kernel-fxtec-pro1x/arch/sparc/mm/sun4c.c
David S. Miller 9723f38eb5 sparc32: Fix sun4c build warnings.
Reported by Stephen Rothwell.

Signed-off-by: David S. Miller <davem@davemloft.net>
2008-09-02 03:15:44 -07:00

2179 lines
60 KiB
C

/* sun4c.c: Doing in software what should be done in hardware.
*
* Copyright (C) 1996 David S. Miller (davem@davemloft.net)
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1996 Andrew Tridgell (Andrew.Tridgell@anu.edu.au)
* Copyright (C) 1997-2000 Anton Blanchard (anton@samba.org)
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#define NR_TASK_BUCKETS 512
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/scatterlist.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/vaddrs.h>
#include <asm/idprom.h>
#include <asm/machines.h>
#include <asm/memreg.h>
#include <asm/processor.h>
#include <asm/auxio.h>
#include <asm/io.h>
#include <asm/oplib.h>
#include <asm/openprom.h>
#include <asm/mmu_context.h>
#include <asm/highmem.h>
#include <asm/btfixup.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
/* Because of our dynamic kernel TLB miss strategy, and how
* our DVMA mapping allocation works, you _MUST_:
*
* 1) Disable interrupts _and_ not touch any dynamic kernel
* memory while messing with kernel MMU state. By
* dynamic memory I mean any object which is not in
* the kernel image itself or a thread_union (both of
* which are locked into the MMU).
* 2) Disable interrupts while messing with user MMU state.
*/
extern int num_segmaps, num_contexts;
extern unsigned long page_kernel;
/* That's it, we prom_halt() on sun4c if the cache size is something other than 65536.
* So let's save some cycles and just use that everywhere except for that bootup
* sanity check.
*/
#define SUN4C_VAC_SIZE 65536
#define SUN4C_KERNEL_BUCKETS 32
/* Flushing the cache. */
struct sun4c_vac_props sun4c_vacinfo;
unsigned long sun4c_kernel_faults;
/* Invalidate every sun4c cache line tag. */
static void __init sun4c_flush_all(void)
{
unsigned long begin, end;
if (sun4c_vacinfo.on)
panic("SUN4C: AIEEE, trying to invalidate vac while it is on.");
/* Clear 'valid' bit in all cache line tags */
begin = AC_CACHETAGS;
end = (AC_CACHETAGS + SUN4C_VAC_SIZE);
while (begin < end) {
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (begin), "i" (ASI_CONTROL));
begin += sun4c_vacinfo.linesize;
}
}
static void sun4c_flush_context_hw(void)
{
unsigned long end = SUN4C_VAC_SIZE;
__asm__ __volatile__(
"1: addcc %0, -4096, %0\n\t"
" bne 1b\n\t"
" sta %%g0, [%0] %2"
: "=&r" (end)
: "0" (end), "i" (ASI_HWFLUSHCONTEXT)
: "cc");
}
/* Must be called minimally with IRQs disabled. */
static void sun4c_flush_segment_hw(unsigned long addr)
{
if (sun4c_get_segmap(addr) != invalid_segment) {
unsigned long vac_size = SUN4C_VAC_SIZE;
__asm__ __volatile__(
"1: addcc %0, -4096, %0\n\t"
" bne 1b\n\t"
" sta %%g0, [%2 + %0] %3"
: "=&r" (vac_size)
: "0" (vac_size), "r" (addr), "i" (ASI_HWFLUSHSEG)
: "cc");
}
}
/* File local boot time fixups. */
BTFIXUPDEF_CALL(void, sun4c_flush_page, unsigned long)
BTFIXUPDEF_CALL(void, sun4c_flush_segment, unsigned long)
BTFIXUPDEF_CALL(void, sun4c_flush_context, void)
#define sun4c_flush_page(addr) BTFIXUP_CALL(sun4c_flush_page)(addr)
#define sun4c_flush_segment(addr) BTFIXUP_CALL(sun4c_flush_segment)(addr)
