mthca_UNMAP_ICM(dev, table->virt + i * MTHCA_TABLE_CHUNK_SIZE,
MTHCA_TABLE_CHUNK_SIZE / MTHCA_ICM_PAGE_SIZE,
&status);
mthca_free_icm(dev, table->icm[i], table->coherent);
table->icm[i] = NULL;
}
mutex_unlock(&table->mutex);
}
void *mthca_table_find(struct mthca_icm_table *table, int obj, dma_addr_t *dma_handle)
{
int idx, offset, dma_offset, i;
struct mthca_icm_chunk *chunk;
struct mthca_icm *icm;
struct page *page = NULL;
if (!table->lowmem)
return NULL;
mutex_lock(&table->mutex);
idx = (obj & (table->num_obj - 1)) * table->obj_size;
icm = table->icm[idx / MTHCA_TABLE_CHUNK_SIZE];
dma_offset = offset = idx % MTHCA_TABLE_CHUNK_SIZE;
if (!icm)
goto out;
list_for_each_entry(chunk, &icm->chunk_list, list) {
for (i = 0; i < chunk->npages; ++i) {
if (dma_handle && dma_offset >= 0) {
if (sg_dma_len(&chunk->mem[i]) > dma_offset)
*dma_handle = sg_dma_address(&chunk->mem[i]) +
dma_offset;
dma_offset -= sg_dma_len(&chunk->mem[i]);
}
/* DMA mapping can merge pages but not split them,
* so if we found the page, dma_handle has already
* been assigned to. */
if (chunk->mem[i].length > offset) {
page = chunk->mem[i].page;
goto out;
}
offset -= chunk->mem[i].length;
}
}
out:
mutex_unlock(&table->mutex);
return page ? lowmem_page_address(page) + offset : NULL;
}
int mthca_table_get_range(struct mthca_dev *dev, struct mthca_icm_table *table,
int start, int end)
{
int inc = MTHCA_TABLE_CHUNK_SIZE / table->obj_size;
int i, err;
for (i = start; i <= end; i += inc) {
err = mthca_table_get(dev, table, i);
if (err)
goto fail;
}
return 0;
fail:
while (i > start) {
i -= inc;
mthca_table_put(dev, table, i);
}
return err;
}
void mthca_table_put_range(struct mthca_dev *dev, struct mthca_icm_table *table,
int start, int end)
{
int i;
if (!mthca_is_memfree(dev))
return;
for (i = start; i <= end; i += MTHCA_TABLE_CHUNK_SIZE / table->obj_size)
mthca_table_put(dev, table, i);
}
struct mthca_icm_table *mthca_alloc_icm_table(struct mthca_dev *dev,
u64 virt, int obj_size,
int nobj, int reserved,
int use_lowmem, int use_coherent)
{
struct mthca_icm_table *table;
int num_icm;
unsigned chunk_size;
int i;
u8 status;
num_icm = (obj_size * nobj + MTHCA_TABLE_CHUNK_SIZE - 1) / MTHCA_TABLE_CHUNK_SIZE;
table = kmalloc(sizeof *table + num_icm * sizeof *table->icm, GFP_KERNEL);
if (!table)
return NULL;
table->virt = virt;
table->num_icm = num_icm;
table->num_obj = nobj;
table->obj_size = obj_size;
table->lowmem = use_lowmem;
table->coherent = use_coherent;
mutex_init(&table->mutex);
for (i = 0; i < num_icm; ++i)
table->icm[i] = NULL;
for (i = 0; i * MTHCA_TABLE_CHUNK_SIZE < reserved * obj_size; ++i) {
chunk_size = MTHCA_TABLE_CHUNK_SIZE;
if ((i + 1) * MTHCA_TABLE_CHUNK_SIZE > nobj * obj_size)
chunk_size = nobj * obj_size - i * MTHCA_TABLE_CHUNK_SIZE;
table->icm[i] = mthca_alloc_icm(dev, chunk_size >> PAGE_SHIFT,
(use_lowmem ? GFP_KERNEL : GFP_HIGHUSER) |
__GFP_NOWARN, use_coherent);
if (!table->icm[i])
goto err;
if (mthca_MAP_ICM(dev, table->icm[i], virt + i * MTHCA_TABLE_CHUNK_SIZE,
&status) || status) {
mthca_free_icm(dev, table->icm[i], table->coherent);
table->icm[i] = NULL;
goto err;
}
/*
* Add a reference to this ICM chunk so that it never
* gets freed (since it contains reserved firmware objects).
