7835e98b2e
set_page_count usage outside mm/ is limited to setting the refcount to 1. Remove set_page_count from outside mm/, and replace those users with init_page_count() and set_page_refcounted(). This allows more debug checking, and tighter control on how code is allowed to play around with page->_count. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
624 lines
16 KiB
C
624 lines
16 KiB
C
/*
|
|
* PowerPC version
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
|
|
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
|
|
* Copyright (C) 1996 Paul Mackerras
|
|
* Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
|
|
* PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
|
|
*
|
|
* Derived from "arch/i386/mm/init.c"
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/pagemap.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/io.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/btext.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/bootinfo.h>
|
|
|
|
#include "mem_pieces.h"
|
|
#include "mmu_decl.h"
|
|
|
|
#if defined(CONFIG_KERNEL_START_BOOL) || defined(CONFIG_LOWMEM_SIZE_BOOL)
|
|
/* The ammount of lowmem must be within 0xF0000000 - KERNELBASE. */
|
|
#if (CONFIG_LOWMEM_SIZE > (0xF0000000 - KERNELBASE))
|
|
#error "You must adjust CONFIG_LOWMEM_SIZE or CONFIG_START_KERNEL"
|
|
#endif
|
|
#endif
|
|
#define MAX_LOW_MEM CONFIG_LOWMEM_SIZE
|
|
|
|
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
|
|
|
|
unsigned long total_memory;
|
|
unsigned long total_lowmem;
|
|
|
|
unsigned long ppc_memstart;
|
|
unsigned long ppc_memoffset = PAGE_OFFSET;
|
|
|
|
int mem_init_done;
|
|
int init_bootmem_done;
|
|
int boot_mapsize;
|
|
|
|
extern char _end[];
|
|
extern char etext[], _stext[];
|
|
extern char __init_begin, __init_end;
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
pte_t *kmap_pte;
|
|
pgprot_t kmap_prot;
|
|
|
|
EXPORT_SYMBOL(kmap_prot);
|
|
EXPORT_SYMBOL(kmap_pte);
|
|
#endif
|
|
|
|
void MMU_init(void);
|
|
void set_phys_avail(unsigned long total_ram);
|
|
|
|
/* XXX should be in current.h -- paulus */
|
|
extern struct task_struct *current_set[NR_CPUS];
|
|
|
|
char *klimit = _end;
|
|
struct mem_pieces phys_avail;
|
|
|
|
/*
|
|
* this tells the system to map all of ram with the segregs
|
|
* (i.e. page tables) instead of the bats.
|
|
* -- Cort
|
|
*/
|
|
int __map_without_bats;
|
|
int __map_without_ltlbs;
|
|
|
|
/* max amount of RAM to use */
|
|
unsigned long __max_memory;
|
|
/* max amount of low RAM to map in */
|
|
unsigned long __max_low_memory = MAX_LOW_MEM;
|
|
|
|
void show_mem(void)
|
|
{
|
|
int i,free = 0,total = 0,reserved = 0;
|
|
int shared = 0, cached = 0;
|
|
int highmem = 0;
|
|
|
|
printk("Mem-info:\n");
|
|
show_free_areas();
|
|
printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
|
|
i = max_mapnr;
|
|
while (i-- > 0) {
|
|
total++;
|
|
if (PageHighMem(mem_map+i))
|
|
highmem++;
|
|
if (PageReserved(mem_map+i))
|
|
reserved++;
|
|
else if (PageSwapCache(mem_map+i))
|
|
cached++;
|
|
else if (!page_count(mem_map+i))
|
|
free++;
|
|
else
|
|
shared += page_count(mem_map+i) - 1;
|
|
}
|
|
printk("%d pages of RAM\n",total);
|
|
printk("%d pages of HIGHMEM\n", highmem);
|
|
printk("%d free pages\n",free);
|
|
printk("%d reserved pages\n",reserved);
|
|
printk("%d pages shared\n",shared);
|
|
printk("%d pages swap cached\n",cached);
|
|
}
|
|
|
|
/* Free up now-unused memory */
|
|
static void free_sec(unsigned long start, unsigned long end, const char *name)
|
|
{
|
|
unsigned long cnt = 0;
|
|
|
|
while (start < end) {
|
|
ClearPageReserved(virt_to_page(start));
|
|
init_page_count(virt_to_page(start));
|
|
free_page(start);
|
|
cnt++;
|
|
start += PAGE_SIZE;
|
|
}
|
|
if (cnt) {
|
|
printk(" %ldk %s", cnt << (PAGE_SHIFT - 10), name);
|
|
totalram_pages += cnt;
|
|
}
|
|
}
|
|
|
|
void free_initmem(void)
|
|
{
|
|
#define FREESEC(TYPE) \
|
|
free_sec((unsigned long)(&__ ## TYPE ## _begin), \
|
|
(unsigned long)(&__ ## TYPE ## _end), \
|
|
#TYPE);
|
|
|
|
printk ("Freeing unused kernel memory:");
|
|
FREESEC(init);
|
|
printk("\n");
|
|
ppc_md.progress = NULL;
|
|
#undef FREESEC
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
void free_initrd_mem(unsigned long start, unsigned long end)
|
|
{
|
|
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
|
|
|
|
for (; start < end; start += PAGE_SIZE) {
|
|
ClearPageReserved(virt_to_page(start));
|
|
init_page_count(virt_to_page(start));
|
|
free_page(start);
|
|
totalram_pages++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Check for command-line options that affect what MMU_init will do.