#define sun4c_flush_context() BTFIXUP_CALL(sun4c_flush_context)()
/* Must be called minimally with interrupts disabled. */
static void sun4c_flush_page_hw(unsigned long addr)
{
addr &= PAGE_MASK;
if ((int)sun4c_get_pte(addr) < 0)
__asm__ __volatile__("sta %%g0, [%0] %1"
: : "r" (addr), "i" (ASI_HWFLUSHPAGE));
}
/* Don't inline the software version as it eats too many cache lines if expanded. */
static void sun4c_flush_context_sw(void)
{
unsigned long nbytes = SUN4C_VAC_SIZE;
unsigned long lsize = sun4c_vacinfo.linesize;
__asm__ __volatile__(
"add %2, %2, %%g1\n\t"
"add %2, %%g1, %%g2\n\t"
"add %2, %%g2, %%g3\n\t"
"add %2, %%g3, %%g4\n\t"
"add %2, %%g4, %%g5\n\t"
"add %2, %%g5, %%o4\n\t"
"add %2, %%o4, %%o5\n"
"1:\n\t"
"subcc %0, %%o5, %0\n\t"
"sta %%g0, [%0] %3\n\t"
"sta %%g0, [%0 + %2] %3\n\t"
"sta %%g0, [%0 + %%g1] %3\n\t"
"sta %%g0, [%0 + %%g2] %3\n\t"
"sta %%g0, [%0 + %%g3] %3\n\t"
"sta %%g0, [%0 + %%g4] %3\n\t"
"sta %%g0, [%0 + %%g5] %3\n\t"
"bg 1b\n\t"
" sta %%g0, [%1 + %%o4] %3\n"
: "=&r" (nbytes)
: "0" (nbytes), "r" (lsize), "i" (ASI_FLUSHCTX)
: "g1", "g2", "g3", "g4", "g5", "o4", "o5", "cc");
}
/* Don't inline the software version as it eats too many cache lines if expanded. */
static void sun4c_flush_segment_sw(unsigned long addr)
{
if (sun4c_get_segmap(addr) != invalid_segment) {
unsigned long nbytes = SUN4C_VAC_SIZE;
unsigned long lsize = sun4c_vacinfo.linesize;
__asm__ __volatile__(
"add %2, %2, %%g1\n\t"
"add %2, %%g1, %%g2\n\t"
"add %2, %%g2, %%g3\n\t"
"add %2, %%g3, %%g4\n\t"
"add %2, %%g4, %%g5\n\t"
"add %2, %%g5, %%o4\n\t"
"add %2, %%o4, %%o5\n"
"1:\n\t"
"subcc %1, %%o5, %1\n\t"
"sta %%g0, [%0] %6\n\t"
"sta %%g0, [%0 + %2] %6\n\t"
"sta %%g0, [%0 + %%g1] %6\n\t"
"sta %%g0, [%0 + %%g2] %6\n\t"
"sta %%g0, [%0 + %%g3] %6\n\t"
"sta %%g0, [%0 + %%g4] %6\n\t"
"sta %%g0, [%0 + %%g5] %6\n\t"
"sta %%g0, [%0 + %%o4] %6\n\t"
"bg 1b\n\t"
" add %0, %%o5, %0\n"
: "=&r" (addr), "=&r" (nbytes), "=&r" (lsize)
: "0" (addr), "1" (nbytes), "2" (lsize),
"i" (ASI_FLUSHSEG)
: "g1", "g2", "g3", "g4", "g5", "o4", "o5", "cc");
}
}
/* Don't inline the software version as it eats too many cache lines if expanded. */
static void sun4c_flush_page_sw(unsigned long addr)
{
addr &= PAGE_MASK;
if ((sun4c_get_pte(addr) & (_SUN4C_PAGE_NOCACHE | _SUN4C_PAGE_VALID)) ==
_SUN4C_PAGE_VALID) {
unsigned long left = PAGE_SIZE;
unsigned long lsize = sun4c_vacinfo.linesize;
__asm__ __volatile__(
"add %2, %2, %%g1\n\t"
"add %2, %%g1, %%g2\n\t"
"add %2, %%g2, %%g3\n\t"
"add %2, %%g3, %%g4\n\t"
"add %2, %%g4, %%g5\n\t"
"add %2, %%g5, %%o4\n\t"
"add %2, %%o4, %%o5\n"
"1:\n\t"
"subcc %1, %%o5, %1\n\t"
"sta %%g0, [%0] %6\n\t"
"sta %%g0, [%0 + %2] %6\n\t"
"sta %%g0, [%0 + %%g1] %6\n\t"
"sta %%g0, [%0 + %%g2] %6\n\t"
"sta %%g0, [%0 + %%g3] %6\n\t"
"sta %%g0, [%0 + %%g4] %6\n\t"
"sta %%g0, [%0 + %%g5] %6\n\t"
"sta %%g0, [%0 + %%o4] %6\n\t"
"bg 1b\n\t"
" add %0, %%o5, %0\n"
: "=&r" (addr), "=&r" (left), "=&r" (lsize)
: "0" (addr), "1" (left), "2" (lsize),
"i" (ASI_FLUSHPG)
: "g1", "g2", "g3", "g4", "g5", "o4", "o5", "cc");
}
}
/* The sun4c's do have an on chip store buffer. And the way you
* clear them out isn't so obvious. The only way I can think of
* to accomplish this is to read the current context register,
* store the same value there, then read an external hardware
* register.
