kernel-fxtec-pro1x/arch/powerpc/kvm/book3s_hv_rm_mmu.c
Paul Mackerras 1b400ba0cd KVM: PPC: Book3S HV: Improve handling of local vs. global TLB invalidations
When we change or remove a HPT (hashed page table) entry, we can do
either a global TLB invalidation (tlbie) that works across the whole
machine, or a local invalidation (tlbiel) that only affects this core.
Currently we do local invalidations if the VM has only one vcpu or if
the guest requests it with the H_LOCAL flag, though the guest Linux
kernel currently doesn't ever use H_LOCAL.  Then, to cope with the
possibility that vcpus moving around to different physical cores might
expose stale TLB entries, there is some code in kvmppc_hv_entry to
flush the whole TLB of entries for this VM if either this vcpu is now
running on a different physical core from where it last ran, or if this
physical core last ran a different vcpu.

There are a number of problems on POWER7 with this as it stands:

- The TLB invalidation is done per thread, whereas it only needs to be
  done per core, since the TLB is shared between the threads.
- With the possibility of the host paging out guest pages, the use of
  H_LOCAL by an SMP guest is dangerous since the guest could possibly
  retain and use a stale TLB entry pointing to a page that had been
  removed from the guest.
- The TLB invalidations that we do when a vcpu moves from one physical
  core to another are unnecessary in the case of an SMP guest that isn't
  using H_LOCAL.
- The optimization of using local invalidations rather than global should
  apply to guests with one virtual core, not just one vcpu.

(None of this applies on PPC970, since there we always have to
invalidate the whole TLB when entering and leaving the guest, and we
can't support paging out guest memory.)

To fix these problems and simplify the code, we now maintain a simple
cpumask of which cpus need to flush the TLB on entry to the guest.
(This is indexed by cpu, though we only ever use the bits for thread
0 of each core.)  Whenever we do a local TLB invalidation, we set the
bits for every cpu except the bit for thread 0 of the core that we're
currently running on.  Whenever we enter a guest, we test and clear the
bit for our core, and flush the TLB if it was set.

On initial startup of the VM, and when resetting the HPT, we set all the
bits in the need_tlb_flush cpumask, since any core could potentially have
stale TLB entries from the previous VM to use the same LPID, or the
previous contents of the HPT.

Then, we maintain a count of the number of online virtual cores, and use
that when deciding whether to use a local invalidation rather than the
number of online vcpus.  The code to make that decision is extracted out
into a new function, global_invalidates().  For multi-core guests on
POWER7 (i.e. when we are using mmu notifiers), we now never do local
invalidations regardless of the H_LOCAL flag.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-12-06 01:34:05 +01:00

903 lines
25 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/hugetlb.h>
#include <linux/module.h>
#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu-hash64.h>
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>
/* Translate address of a vmalloc'd thing to a linear map address */
static void *real_vmalloc_addr(void *x)
{
unsigned long addr = (unsigned long) x;
pte_t *p;
p = find_linux_pte(swapper_pg_dir, addr);
if (!p || !pte_present(*p))
return NULL;
/* assume we don't have huge pages in vmalloc space... */
addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
return __va(addr);
}
/* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
static int global_invalidates(struct kvm *kvm, unsigned long flags)
{
int global;
/*
* If there is only one vcore, and it's currently running,
* we can use tlbiel as long as we mark all other physical
* cores as potentially having stale TLB entries for this lpid.
* If we're not using MMU notifiers, we never take pages away
* from the guest, so we can use tlbiel if requested.
* Otherwise, don't use tlbiel.
*/
if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcore)
global = 0;
else if (kvm->arch.using_mmu_notifiers)
global = 1;
else
global = !(flags & H_LOCAL);
if (!global) {
/* any other core might now have stale TLB entries... */
smp_wmb();
cpumask_setall(&kvm->arch.need_tlb_flush);
cpumask_clear_cpu(local_paca->kvm_hstate.kvm_vcore->pcpu,
&kvm->arch.need_tlb_flush);
}
return global;
}
/*
* Add this HPTE into the chain for the real page.