|
|
*/
|
|
void MMU_setup(void)
|
|
{
|
|
/* Check for nobats option (used in mapin_ram). */
|
|
if (strstr(cmd_line, "nobats")) {
|
|
__map_without_bats = 1;
|
|
}
|
|
|
|
if (strstr(cmd_line, "noltlbs")) {
|
|
__map_without_ltlbs = 1;
|
|
}
|
|
|
|
/* Look for mem= option on command line */
|
|
if (strstr(cmd_line, "mem=")) {
|
|
char *p, *q;
|
|
unsigned long maxmem = 0;
|
|
|
|
for (q = cmd_line; (p = strstr(q, "mem=")) != 0; ) {
|
|
q = p + 4;
|
|
if (p > cmd_line && p[-1] != ' ')
|
|
continue;
|
|
maxmem = simple_strtoul(q, &q, 0);
|
|
if (*q == 'k' || *q == 'K') {
|
|
maxmem <<= 10;
|
|
++q;
|
|
} else if (*q == 'm' || *q == 'M') {
|
|
maxmem <<= 20;
|
|
++q;
|
|
}
|
|
}
|
|
__max_memory = maxmem;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* MMU_init sets up the basic memory mappings for the kernel,
|
|
* including both RAM and possibly some I/O regions,
|
|
* and sets up the page tables and the MMU hardware ready to go.
|
|
*/
|
|
void __init MMU_init(void)
|
|
{
|
|
if (ppc_md.progress)
|
|
ppc_md.progress("MMU:enter", 0x111);
|
|
|
|
/* parse args from command line */
|
|
MMU_setup();
|
|
|
|
/*
|
|
* Figure out how much memory we have, how much
|
|
* is lowmem, and how much is highmem. If we were
|
|
* passed the total memory size from the bootloader,
|
|
* just use it.
|
|
*/
|
|
if (boot_mem_size)
|
|
total_memory = boot_mem_size;
|
|
else
|
|
total_memory = ppc_md.find_end_of_memory();
|
|
|
|
if (__max_memory && total_memory > __max_memory)
|
|
total_memory = __max_memory;
|
|
total_lowmem = total_memory;
|
|
#ifdef CONFIG_FSL_BOOKE
|
|
/* Freescale Book-E parts expect lowmem to be mapped by fixed TLB
|
|
* entries, so we need to adjust lowmem to match the amount we can map
|
|
* in the fixed entries */
|
|
adjust_total_lowmem();
|
|
#endif /* CONFIG_FSL_BOOKE */
|
|
if (total_lowmem > __max_low_memory) {
|
|
total_lowmem = __max_low_memory;
|
|
#ifndef CONFIG_HIGHMEM
|
|
total_memory = total_lowmem;
|
|
#endif /* CONFIG_HIGHMEM */
|
|
}
|
|
set_phys_avail(total_lowmem);
|
|
|
|
/* Initialize the MMU hardware */
|
|
if (ppc_md.progress)
|
|
ppc_md.progress("MMU:hw init", 0x300);
|
|
MMU_init_hw();
|
|
|
|
/* Map in all of RAM starting at KERNELBASE */
|
|
if (ppc_md.progress)
|
|
ppc_md.progress("MMU:mapin", 0x301);
|
|
mapin_ram();
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
ioremap_base = PKMAP_BASE;
|
|
#else
|
|
ioremap_base = 0xfe000000UL; /* for now, could be 0xfffff000 */
|
|
#endif /* CONFIG_HIGHMEM */
|
|
ioremap_bot = ioremap_base;
|
|
|
|
/* Map in I/O resources */
|
|
if (ppc_md.progress)
|
|
ppc_md.progress("MMU:setio", 0x302);
|
|
if (ppc_md.setup_io_mappings)
|
|
ppc_md.setup_io_mappings();
|
|
|
|
/* Initialize the context management stuff */