*/
void sun4c_complete_all_stores(void)
{
volatile int _unused;
_unused = sun4c_get_context();
sun4c_set_context(_unused);
#ifdef CONFIG_SUN_AUXIO
_unused = get_auxio();
#endif
}
/* Bootup utility functions. */
static inline void sun4c_init_clean_segmap(unsigned char pseg)
{
unsigned long vaddr;
sun4c_put_segmap(0, pseg);
for (vaddr = 0; vaddr < SUN4C_REAL_PGDIR_SIZE; vaddr += PAGE_SIZE)
sun4c_put_pte(vaddr, 0);
sun4c_put_segmap(0, invalid_segment);
}
static inline void sun4c_init_clean_mmu(unsigned long kernel_end)
{
unsigned long vaddr;
unsigned char savectx, ctx;
savectx = sun4c_get_context();
for (ctx = 0; ctx < num_contexts; ctx++) {
sun4c_set_context(ctx);
for (vaddr = 0; vaddr < 0x20000000; vaddr += SUN4C_REAL_PGDIR_SIZE)
sun4c_put_segmap(vaddr, invalid_segment);
for (vaddr = 0xe0000000; vaddr < KERNBASE; vaddr += SUN4C_REAL_PGDIR_SIZE)
sun4c_put_segmap(vaddr, invalid_segment);
for (vaddr = kernel_end; vaddr < KADB_DEBUGGER_BEGVM; vaddr += SUN4C_REAL_PGDIR_SIZE)
sun4c_put_segmap(vaddr, invalid_segment);
for (vaddr = LINUX_OPPROM_ENDVM; vaddr; vaddr += SUN4C_REAL_PGDIR_SIZE)
sun4c_put_segmap(vaddr, invalid_segment);
}
sun4c_set_context(savectx);
}
void __init sun4c_probe_vac(void)
{
sun4c_disable_vac();
if ((idprom->id_machtype == (SM_SUN4C | SM_4C_SS1)) ||
(idprom->id_machtype == (SM_SUN4C | SM_4C_SS1PLUS))) {
/* PROM on SS1 lacks this info, to be super safe we
* hard code it here since this arch is cast in stone.
*/
sun4c_vacinfo.num_bytes = 65536;
sun4c_vacinfo.linesize = 16;
} else {
sun4c_vacinfo.num_bytes =
prom_getintdefault(prom_root_node, "vac-size", 65536);
sun4c_vacinfo.linesize =
prom_getintdefault(prom_root_node, "vac-linesize", 16);
}
sun4c_vacinfo.do_hwflushes =
prom_getintdefault(prom_root_node, "vac-hwflush", 0);
if (sun4c_vacinfo.do_hwflushes == 0)
sun4c_vacinfo.do_hwflushes =
prom_getintdefault(prom_root_node, "vac_hwflush", 0);
if (sun4c_vacinfo.num_bytes != 65536) {
prom_printf("WEIRD Sun4C VAC cache size, "
"tell sparclinux@vger.kernel.org");
prom_halt();
}
switch (sun4c_vacinfo.linesize) {
case 16:
sun4c_vacinfo.log2lsize = 4;
break;
case 32:
sun4c_vacinfo.log2lsize = 5;
break;
default:
prom_printf("probe_vac: Didn't expect vac-linesize of %d, halting\n",
sun4c_vacinfo.linesize);
prom_halt();
};
sun4c_flush_all();
sun4c_enable_vac();
}
/* Patch instructions for the low level kernel fault handler. */
extern unsigned long invalid_segment_patch1, invalid_segment_patch1_ff;
extern unsigned long invalid_segment_patch2, invalid_segment_patch2_ff;
extern unsigned long invalid_segment_patch1_1ff, invalid_segment_patch2_1ff;
extern unsigned long num_context_patch1, num_context_patch1_16;
extern unsigned long num_context_patch2_16;
extern unsigned long vac_linesize_patch, vac_linesize_patch_32;
extern unsigned long vac_hwflush_patch1, vac_hwflush_patch1_on;
extern unsigned long vac_hwflush_patch2, vac_hwflush_patch2_on;
#define PATCH_INSN(src, dst) do { \
daddr = &(dst); \
iaddr = &(src); \
*daddr = *iaddr; \
} while (0)
static void __init patch_kernel_fault_handler(void)
{
unsigned long *iaddr, *daddr;
switch (num_segmaps) {
case 128:
/* Default, nothing to do. */
break;
case 256:
PATCH_INSN(invalid_segment_patch1_ff,
invalid_segment_patch1);