* Must be called with the chain locked; it unlocks the chain.
*/
void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
unsigned long *rmap, long pte_index, int realmode)
{
struct revmap_entry *head, *tail;
unsigned long i;
if (*rmap & KVMPPC_RMAP_PRESENT) {
i = *rmap & KVMPPC_RMAP_INDEX;
head = &kvm->arch.revmap[i];
if (realmode)
head = real_vmalloc_addr(head);
tail = &kvm->arch.revmap[head->back];
if (realmode)
tail = real_vmalloc_addr(tail);
rev->forw = i;
rev->back = head->back;
tail->forw = pte_index;
head->back = pte_index;
} else {
rev->forw = rev->back = pte_index;
*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
pte_index | KVMPPC_RMAP_PRESENT;
}
unlock_rmap(rmap);
}
EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
/*
* Note modification of an HPTE; set the HPTE modified bit
* if anyone is interested.
*/
static inline void note_hpte_modification(struct kvm *kvm,
struct revmap_entry *rev)
{
if (atomic_read(&kvm->arch.hpte_mod_interest))
rev->guest_rpte |= HPTE_GR_MODIFIED;
}
/* Remove this HPTE from the chain for a real page */
static void remove_revmap_chain(struct kvm *kvm, long pte_index,
struct revmap_entry *rev,
unsigned long hpte_v, unsigned long hpte_r)
{
struct revmap_entry *next, *prev;
unsigned long gfn, ptel, head;
struct kvm_memory_slot *memslot;
unsigned long *rmap;
unsigned long rcbits;
rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
ptel = rev->guest_rpte |= rcbits;
gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
if (!memslot)
return;
rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
lock_rmap(rmap);
head = *rmap & KVMPPC_RMAP_INDEX;
next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
next->back = rev->back;
prev->forw = rev->forw;
if (head == pte_index) {
head = rev->forw;
if (head == pte_index)
*rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
else
*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
}
*rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
unlock_rmap(rmap);
}
static pte_t lookup_linux_pte(pgd_t *pgdir, unsigned long hva,
int writing, unsigned long *pte_sizep)
{
pte_t *ptep;
unsigned long ps = *pte_sizep;
unsigned int shift;
ptep = find_linux_pte_or_hugepte(pgdir, hva, &shift);
if (!ptep)
return __pte(0);
if (shift)
*pte_sizep = 1ul << shift;
else
*pte_sizep = PAGE_SIZE;
if (ps > *pte_sizep)
return __pte(0);
if (!pte_present(*ptep))
return __pte(0);
return kvmppc_read_update_linux_pte(ptep, writing);
}
static inline void unlock_hpte(unsigned long *hpte, unsigned long hpte_v)
{
asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
hpte[0] = hpte_v;
}
long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
long pte_index, unsigned long pteh, unsigned long ptel,
pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
{
unsigned long i, pa, gpa, gfn, psize;
unsigned long slot_fn, hva;
unsigned long *hpte;
struct revmap_entry *rev;
unsigned long g_ptel;
struct kvm_memory_slot *memslot;
unsigned long *physp, pte_size;