*/
++table->icm[i]->refcount;
}
return table;
err:
for (i = 0; i < num_icm; ++i)
if (table->icm[i]) {
mthca_UNMAP_ICM(dev, virt + i * MTHCA_TABLE_CHUNK_SIZE,
MTHCA_TABLE_CHUNK_SIZE / MTHCA_ICM_PAGE_SIZE,
&status);
mthca_free_icm(dev, table->icm[i], table->coherent);
}
kfree(table);
return NULL;
}
void mthca_free_icm_table(struct mthca_dev *dev, struct mthca_icm_table *table)
{
int i;
u8 status;
for (i = 0; i < table->num_icm; ++i)
if (table->icm[i]) {
mthca_UNMAP_ICM(dev, table->virt + i * MTHCA_TABLE_CHUNK_SIZE,
MTHCA_TABLE_CHUNK_SIZE / MTHCA_ICM_PAGE_SIZE,
&status);
mthca_free_icm(dev, table->icm[i], table->coherent);
}
kfree(table);
}
static u64 mthca_uarc_virt(struct mthca_dev *dev, struct mthca_uar *uar, int page)
{
return dev->uar_table.uarc_base +
uar->index * dev->uar_table.uarc_size +
page * MTHCA_ICM_PAGE_SIZE;
}
int mthca_map_user_db(struct mthca_dev *dev, struct mthca_uar *uar,
struct mthca_user_db_table *db_tab, int index, u64 uaddr)
{
int ret = 0;
u8 status;
int i;
if (!mthca_is_memfree(dev))
return 0;
if (index < 0 || index > dev->uar_table.uarc_size / 8)
return -EINVAL;
mutex_lock(&db_tab->mutex);
i = index / MTHCA_DB_REC_PER_PAGE;
if ((db_tab->page[i].refcount >= MTHCA_DB_REC_PER_PAGE) ||
(db_tab->page[i].uvirt && db_tab->page[i].uvirt != uaddr) ||
(uaddr & 4095)) {
ret = -EINVAL;
goto out;
}
if (db_tab->page[i].refcount) {
++db_tab->page[i].refcount;
goto out;
}
ret = get_user_pages(current, current->mm, uaddr & PAGE_MASK, 1, 1, 0,
&db_tab->page[i].mem.page, NULL);
if (ret < 0)
goto out;
db_tab->page[i].mem.length = MTHCA_ICM_PAGE_SIZE;
db_tab->page[i].mem.offset = uaddr & ~PAGE_MASK;
ret = pci_map_sg(dev->pdev, &db_tab->page[i].mem, 1, PCI_DMA_TODEVICE);
if (ret < 0) {
put_page(db_tab->page[i].mem.page);
goto out;
}
ret = mthca_MAP_ICM_page(dev, sg_dma_address(&db_tab->page[i].mem),
mthca_uarc_virt(dev, uar, i), &status);
if (!ret && status)
ret = -EINVAL;
if (ret) {
pci_unmap_sg(dev->pdev, &db_tab->page[i].mem, 1, PCI_DMA_TODEVICE);
put_page(db_tab->page[i].mem.page);
goto out;
}
db_tab->page[i].uvirt = uaddr;
db_tab->page[i].refcount = 1;
out:
mutex_unlock(&db_tab->mutex);
return ret;
}
void mthca_unmap_user_db(struct mthca_dev *dev, struct mthca_uar *uar,
struct mthca_user_db_table *db_tab, int index)
{
if (!mthca_is_memfree(dev))
return;
/*
* To make our bookkeeping simpler, we don't unmap DB
* pages until we clean up the whole db table.