PATCH_INSN(invalid_segment_patch2_ff,
invalid_segment_patch2);
break;
case 512:
PATCH_INSN(invalid_segment_patch1_1ff,
invalid_segment_patch1);
PATCH_INSN(invalid_segment_patch2_1ff,
invalid_segment_patch2);
break;
default:
prom_printf("Unhandled number of segmaps: %d\n",
num_segmaps);
prom_halt();
};
switch (num_contexts) {
case 8:
/* Default, nothing to do. */
break;
case 16:
PATCH_INSN(num_context_patch1_16,
num_context_patch1);
break;
default:
prom_printf("Unhandled number of contexts: %d\n",
num_contexts);
prom_halt();
};
if (sun4c_vacinfo.do_hwflushes != 0) {
PATCH_INSN(vac_hwflush_patch1_on, vac_hwflush_patch1);
PATCH_INSN(vac_hwflush_patch2_on, vac_hwflush_patch2);
} else {
switch (sun4c_vacinfo.linesize) {
case 16:
/* Default, nothing to do. */
break;
case 32:
PATCH_INSN(vac_linesize_patch_32, vac_linesize_patch);
break;
default:
prom_printf("Impossible VAC linesize %d, halting...\n",
sun4c_vacinfo.linesize);
prom_halt();
};
}
}
static void __init sun4c_probe_mmu(void)
{
if ((idprom->id_machtype == (SM_SUN4C | SM_4C_SS1)) ||
(idprom->id_machtype == (SM_SUN4C | SM_4C_SS1PLUS))) {
/* Hardcode these just to be safe, PROM on SS1 does
* not have this info available in the root node.
*/
num_segmaps = 128;
num_contexts = 8;
} else {
num_segmaps =
prom_getintdefault(prom_root_node, "mmu-npmg", 128);
num_contexts =
prom_getintdefault(prom_root_node, "mmu-nctx", 0x8);
}
patch_kernel_fault_handler();
}
volatile unsigned long __iomem *sun4c_memerr_reg = NULL;
void __init sun4c_probe_memerr_reg(void)
{
int node;
struct linux_prom_registers regs[1];
node = prom_getchild(prom_root_node);
node = prom_searchsiblings(prom_root_node, "memory-error");
if (!node)
return;
if (prom_getproperty(node, "reg", (char *)regs, sizeof(regs)) <= 0)
return;
/* hmm I think regs[0].which_io is zero here anyways */
sun4c_memerr_reg = ioremap(regs[0].phys_addr, regs[0].reg_size);
}
static inline void sun4c_init_ss2_cache_bug(void)
{
extern unsigned long start;
if ((idprom->id_machtype == (SM_SUN4C | SM_4C_SS2)) ||
(idprom->id_machtype == (SM_SUN4C | SM_4C_IPX)) ||
(idprom->id_machtype == (SM_SUN4C | SM_4C_ELC))) {
/* Whee.. */
printk("SS2 cache bug detected, uncaching trap table page\n");
sun4c_flush_page((unsigned int) &start);
sun4c_put_pte(((unsigned long) &start),
(sun4c_get_pte((unsigned long) &start) | _SUN4C_PAGE_NOCACHE));
}
}
/* Addr is always aligned on a page boundary for us already. */
static int sun4c_map_dma_area(struct device *dev, dma_addr_t *pba, unsigned long va,
unsigned long addr, int len)
{
unsigned long page, end;
*pba = addr;
end = PAGE_ALIGN((addr + len));
while (addr < end) {
page = va;
sun4c_flush_page(page);
page -= PAGE_OFFSET;
page >>= PAGE_SHIFT;
page |= (_SUN4C_PAGE_VALID | _SUN4C_PAGE_DIRTY |
_SUN4C_PAGE_NOCACHE | _SUN4C_PAGE_PRIV);
sun4c_put_pte(addr, page);
addr += PAGE_SIZE;
va += PAGE_SIZE;
}
return 0;
}
static void sun4c_unmap_dma_area(struct device *dev, unsigned long busa, int len)
{
/* Fortunately for us, bus_addr == uncached_virt in sun4c. */
/* XXX Implement this */
}
/* TLB management. */
/* Don't change this struct without changing entry.S. This is used
* in the in-window kernel fault handler, and you don't want to mess
* with that. (See sun4c_fault in entry.S).