unsigned long is_io;
unsigned long *rmap;
pte_t pte;
unsigned int writing;
unsigned long mmu_seq;
unsigned long rcbits;
psize = hpte_page_size(pteh, ptel);
if (!psize)
return H_PARAMETER;
writing = hpte_is_writable(ptel);
pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
ptel &= ~HPTE_GR_RESERVED;
g_ptel = ptel;
/* used later to detect if we might have been invalidated */
mmu_seq = kvm->mmu_notifier_seq;
smp_rmb();
/* Find the memslot (if any) for this address */
gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
gfn = gpa >> PAGE_SHIFT;
memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
pa = 0;
is_io = ~0ul;
rmap = NULL;
if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
/* PPC970 can't do emulated MMIO */
if (!cpu_has_feature(CPU_FTR_ARCH_206))
return H_PARAMETER;
/* Emulated MMIO - mark this with key=31 */
pteh |= HPTE_V_ABSENT;
ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
goto do_insert;
}
/* Check if the requested page fits entirely in the memslot. */
if (!slot_is_aligned(memslot, psize))
return H_PARAMETER;
slot_fn = gfn - memslot->base_gfn;
rmap = &memslot->arch.rmap[slot_fn];
if (!kvm->arch.using_mmu_notifiers) {
physp = memslot->arch.slot_phys;
if (!physp)
return H_PARAMETER;
physp += slot_fn;
if (realmode)
physp = real_vmalloc_addr(physp);
pa = *physp;
if (!pa)
return H_TOO_HARD;
is_io = pa & (HPTE_R_I | HPTE_R_W);
pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
pa &= PAGE_MASK;
} else {
/* Translate to host virtual address */
hva = __gfn_to_hva_memslot(memslot, gfn);
/* Look up the Linux PTE for the backing page */
pte_size = psize;
pte = lookup_linux_pte(pgdir, hva, writing, &pte_size);
if (pte_present(pte)) {
if (writing && !pte_write(pte))
/* make the actual HPTE be read-only */
ptel = hpte_make_readonly(ptel);
is_io = hpte_cache_bits(pte_val(pte));
pa = pte_pfn(pte) << PAGE_SHIFT;
}
}
if (pte_size < psize)
return H_PARAMETER;
if (pa && pte_size > psize)
pa |= gpa & (pte_size - 1);
ptel &= ~(HPTE_R_PP0 - psize);
ptel |= pa;
if (pa)
pteh |= HPTE_V_VALID;
else
pteh |= HPTE_V_ABSENT;
/* Check WIMG */
if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
if (is_io)
return H_PARAMETER;
/*
* Allow guest to map emulated device memory as
* uncacheable, but actually make it cacheable.
*/
ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
ptel |= HPTE_R_M;
}
/* Find and lock the HPTEG slot to use */
do_insert:
if (pte_index >= kvm->arch.hpt_npte)
return H_PARAMETER;
if (likely((flags & H_EXACT) == 0)) {
pte_index &= ~7UL;
hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
for (i = 0; i < 8; ++i) {
if ((*hpte & HPTE_V_VALID) == 0 &&
try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
HPTE_V_ABSENT))
break;
hpte += 2;
}
if (i == 8) {
/*
* Since try_lock_hpte doesn't retry (not even stdcx.
* failures), it could be that there is a free slot
* but we transiently failed to lock it. Try again,
* actually locking each slot and checking it.