*/
mutex_lock(&db_tab->mutex);
--db_tab->page[index / MTHCA_DB_REC_PER_PAGE].refcount;
mutex_unlock(&db_tab->mutex);
}
struct mthca_user_db_table *mthca_init_user_db_tab(struct mthca_dev *dev)
{
struct mthca_user_db_table *db_tab;
int npages;
int i;
if (!mthca_is_memfree(dev))
return NULL;
npages = dev->uar_table.uarc_size / MTHCA_ICM_PAGE_SIZE;
db_tab = kmalloc(sizeof *db_tab + npages * sizeof *db_tab->page, GFP_KERNEL);
if (!db_tab)
return ERR_PTR(-ENOMEM);
mutex_init(&db_tab->mutex);
for (i = 0; i < npages; ++i) {
db_tab->page[i].refcount = 0;
db_tab->page[i].uvirt = 0;
}
return db_tab;
}
void mthca_cleanup_user_db_tab(struct mthca_dev *dev, struct mthca_uar *uar,
struct mthca_user_db_table *db_tab)
{
int i;
u8 status;
if (!mthca_is_memfree(dev))
return;
for (i = 0; i < dev->uar_table.uarc_size / MTHCA_ICM_PAGE_SIZE; ++i) {
if (db_tab->page[i].uvirt) {
mthca_UNMAP_ICM(dev, mthca_uarc_virt(dev, uar, i), 1, &status);
pci_unmap_sg(dev->pdev, &db_tab->page[i].mem, 1, PCI_DMA_TODEVICE);
put_page(db_tab->page[i].mem.page);
}
}
kfree(db_tab);
}
int mthca_alloc_db(struct mthca_dev *dev, enum mthca_db_type type,
u32 qn, __be32 **db)
{
int group;
int start, end, dir;
int i, j;
struct mthca_db_page *page;
int ret = 0;
u8 status;
mutex_lock(&dev->db_tab->mutex);
switch (type) {
case MTHCA_DB_TYPE_CQ_ARM:
case MTHCA_DB_TYPE_SQ:
group = 0;
start = 0;
end = dev->db_tab->max_group1;
dir = 1;
break;
case MTHCA_DB_TYPE_CQ_SET_CI:
case MTHCA_DB_TYPE_RQ:
case MTHCA_DB_TYPE_SRQ:
group = 1;
start = dev->db_tab->npages - 1;
end = dev->db_tab->min_group2;
dir = -1;
break;
default:
ret = -EINVAL;
goto out;
}
for (i = start; i != end; i += dir)
if (dev->db_tab->page[i].db_rec &&
!bitmap_full(dev->db_tab->page[i].used,
MTHCA_DB_REC_PER_PAGE)) {
page = dev->db_tab->page + i;
goto found;
}
for (i = start; i != end; i += dir)
if (!dev->db_tab->page[i].db_rec) {
page = dev->db_tab->page + i;
goto alloc;
}
if (dev->db_tab->max_group1 >= dev->db_tab->min_group2 - 1) {
ret = -ENOMEM;
goto out;
}
if (group == 0)
++dev->db_tab->max_group1;
else
--dev->db_tab->min_group2;
page = dev->db_tab->page + end;
alloc:
page->db_rec = dma_alloc_coherent(&dev->pdev->dev, MTHCA_ICM_PAGE_SIZE,
&page->mapping, GFP_KERNEL);
if (!page->db_rec) {
ret = -ENOMEM;
goto out;
}
memset(page->db_rec, 0, MTHCA_ICM_PAGE_SIZE);
ret = mthca_MAP_ICM_page(dev, page->mapping,
mthca_uarc_virt(dev, &dev->driver_uar, i), &status);
if (!ret && status)
ret = -EINVAL;
if (ret) {
dma_free_coherent(&dev->pdev->dev, MTHCA_ICM_PAGE_SIZE,
page->db_rec, page->mapping);
goto out;
}