*/
struct sun4c_mmu_entry {
struct sun4c_mmu_entry *next;
struct sun4c_mmu_entry *prev;
unsigned long vaddr;
unsigned char pseg;
unsigned char locked;
/* For user mappings only, and completely hidden from kernel
* TLB miss code.
*/
unsigned char ctx;
struct sun4c_mmu_entry *lru_next;
struct sun4c_mmu_entry *lru_prev;
};
static struct sun4c_mmu_entry mmu_entry_pool[SUN4C_MAX_SEGMAPS];
static void __init sun4c_init_mmu_entry_pool(void)
{
int i;
for (i=0; i < SUN4C_MAX_SEGMAPS; i++) {
mmu_entry_pool[i].pseg = i;
mmu_entry_pool[i].next = NULL;
mmu_entry_pool[i].prev = NULL;
mmu_entry_pool[i].vaddr = 0;
mmu_entry_pool[i].locked = 0;
mmu_entry_pool[i].ctx = 0;
mmu_entry_pool[i].lru_next = NULL;
mmu_entry_pool[i].lru_prev = NULL;
}
mmu_entry_pool[invalid_segment].locked = 1;
}
static inline void fix_permissions(unsigned long vaddr, unsigned long bits_on,
unsigned long bits_off)
{
unsigned long start, end;
end = vaddr + SUN4C_REAL_PGDIR_SIZE;
for (start = vaddr; start < end; start += PAGE_SIZE)
if (sun4c_get_pte(start) & _SUN4C_PAGE_VALID)
sun4c_put_pte(start, (sun4c_get_pte(start) | bits_on) &
~bits_off);
}
static inline void sun4c_init_map_kernelprom(unsigned long kernel_end)
{
unsigned long vaddr;
unsigned char pseg, ctx;
for (vaddr = KADB_DEBUGGER_BEGVM;
vaddr < LINUX_OPPROM_ENDVM;
vaddr += SUN4C_REAL_PGDIR_SIZE) {
pseg = sun4c_get_segmap(vaddr);
if (pseg != invalid_segment) {
mmu_entry_pool[pseg].locked = 1;
for (ctx = 0; ctx < num_contexts; ctx++)
prom_putsegment(ctx, vaddr, pseg);
fix_permissions(vaddr, _SUN4C_PAGE_PRIV, 0);
}
}
for (vaddr = KERNBASE; vaddr < kernel_end; vaddr += SUN4C_REAL_PGDIR_SIZE) {
pseg = sun4c_get_segmap(vaddr);
mmu_entry_pool[pseg].locked = 1;
for (ctx = 0; ctx < num_contexts; ctx++)
prom_putsegment(ctx, vaddr, pseg);
fix_permissions(vaddr, _SUN4C_PAGE_PRIV, _SUN4C_PAGE_NOCACHE);
}
}
static void __init sun4c_init_lock_area(unsigned long start, unsigned long end)
{
int i, ctx;
while (start < end) {
for (i = 0; i < invalid_segment; i++)
if (!mmu_entry_pool[i].locked)
break;
mmu_entry_pool[i].locked = 1;
sun4c_init_clean_segmap(i);
for (ctx = 0; ctx < num_contexts; ctx++)
prom_putsegment(ctx, start, mmu_entry_pool[i].pseg);
start += SUN4C_REAL_PGDIR_SIZE;
}
}
/* Don't change this struct without changing entry.S. This is used
* in the in-window kernel fault handler, and you don't want to mess
* with that. (See sun4c_fault in entry.S).