|
|
mmu_context_init();
|
|
|
|
if (ppc_md.progress)
|
|
ppc_md.progress("MMU:exit", 0x211);
|
|
|
|
#ifdef CONFIG_BOOTX_TEXT
|
|
/* By default, we are no longer mapped */
|
|
boot_text_mapped = 0;
|
|
/* Must be done last, or ppc_md.progress will die. */
|
|
map_boot_text();
|
|
#endif
|
|
}
|
|
|
|
/* This is only called until mem_init is done. */
|
|
void __init *early_get_page(void)
|
|
{
|
|
void *p;
|
|
|
|
if (init_bootmem_done) {
|
|
p = alloc_bootmem_pages(PAGE_SIZE);
|
|
} else {
|
|
p = mem_pieces_find(PAGE_SIZE, PAGE_SIZE);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* Initialize the bootmem system and give it all the memory we
|
|
* have available.
|
|
*/
|
|
void __init do_init_bootmem(void)
|
|
{
|
|
unsigned long start, size;
|
|
int i;
|
|
|
|
/*
|
|
* Find an area to use for the bootmem bitmap.
|
|
* We look for the first area which is at least
|
|
* 128kB in length (128kB is enough for a bitmap
|
|
* for 4GB of memory, using 4kB pages), plus 1 page
|
|
* (in case the address isn't page-aligned).
|
|
*/
|
|
start = 0;
|
|
size = 0;
|
|
for (i = 0; i < phys_avail.n_regions; ++i) {
|
|
unsigned long a = phys_avail.regions[i].address;
|
|
unsigned long s = phys_avail.regions[i].size;
|
|
if (s <= size)
|
|
continue;
|
|
start = a;
|
|
size = s;
|
|
if (s >= 33 * PAGE_SIZE)
|
|
break;
|
|
}
|
|
start = PAGE_ALIGN(start);
|
|
|
|
min_low_pfn = start >> PAGE_SHIFT;
|
|
max_low_pfn = (PPC_MEMSTART + total_lowmem) >> PAGE_SHIFT;
|
|
max_pfn = (PPC_MEMSTART + total_memory) >> PAGE_SHIFT;
|
|
boot_mapsize = init_bootmem_node(&contig_page_data, min_low_pfn,
|
|
PPC_MEMSTART >> PAGE_SHIFT,
|
|
max_low_pfn);
|
|
|
|
/* remove the bootmem bitmap from the available memory */
|
|
mem_pieces_remove(&phys_avail, start, boot_mapsize, 1);
|
|
|
|
/* add everything in phys_avail into the bootmem map */
|
|
for (i = 0; i < phys_avail.n_regions; ++i)
|
|
free_bootmem(phys_avail.regions[i].address,
|
|
phys_avail.regions[i].size);
|
|
|
|
init_bootmem_done = 1;
|
|
}
|
|
|
|
/*
|
|
* paging_init() sets up the page tables - in fact we've already done this.
|
|
*/
|
|
void __init paging_init(void)
|
|
{
|
|
unsigned long zones_size[MAX_NR_ZONES], i;
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
map_page(PKMAP_BASE, 0, 0); /* XXX gross */
|
|
pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
|
|
(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
|
|
map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
|
|
kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
|
|
(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
|
|
kmap_prot = PAGE_KERNEL;
|
|
#endif /* CONFIG_HIGHMEM */
|
|
|
|
/*
|
|
* All pages are DMA-able so we put them all in the DMA zone.