bitmap_zero(page->used, MTHCA_DB_REC_PER_PAGE);
found:
j = find_first_zero_bit(page->used, MTHCA_DB_REC_PER_PAGE);
set_bit(j, page->used);
if (group == 1)
j = MTHCA_DB_REC_PER_PAGE - 1 - j;
ret = i * MTHCA_DB_REC_PER_PAGE + j;
page->db_rec[j] = cpu_to_be64((qn << 8) | (type << 5));
*db = (__be32 *) &page->db_rec[j];
out:
mutex_unlock(&dev->db_tab->mutex);
return ret;
}
void mthca_free_db(struct mthca_dev *dev, int type, int db_index)
{
int i, j;
struct mthca_db_page *page;
u8 status;
i = db_index / MTHCA_DB_REC_PER_PAGE;
j = db_index % MTHCA_DB_REC_PER_PAGE;
page = dev->db_tab->page + i;
mutex_lock(&dev->db_tab->mutex);
page->db_rec[j] = 0;
if (i >= dev->db_tab->min_group2)
j = MTHCA_DB_REC_PER_PAGE - 1 - j;
clear_bit(j, page->used);
if (bitmap_empty(page->used, MTHCA_DB_REC_PER_PAGE) &&
i >= dev->db_tab->max_group1 - 1) {
mthca_UNMAP_ICM(dev, mthca_uarc_virt(dev, &dev->driver_uar, i), 1, &status);
dma_free_coherent(&dev->pdev->dev, MTHCA_ICM_PAGE_SIZE,
page->db_rec, page->mapping);
page->db_rec = NULL;
if (i == dev->db_tab->max_group1) {
--dev->db_tab->max_group1;
/* XXX may be able to unmap more pages now */
}
if (i == dev->db_tab->min_group2)
++dev->db_tab->min_group2;
}
mutex_unlock(&dev->db_tab->mutex);
}
int mthca_init_db_tab(struct mthca_dev *dev)
{
int i;
if (!mthca_is_memfree(dev))
return 0;
dev->db_tab = kmalloc(sizeof *dev->db_tab, GFP_KERNEL);
if (!dev->db_tab)
return -ENOMEM;
mutex_init(&dev->db_tab->mutex);
dev->db_tab->npages = dev->uar_table.uarc_size / MTHCA_ICM_PAGE_SIZE;
dev->db_tab->max_group1 = 0;
dev->db_tab->min_group2 = dev->db_tab->npages - 1;
dev->db_tab->page = kmalloc(dev->db_tab->npages *
sizeof *dev->db_tab->page,
GFP_KERNEL);
if (!dev->db_tab->page) {
kfree(dev->db_tab);
return -ENOMEM;
}
for (i = 0; i < dev->db_tab->npages; ++i)
dev->db_tab->page[i].db_rec = NULL;
return 0;
}
void mthca_cleanup_db_tab(struct mthca_dev *dev)
{
int i;
u8 status;
if (!mthca_is_memfree(dev))
return;
/*
* Because we don't always free our UARC pages when they
* become empty to make mthca_free_db() simpler we need to
* make a sweep through the doorbell pages and free any
* leftover pages now.
*/
for (i = 0; i < dev->db_tab->npages; ++i) {
if (!dev->db_tab->page[i].db_rec)
continue;
if (!bitmap_empty(dev->db_tab->page[i].used, MTHCA_DB_REC_PER_PAGE))
mthca_warn(dev, "Kernel UARC page %d not empty\n", i);
mthca_UNMAP_ICM(dev, mthca_uarc_virt(dev, &dev->driver_uar, i), 1, &status);
dma_free_coherent(&dev->pdev->dev, MTHCA_ICM_PAGE_SIZE,
dev->db_tab->page[i].db_rec,
dev->db_tab->page[i].mapping);
}
kfree(dev->db_tab->page);
kfree(dev->db_tab);
}