*/
struct sun4c_mmu_ring {
struct sun4c_mmu_entry ringhd;
int num_entries;
};
static struct sun4c_mmu_ring sun4c_context_ring[SUN4C_MAX_CONTEXTS]; /* used user entries */
static struct sun4c_mmu_ring sun4c_ufree_ring; /* free user entries */
static struct sun4c_mmu_ring sun4c_ulru_ring; /* LRU user entries */
struct sun4c_mmu_ring sun4c_kernel_ring; /* used kernel entries */
struct sun4c_mmu_ring sun4c_kfree_ring; /* free kernel entries */
static inline void sun4c_init_rings(void)
{
int i;
for (i = 0; i < SUN4C_MAX_CONTEXTS; i++) {
sun4c_context_ring[i].ringhd.next =
sun4c_context_ring[i].ringhd.prev =
&sun4c_context_ring[i].ringhd;
sun4c_context_ring[i].num_entries = 0;
}
sun4c_ufree_ring.ringhd.next = sun4c_ufree_ring.ringhd.prev =
&sun4c_ufree_ring.ringhd;
sun4c_ufree_ring.num_entries = 0;
sun4c_ulru_ring.ringhd.lru_next = sun4c_ulru_ring.ringhd.lru_prev =
&sun4c_ulru_ring.ringhd;
sun4c_ulru_ring.num_entries = 0;
sun4c_kernel_ring.ringhd.next = sun4c_kernel_ring.ringhd.prev =
&sun4c_kernel_ring.ringhd;
sun4c_kernel_ring.num_entries = 0;
sun4c_kfree_ring.ringhd.next = sun4c_kfree_ring.ringhd.prev =
&sun4c_kfree_ring.ringhd;
sun4c_kfree_ring.num_entries = 0;
}
static void add_ring(struct sun4c_mmu_ring *ring,
struct sun4c_mmu_entry *entry)
{
struct sun4c_mmu_entry *head = &ring->ringhd;
entry->prev = head;
(entry->next = head->next)->prev = entry;
head->next = entry;
ring->num_entries++;
}
static inline void add_lru(struct sun4c_mmu_entry *entry)
{
struct sun4c_mmu_ring *ring = &sun4c_ulru_ring;
struct sun4c_mmu_entry *head = &ring->ringhd;
entry->lru_next = head;
(entry->lru_prev = head->lru_prev)->lru_next = entry;
head->lru_prev = entry;
}
static void add_ring_ordered(struct sun4c_mmu_ring *ring,
struct sun4c_mmu_entry *entry)
{
struct sun4c_mmu_entry *head = &ring->ringhd;
unsigned long addr = entry->vaddr;
while ((head->next != &ring->ringhd) && (head->next->vaddr < addr))
head = head->next;
entry->prev = head;
(entry->next = head->next)->prev = entry;
head->next = entry;
ring->num_entries++;
add_lru(entry);
}
static inline void remove_ring(struct sun4c_mmu_ring *ring,
struct sun4c_mmu_entry *entry)
{
struct sun4c_mmu_entry *next = entry->next;
(next->prev = entry->prev)->next = next;
ring->num_entries--;
}
static void remove_lru(struct sun4c_mmu_entry *entry)
{
struct sun4c_mmu_entry *next = entry->lru_next;
(next->lru_prev = entry->lru_prev)->lru_next = next;
}
static void free_user_entry(int ctx, struct sun4c_mmu_entry *entry)
{
remove_ring(sun4c_context_ring+ctx, entry);
remove_lru(entry);
add_ring(&sun4c_ufree_ring, entry);
}
static void free_kernel_entry(struct sun4c_mmu_entry *entry,
struct sun4c_mmu_ring *ring)
{
remove_ring(ring, entry);
add_ring(&sun4c_kfree_ring, entry);
}
static void __init sun4c_init_fill_kernel_ring(int howmany)
{
int i;
while (howmany) {
for (i = 0; i < invalid_segment; i++)
if (!mmu_entry_pool[i].locked)
break;
mmu_entry_pool[i].locked = 1;
sun4c_init_clean_segmap(i);
add_ring(&sun4c_kfree_ring, &mmu_entry_pool[i]);
howmany--;
}
}
static void __init sun4c_init_fill_user_ring(void)
{
int i;
for (i = 0; i < invalid_segment; i++) {
if (mmu_entry_pool[i].locked)
continue;
sun4c_init_clean_segmap(i);
add_ring(&sun4c_ufree_ring, &mmu_entry_pool[i]);
}
}
static void sun4c_kernel_unmap(struct sun4c_mmu_entry *kentry)