|
|
*/
|
|
zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
|
|
for (i = 1; i < MAX_NR_ZONES; i++)
|
|
zones_size[i] = 0;
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
|
|
#endif /* CONFIG_HIGHMEM */
|
|
|
|
free_area_init(zones_size);
|
|
}
|
|
|
|
void __init mem_init(void)
|
|
{
|
|
unsigned long addr;
|
|
int codepages = 0;
|
|
int datapages = 0;
|
|
int initpages = 0;
|
|
#ifdef CONFIG_HIGHMEM
|
|
unsigned long highmem_mapnr;
|
|
|
|
highmem_mapnr = total_lowmem >> PAGE_SHIFT;
|
|
#endif /* CONFIG_HIGHMEM */
|
|
max_mapnr = total_memory >> PAGE_SHIFT;
|
|
|
|
high_memory = (void *) __va(PPC_MEMSTART + total_lowmem);
|
|
num_physpages = max_mapnr; /* RAM is assumed contiguous */
|
|
|
|
totalram_pages += free_all_bootmem();
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
/* if we are booted from BootX with an initial ramdisk,
|
|
make sure the ramdisk pages aren't reserved. */
|
|
if (initrd_start) {
|
|
for (addr = initrd_start; addr < initrd_end; addr += PAGE_SIZE)
|
|
ClearPageReserved(virt_to_page(addr));
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_INITRD */
|
|
|
|
#ifdef CONFIG_PPC_OF
|
|
/* mark the RTAS pages as reserved */
|
|
if ( rtas_data )
|
|
for (addr = (ulong)__va(rtas_data);
|
|
addr < PAGE_ALIGN((ulong)__va(rtas_data)+rtas_size) ;
|
|
addr += PAGE_SIZE)
|
|
SetPageReserved(virt_to_page(addr));
|
|
#endif
|
|
for (addr = PAGE_OFFSET; addr < (unsigned long)high_memory;
|
|
addr += PAGE_SIZE) {
|
|
if (!PageReserved(virt_to_page(addr)))
|
|
continue;
|
|
if (addr < (ulong) etext)
|
|
codepages++;
|
|
else if (addr >= (unsigned long)&__init_begin
|
|
&& addr < (unsigned long)&__init_end)
|
|
initpages++;
|
|
else if (addr < (ulong) klimit)
|
|
datapages++;
|
|
}
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
{
|
|
unsigned long pfn;
|
|
|
|
for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
|
|
struct page *page = mem_map + pfn;
|
|
|
|
ClearPageReserved(page);
|
|
init_page_count(page);
|
|
__free_page(page);
|
|
totalhigh_pages++;
|
|
}
|
|
totalram_pages += totalhigh_pages;
|
|
}
|
|
#endif /* CONFIG_HIGHMEM */
|
|
|
|
printk("Memory: %luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
|
|
(unsigned long)nr_free_pages()<< (PAGE_SHIFT-10),
|
|
codepages<< (PAGE_SHIFT-10), datapages<< (PAGE_SHIFT-10),
|
|
initpages<< (PAGE_SHIFT-10),
|
|
(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10)));
|
|
|
|
mem_init_done = 1;
|
|
}
|
|
|
|
/*
|
|
* Set phys_avail to the amount of physical memory,
|
|
* less the kernel text/data/bss.
|
|
*/
|
|
void __init
|
|
set_phys_avail(unsigned long total_memory)
|
|
{
|
|
unsigned long kstart, ksize;
|
|
|
|
/*
|
|
* Initially, available physical memory is equivalent to all
|
|
* physical memory.
|
|
*/
|
|
|
|
phys_avail.regions[0].address = PPC_MEMSTART;
|
|
phys_avail.regions[0].size = total_memory;
|
|
phys_avail.n_regions = 1;
|
|
|
|
/*
|
|
* Map out the kernel text/data/bss from the available physical
|
|
* memory.
|
|
*/
|
|
|
|
kstart = __pa(_stext); /* should be 0 */
|
|
ksize = PAGE_ALIGN(klimit - _stext);
|
|
|
|
mem_pieces_remove(&phys_avail, kstart, ksize, 0);
|
|
mem_pieces_remove(&phys_avail, 0, 0x4000, 0);
|
|
|
|
#if defined(CONFIG_BLK_DEV_INITRD)
|
|
/* Remove the init RAM disk from the available memory. */
|
|
if (initrd_start) {
|
|
mem_pieces_remove(&phys_avail, __pa(initrd_start),
|
|
initrd_end - initrd_start, 1);
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_INITRD */
|
|
#ifdef CONFIG_PPC_OF
|
|
/* remove the RTAS pages from the available memory */
|
|
if (rtas_data)
|
|
mem_pieces_remove(&phys_avail, rtas_data, rtas_size, 1);
|
|
#endif
|
|
}
|
|
|
|
/* Mark some memory as reserved by removing it from phys_avail. */
|
|
void __init reserve_phys_mem(unsigned long start, unsigned long size)
|
|
{
|
|
mem_pieces_remove(&phys_avail, start, size, 1);
|
|
}
|
|
|
|
/*
|
|
* This is called when a page has been modified by the kernel.