*/
hpte -= 16;
for (i = 0; i < 8; ++i) {
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
cpu_relax();
if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)))
break;
*hpte &= ~HPTE_V_HVLOCK;
hpte += 2;
}
if (i == 8)
return H_PTEG_FULL;
}
pte_index += i;
} else {
hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
HPTE_V_ABSENT)) {
/* Lock the slot and check again */
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
cpu_relax();
if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
*hpte &= ~HPTE_V_HVLOCK;
return H_PTEG_FULL;
}
}
}
/* Save away the guest's idea of the second HPTE dword */
rev = &kvm->arch.revmap[pte_index];
if (realmode)
rev = real_vmalloc_addr(rev);
if (rev) {
rev->guest_rpte = g_ptel;
note_hpte_modification(kvm, rev);
}
/* Link HPTE into reverse-map chain */
if (pteh & HPTE_V_VALID) {
if (realmode)
rmap = real_vmalloc_addr(rmap);
lock_rmap(rmap);
/* Check for pending invalidations under the rmap chain lock */
if (kvm->arch.using_mmu_notifiers &&
mmu_notifier_retry(kvm, mmu_seq)) {
/* inval in progress, write a non-present HPTE */
pteh |= HPTE_V_ABSENT;
pteh &= ~HPTE_V_VALID;
unlock_rmap(rmap);
} else {
kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
realmode);
/* Only set R/C in real HPTE if already set in *rmap */
rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
}
}
hpte[1] = ptel;
/* Write the first HPTE dword, unlocking the HPTE and making it valid */
eieio();
hpte[0] = pteh;
asm volatile("ptesync" : : : "memory");
*pte_idx_ret = pte_index;
return H_SUCCESS;
}
EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
long pte_index, unsigned long pteh, unsigned long ptel)
{
return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]);
}
#define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
static inline int try_lock_tlbie(unsigned int *lock)
{
unsigned int tmp, old;
unsigned int token = LOCK_TOKEN;
asm volatile("1:lwarx %1,0,%2\n"
" cmpwi cr0,%1,0\n"
" bne 2f\n"
" stwcx. %3,0,%2\n"
" bne- 1b\n"
" isync\n"
"2:"
: "=&r" (tmp), "=&r" (old)
: "r" (lock), "r" (token)
: "cc", "memory");
return old == 0;
}
long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
unsigned long pte_index, unsigned long avpn,
unsigned long *hpret)
{
unsigned long *hpte;
unsigned long v, r, rb;
struct revmap_entry *rev;
if (pte_index >= kvm->arch.hpt_npte)
return H_PARAMETER;
hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
cpu_relax();
if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
hpte[0] &= ~HPTE_V_HVLOCK;
return H_NOT_FOUND;
}
rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
v = hpte[0] & ~HPTE_V_HVLOCK;
if (v & HPTE_V_VALID) {
hpte[0] &= ~HPTE_V_VALID;
rb = compute_tlbie_rb(v, hpte[1], pte_index);
if (global_invalidates(kvm, flags)) {
while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
cpu_relax();
asm volatile("ptesync" : : : "memory");
asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
: : "r" (rb), "r" (kvm->arch.lpid));
asm volatile("ptesync" : : : "memory");
kvm->arch.tlbie_lock = 0;
} else {
asm volatile("ptesync" : : : "memory");
asm volatile("tlbiel %0" : : "r" (rb));
asm volatile("ptesync" : : : "memory");
}
/* Read PTE low word after tlbie to get final R/C values */
remove_revmap_chain(kvm, pte_index, rev, v, hpte[1]);
}
r = rev->guest_rpte & ~HPTE_GR_RESERVED;
note_hpte_modification(kvm, rev);
unlock_hpte(hpte, 0);
hpret[0] = v;
hpret[1] = r;
return H_SUCCESS;
}
EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
unsigned long pte_index, unsigned long avpn)
{
return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
&vcpu->arch.gpr[4]);
}
long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
unsigned long *args = &vcpu->arch.gpr[4];
unsigned long *hp, *hptes[4], tlbrb[4];
long int i, j, k, n, found, indexes[4];
unsigned long flags, req, pte_index, rcbits;
long int local = 0;
long int ret = H_SUCCESS;
struct revmap_entry *rev, *revs[4];
if (atomic_read(&kvm->online_vcpus) == 1)
local = 1;