{
int savectx, ctx;
savectx = sun4c_get_context();
for (ctx = 0; ctx < num_contexts; ctx++) {
sun4c_set_context(ctx);
sun4c_put_segmap(kentry->vaddr, invalid_segment);
}
sun4c_set_context(savectx);
}
static void sun4c_kernel_map(struct sun4c_mmu_entry *kentry)
{
int savectx, ctx;
savectx = sun4c_get_context();
for (ctx = 0; ctx < num_contexts; ctx++) {
sun4c_set_context(ctx);
sun4c_put_segmap(kentry->vaddr, kentry->pseg);
}
sun4c_set_context(savectx);
}
#define sun4c_user_unmap(__entry) \
sun4c_put_segmap((__entry)->vaddr, invalid_segment)
static void sun4c_demap_context(struct sun4c_mmu_ring *crp, unsigned char ctx)
{
struct sun4c_mmu_entry *head = &crp->ringhd;
unsigned long flags;
local_irq_save(flags);
if (head->next != head) {
struct sun4c_mmu_entry *entry = head->next;
int savectx = sun4c_get_context();
flush_user_windows();
sun4c_set_context(ctx);
sun4c_flush_context();
do {
struct sun4c_mmu_entry *next = entry->next;
sun4c_user_unmap(entry);
free_user_entry(ctx, entry);
entry = next;
} while (entry != head);
sun4c_set_context(savectx);
}
local_irq_restore(flags);
}
static int sun4c_user_taken_entries; /* This is how much we have. */
static int max_user_taken_entries; /* This limits us and prevents deadlock. */
static struct sun4c_mmu_entry *sun4c_kernel_strategy(void)
{
struct sun4c_mmu_entry *this_entry;
/* If some are free, return first one. */
if (sun4c_kfree_ring.num_entries) {
this_entry = sun4c_kfree_ring.ringhd.next;
return this_entry;
}
/* Else free one up. */
this_entry = sun4c_kernel_ring.ringhd.prev;
sun4c_flush_segment(this_entry->vaddr);
sun4c_kernel_unmap(this_entry);
free_kernel_entry(this_entry, &sun4c_kernel_ring);
this_entry = sun4c_kfree_ring.ringhd.next;
return this_entry;
}
/* Using this method to free up mmu entries eliminates a lot of
* potential races since we have a kernel that incurs tlb
* replacement faults. There may be performance penalties.
*
* NOTE: Must be called with interrupts disabled.
*/
static struct sun4c_mmu_entry *sun4c_user_strategy(void)
{
struct sun4c_mmu_entry *entry;
unsigned char ctx;
int savectx;
/* If some are free, return first one. */
if (sun4c_ufree_ring.num_entries) {
entry = sun4c_ufree_ring.ringhd.next;
goto unlink_out;
}
if (sun4c_user_taken_entries) {
entry = sun4c_kernel_strategy();
sun4c_user_taken_entries--;
goto kunlink_out;
}
/* Grab from the beginning of the LRU list. */
entry = sun4c_ulru_ring.ringhd.lru_next;
ctx = entry->ctx;
savectx = sun4c_get_context();
flush_user_windows();
sun4c_set_context(ctx);
sun4c_flush_segment(entry->vaddr);
sun4c_user_unmap(entry);
remove_ring(sun4c_context_ring + ctx, entry);
remove_lru(entry);
sun4c_set_context(savectx);
return entry;
unlink_out:
remove_ring(&sun4c_ufree_ring, entry);
return entry;
kunlink_out:
remove_ring(&sun4c_kfree_ring, entry);
return entry;
}
/* NOTE: Must be called with interrupts disabled. */
void sun4c_grow_kernel_ring(void)
{
struct sun4c_mmu_entry *entry;
/* Prevent deadlock condition. */
if (sun4c_user_taken_entries >= max_user_taken_entries)
return;
if (sun4c_ufree_ring.num_entries) {
entry = sun4c_ufree_ring.ringhd.next;
remove_ring(&sun4c_ufree_ring, entry);
add_ring(&sun4c_kfree_ring, entry);
sun4c_user_taken_entries++;
}
}
/* 2 page buckets for task struct and kernel stack allocation.