|
|
* It just marks the page as not i-cache clean. We do the i-cache
|
|
* flush later when the page is given to a user process, if necessary.
|
|
*/
|
|
void flush_dcache_page(struct page *page)
|
|
{
|
|
clear_bit(PG_arch_1, &page->flags);
|
|
}
|
|
|
|
void flush_dcache_icache_page(struct page *page)
|
|
{
|
|
#ifdef CONFIG_BOOKE
|
|
void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
|
|
__flush_dcache_icache(start);
|
|
kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
|
|
#elif defined(CONFIG_8xx)
|
|
/* On 8xx there is no need to kmap since highmem is not supported */
|
|
__flush_dcache_icache(page_address(page));
|
|
#else
|
|
__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
|
|
#endif
|
|
|
|
}
|
|
void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
|
|
{
|
|
clear_page(page);
|
|
clear_bit(PG_arch_1, &pg->flags);
|
|
}
|
|
|
|
void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
|
|
struct page *pg)
|
|
{
|
|
copy_page(vto, vfrom);
|
|
clear_bit(PG_arch_1, &pg->flags);
|
|
}
|
|
|
|
void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
|
|
unsigned long addr, int len)
|
|
{
|
|
unsigned long maddr;
|
|
|
|
maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
|
|
flush_icache_range(maddr, maddr + len);
|
|
kunmap(page);
|
|
}
|
|
|
|
/*
|
|
* This is called at the end of handling a user page fault, when the
|
|
* fault has been handled by updating a PTE in the linux page tables.
|
|
* We use it to preload an HPTE into the hash table corresponding to
|
|
* the updated linux PTE.
|
|
*/
|
|
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
|
|
pte_t pte)
|
|
{
|
|
/* handle i-cache coherency */
|
|
unsigned long pfn = pte_pfn(pte);
|
|
|
|
if (pfn_valid(pfn)) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
#ifdef CONFIG_8xx
|
|
/* On 8xx, the TLB handlers work in 2 stages:
|
|
* First, a zeroed entry is loaded by TLBMiss handler,
|
|
* which causes the TLBError handler to be triggered.
|
|
* That means the zeroed TLB has to be invalidated
|
|
* whenever a page miss occurs.
|
|
*/
|
|
_tlbie(address);
|
|
#endif
|
|
if (!PageReserved(page)
|
|
&& !test_bit(PG_arch_1, &page->flags)) {
|
|
if (vma->vm_mm == current->active_mm)
|
|
__flush_dcache_icache((void *) address);
|
|
else
|
|
flush_dcache_icache_page(page);
|
|
set_bit(PG_arch_1, &page->flags);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_STD_MMU
|
|
/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
|
|
if (Hash != 0 && pte_young(pte)) {
|
|
struct mm_struct *mm;
|
|
pmd_t *pmd;
|
|
|
|
mm = (address < TASK_SIZE)? vma->vm_mm: &init_mm;
|
|
pmd = pmd_offset(pgd_offset(mm, address), address);
|
|
if (!pmd_none(*pmd))
|
|
add_hash_page(mm->context, address, pmd_val(*pmd));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This is called by /dev/mem to know if a given address has to
|
|
* be mapped non-cacheable or not
|
|
*/
|
|
int page_is_ram(unsigned long pfn)
|
|
{
|
|
return pfn < max_pfn;
|
|
}
|
|
|
|
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
|
unsigned long size, pgprot_t vma_prot)
|
|
{
|
|
if (ppc_md.phys_mem_access_prot)
|
|
return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
|
|
|
|
if (!page_is_ram(pfn))
|
|
vma_prot = __pgprot(pgprot_val(vma_prot)
|
|
| _PAGE_GUARDED | _PAGE_NO_CACHE);
|
|
return vma_prot;
|
|
}
|
|
EXPORT_SYMBOL(phys_mem_access_prot);
|