for (i = 0; i < 4 && ret == H_SUCCESS; ) {
n = 0;
for (; i < 4; ++i) {
j = i * 2;
pte_index = args[j];
flags = pte_index >> 56;
pte_index &= ((1ul << 56) - 1);
req = flags >> 6;
flags &= 3;
if (req == 3) { /* no more requests */
i = 4;
break;
}
if (req != 1 || flags == 3 ||
pte_index >= kvm->arch.hpt_npte) {
/* parameter error */
args[j] = ((0xa0 | flags) << 56) + pte_index;
ret = H_PARAMETER;
break;
}
hp = (unsigned long *)
(kvm->arch.hpt_virt + (pte_index << 4));
/* to avoid deadlock, don't spin except for first */
if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
if (n)
break;
while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
cpu_relax();
}
found = 0;
if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) {
switch (flags & 3) {
case 0: /* absolute */
found = 1;
break;
case 1: /* andcond */
if (!(hp[0] & args[j + 1]))
found = 1;
break;
case 2: /* AVPN */
if ((hp[0] & ~0x7fUL) == args[j + 1])
found = 1;
break;
}
}
if (!found) {
hp[0] &= ~HPTE_V_HVLOCK;
args[j] = ((0x90 | flags) << 56) + pte_index;
continue;
}
args[j] = ((0x80 | flags) << 56) + pte_index;
rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
note_hpte_modification(kvm, rev);
if (!(hp[0] & HPTE_V_VALID)) {
/* insert R and C bits from PTE */
rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
args[j] |= rcbits << (56 - 5);
hp[0] = 0;
continue;
}
hp[0] &= ~HPTE_V_VALID; /* leave it locked */
tlbrb[n] = compute_tlbie_rb(hp[0], hp[1], pte_index);
indexes[n] = j;
hptes[n] = hp;
revs[n] = rev;
++n;
}
if (!n)
break;
/* Now that we've collected a batch, do the tlbies */
if (!local) {
while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
cpu_relax();
asm volatile("ptesync" : : : "memory");
for (k = 0; k < n; ++k)
asm volatile(PPC_TLBIE(%1,%0) : :
"r" (tlbrb[k]),
"r" (kvm->arch.lpid));
asm volatile("eieio; tlbsync; ptesync" : : : "memory");
kvm->arch.tlbie_lock = 0;
} else {
asm volatile("ptesync" : : : "memory");
for (k = 0; k < n; ++k)
asm volatile("tlbiel %0" : : "r" (tlbrb[k]));
asm volatile("ptesync" : : : "memory");
}
/* Read PTE low words after tlbie to get final R/C values */
for (k = 0; k < n; ++k) {
j = indexes[k];
pte_index = args[j] & ((1ul << 56) - 1);
hp = hptes[k];
rev = revs[k];
remove_revmap_chain(kvm, pte_index, rev, hp[0], hp[1]);
rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
args[j] |= rcbits << (56 - 5);
hp[0] = 0;
}
}
return ret;
}
long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
unsigned long pte_index, unsigned long avpn,
unsigned long va)
{
struct kvm *kvm = vcpu->kvm;
unsigned long *hpte;
struct revmap_entry *rev;
unsigned long v, r, rb, mask, bits;
if (pte_index >= kvm->arch.hpt_npte)
return H_PARAMETER;
hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
cpu_relax();
if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
hpte[0] &= ~HPTE_V_HVLOCK;
return H_NOT_FOUND;
}
v = hpte[0];
bits = (flags << 55) & HPTE_R_PP0;
bits |= (flags << 48) & HPTE_R_KEY_HI;
bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
/* Update guest view of 2nd HPTE dword */
mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
HPTE_R_KEY_HI | HPTE_R_KEY_LO;
rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
if (rev) {
r = (rev->guest_rpte & ~mask) | bits;
rev->guest_rpte = r;
note_hpte_modification(kvm, rev);
}
r = (hpte[1] & ~mask) | bits;
/* Update HPTE */
if (v & HPTE_V_VALID) {
rb = compute_tlbie_rb(v, r, pte_index);
hpte[0] = v & ~HPTE_V_VALID;
if (global_invalidates(kvm, flags)) {
while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
cpu_relax();
asm volatile("ptesync" : : : "memory");
asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
: : "r" (rb), "r" (kvm->arch.lpid));
asm volatile("ptesync" : : : "memory");
kvm->arch.tlbie_lock = 0;
} else {
asm volatile("ptesync" : : : "memory");
asm volatile("tlbiel %0" : : "r" (rb));
asm volatile("ptesync" : : : "memory");
}
/*
* If the host has this page as readonly but the guest
* wants to make it read/write, reduce the permissions.
* Checking the host permissions involves finding the
* memslot and then the Linux PTE for the page.
*/
if (hpte_is_writable(r) && kvm->arch.using_mmu_notifiers) {
unsigned long psize, gfn, hva;
struct kvm_memory_slot *memslot;
pgd_t *pgdir = vcpu->arch.pgdir;
pte_t pte;
psize = hpte_page_size(v, r);
gfn = ((r & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
if (memslot) {
hva = __gfn_to_hva_memslot(memslot, gfn);
pte = lookup_linux_pte(pgdir, hva, 1, &psize);
if (pte_present(pte) && !pte_write(pte))
r = hpte_make_readonly(r);
}
}
}
hpte[1] = r;
eieio();
hpte[0] = v & ~HPTE_V_HVLOCK;
asm volatile("ptesync" : : : "memory");
return H_SUCCESS;
}
long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
unsigned long pte_index)
{
struct kvm *kvm = vcpu->kvm;
unsigned long *hpte, v, r;
int i, n = 1;
struct revmap_entry *rev = NULL;
if (pte_index >= kvm->arch.hpt_npte)
return H_PARAMETER;
if (flags & H_READ_4) {
pte_index &= ~3;
n = 4;
}
rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
for (i = 0; i < n; ++i, ++pte_index) {
hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
v = hpte[0] & ~HPTE_V_HVLOCK;
r = hpte[1];
if (v & HPTE_V_ABSENT) {
v &= ~HPTE_V_ABSENT;
v |= HPTE_V_VALID;
}
if (v & HPTE_V_VALID) {
r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
r &= ~HPTE_GR_RESERVED;
}
vcpu->arch.gpr[4 + i * 2] = v;
vcpu->arch.gpr[5 + i * 2] = r;
}
return H_SUCCESS;
}
void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
unsigned long pte_index)
{
unsigned long rb;
hptep[0] &= ~HPTE_V_VALID;
rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
cpu_relax();
asm volatile("ptesync" : : : "memory");
asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
: : "r" (rb), "r" (kvm->arch.lpid));
asm volatile("ptesync" : : : "memory");
kvm->arch.tlbie_lock = 0;
}
EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
void kvmppc_clear_ref_hpte(struct kvm *kvm, unsigned long *hptep,
unsigned long pte_index)
{
unsigned long rb;
unsigned char rbyte;
rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
rbyte = (hptep[1] & ~HPTE_R_R) >> 8;
/* modify only the second-last byte, which contains the ref bit */
*((char *)hptep + 14) = rbyte;
while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
cpu_relax();
asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
: : "r" (rb), "r" (kvm->arch.lpid));
asm volatile("ptesync" : : : "memory");
kvm->arch.tlbie_lock = 0;
}
EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
static int slb_base_page_shift[4] = {
24, /* 16M */
16, /* 64k */
34, /* 16G */
20, /* 1M, unsupported */
};
long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
unsigned long valid)
{
unsigned int i;
unsigned int pshift;
unsigned long somask;
unsigned long vsid, hash;
unsigned long avpn;
unsigned long *hpte;
unsigned long mask, val;
unsigned long v, r;
/* Get page shift, work out hash and AVPN etc. */
mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
val = 0;
pshift = 12;
if (slb_v & SLB_VSID_L) {
mask |= HPTE_V_LARGE;
val |= HPTE_V_LARGE;
pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
}
if (slb_v & SLB_VSID_B_1T) {
somask = (1UL << 40) - 1;
vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
vsid ^= vsid << 25;
} else {
somask = (1UL << 28) - 1;
vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
}
hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvm->arch.hpt_mask;
avpn = slb_v & ~(somask >> 16); /* also includes B */
avpn |= (eaddr & somask) >> 16;
if (pshift >= 24)
avpn &= ~((1UL << (pshift - 16)) - 1);
else
avpn &= ~0x7fUL;
val |= avpn;
for (;;) {
hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7));
for (i = 0; i < 16; i += 2) {
/* Read the PTE racily */
v = hpte[i] & ~HPTE_V_HVLOCK;
/* Check valid/absent, hash, segment size and AVPN */
if (!(v & valid) || (v & mask) != val)
continue;
/* Lock the PTE and read it under the lock */
while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
cpu_relax();
v = hpte[i] & ~HPTE_V_HVLOCK;
r = hpte[i+1];
/*
* Check the HPTE again, including large page size
* Since we don't currently allow any MPSS (mixed
* page-size segment) page sizes, it is sufficient
* to check against the actual page size.
*/
if ((v & valid) && (v & mask) == val &&
hpte_page_size(v, r) == (1ul << pshift))
/* Return with the HPTE still locked */
return (hash << 3) + (i >> 1);
/* Unlock and move on */
hpte[i] = v;
}
if (val & HPTE_V_SECONDARY)
break;
val |= HPTE_V_SECONDARY;
hash = hash ^ kvm->arch.hpt_mask;
}
return -1;
}
EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
/*
* Called in real mode to check whether an HPTE not found fault
* is due to accessing a paged-out page or an emulated MMIO page,
* or if a protection fault is due to accessing a page that the
* guest wanted read/write access to but which we made read-only.
* Returns a possibly modified status (DSISR) value if not
* (i.e. pass the interrupt to the guest),
* -1 to pass the fault up to host kernel mode code, -2 to do that
* and also load the instruction word (for MMIO emulation),
* or 0 if we should make the guest retry the access.
*/
long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
unsigned long slb_v, unsigned int status, bool data)
{
struct kvm *kvm = vcpu->kvm;
long int index;
unsigned long v, r, gr;
unsigned long *hpte;
unsigned long valid;
struct revmap_entry *rev;
unsigned long pp, key;
/* For protection fault, expect to find a valid HPTE */
valid = HPTE_V_VALID;
if (status & DSISR_NOHPTE)
valid |= HPTE_V_ABSENT;
index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
if (index < 0) {
if (status & DSISR_NOHPTE)
return status; /* there really was no HPTE */
return 0; /* for prot fault, HPTE disappeared */
}
hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
v = hpte[0] & ~HPTE_V_HVLOCK;
r = hpte[1];
rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
gr = rev->guest_rpte;
unlock_hpte(hpte, v);
/* For not found, if the HPTE is valid by now, retry the instruction */
if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
return 0;
/* Check access permissions to the page */
pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
if (!data) {
if (gr & (HPTE_R_N | HPTE_R_G))
return status | SRR1_ISI_N_OR_G;
if (!hpte_read_permission(pp, slb_v & key))
return status | SRR1_ISI_PROT;
} else if (status & DSISR_ISSTORE) {
/* check write permission */
if (!hpte_write_permission(pp, slb_v & key))
return status | DSISR_PROTFAULT;
} else {
if (!hpte_read_permission(pp, slb_v & key))
return status | DSISR_PROTFAULT;
}
/* Check storage key, if applicable */
if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
if (status & DSISR_ISSTORE)
perm >>= 1;
if (perm & 1)
return status | DSISR_KEYFAULT;
}
/* Save HPTE info for virtual-mode handler */
vcpu->arch.pgfault_addr = addr;
vcpu->arch.pgfault_index = index;
vcpu->arch.pgfault_hpte[0] = v;
vcpu->arch.pgfault_hpte[1] = r;
/* Check the storage key to see if it is possibly emulated MMIO */
if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
(r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
(HPTE_R_KEY_HI | HPTE_R_KEY_LO))
return -2; /* MMIO emulation - load instr word */
return -1; /* send fault up to host kernel mode */
}