*
* TASK_STACK_BEGIN
* bucket[0]
* bucket[1]
* [ ... ]
* bucket[NR_TASK_BUCKETS-1]
* TASK_STACK_BEGIN + (sizeof(struct task_bucket) * NR_TASK_BUCKETS)
*
* Each slot looks like:
*
* page 1 -- task struct + beginning of kernel stack
* page 2 -- rest of kernel stack
*/
union task_union *sun4c_bucket[NR_TASK_BUCKETS];
static int sun4c_lowbucket_avail;
#define BUCKET_EMPTY ((union task_union *) 0)
#define BUCKET_SHIFT (PAGE_SHIFT + 1) /* log2(sizeof(struct task_bucket)) */
#define BUCKET_SIZE (1 << BUCKET_SHIFT)
#define BUCKET_NUM(addr) ((((addr) - SUN4C_LOCK_VADDR) >> BUCKET_SHIFT))
#define BUCKET_ADDR(num) (((num) << BUCKET_SHIFT) + SUN4C_LOCK_VADDR)
#define BUCKET_PTE(page) \
((((page) - PAGE_OFFSET) >> PAGE_SHIFT) | pgprot_val(SUN4C_PAGE_KERNEL))
#define BUCKET_PTE_PAGE(pte) \
(PAGE_OFFSET + (((pte) & SUN4C_PFN_MASK) << PAGE_SHIFT))
static void get_locked_segment(unsigned long addr)
{
struct sun4c_mmu_entry *stolen;
unsigned long flags;
local_irq_save(flags);
addr &= SUN4C_REAL_PGDIR_MASK;
stolen = sun4c_user_strategy();
max_user_taken_entries--;
stolen->vaddr = addr;
flush_user_windows();
sun4c_kernel_map(stolen);
local_irq_restore(flags);
}
static void free_locked_segment(unsigned long addr)
{
struct sun4c_mmu_entry *entry;
unsigned long flags;
unsigned char pseg;
local_irq_save(flags);
addr &= SUN4C_REAL_PGDIR_MASK;
pseg = sun4c_get_segmap(addr);
entry = &mmu_entry_pool[pseg];
flush_user_windows();
sun4c_flush_segment(addr);
sun4c_kernel_unmap(entry);
add_ring(&sun4c_ufree_ring, entry);
max_user_taken_entries++;
local_irq_restore(flags);
}
static inline void garbage_collect(int entry)
{
int start, end;
/* 32 buckets per segment... */
entry &= ~31;
start = entry;
for (end = (start + 32); start < end; start++)
if (sun4c_bucket[start] != BUCKET_EMPTY)
return;
/* Entire segment empty, release it. */
free_locked_segment(BUCKET_ADDR(entry));
}
static struct thread_info *sun4c_alloc_thread_info(void)
{
unsigned long addr, pages;
int entry;
pages = __get_free_pages(GFP_KERNEL, THREAD_INFO_ORDER);
if (!pages)
return NULL;
for (entry = sun4c_lowbucket_avail; entry < NR_TASK_BUCKETS; entry++)
if (sun4c_bucket[entry] == BUCKET_EMPTY)
break;
if (entry == NR_TASK_BUCKETS) {
free_pages(pages, THREAD_INFO_ORDER);
return NULL;
}
if (entry >= sun4c_lowbucket_avail)
sun4c_lowbucket_avail = entry + 1;
addr = BUCKET_ADDR(entry);
sun4c_bucket[entry] = (union task_union *) addr;
if(sun4c_get_segmap(addr) == invalid_segment)
get_locked_segment(addr);
/* We are changing the virtual color of the page(s)
* so we must flush the cache to guarantee consistency.
*/
sun4c_flush_page(pages);
sun4c_flush_page(pages + PAGE_SIZE);
sun4c_put_pte(addr, BUCKET_PTE(pages));
sun4c_put_pte(addr + PAGE_SIZE, BUCKET_PTE(pages + PAGE_SIZE));
#ifdef CONFIG_DEBUG_STACK_USAGE
memset((void *)addr, 0, PAGE_SIZE << THREAD_INFO_ORDER);
#endif /* DEBUG_STACK_USAGE */
return (struct thread_info *) addr;
}
static void sun4c_free_thread_info(struct thread_info *ti)
{
unsigned long tiaddr = (unsigned long) ti;
unsigned long pages = BUCKET_PTE_PAGE(sun4c_get_pte(tiaddr));
int entry = BUCKET_NUM(tiaddr);
/* We are deleting a mapping, so the flush here is mandatory. */
sun4c_flush_page(tiaddr);
sun4c_flush_page(tiaddr + PAGE_SIZE);
sun4c_put_pte(tiaddr, 0);
sun4c_put_pte(tiaddr + PAGE_SIZE, 0);
sun4c_bucket[entry] = BUCKET_EMPTY;
if (entry < sun4c_lowbucket_avail)
sun4c_lowbucket_avail = entry;
free_pages(pages, THREAD_INFO_ORDER);
garbage_collect(entry);
}
static void __init sun4c_init_buckets(void)
{
int entry;
if (sizeof(union thread_union) != (PAGE_SIZE << THREAD_INFO_ORDER)) {
extern void thread_info_size_is_bolixed_pete(void);
thread_info_size_is_bolixed_pete();
}
for (entry = 0; entry < NR_TASK_BUCKETS; entry++)
sun4c_bucket[entry] = BUCKET_EMPTY;
sun4c_lowbucket_avail = 0;
}
static unsigned long sun4c_iobuffer_start;
static unsigned long sun4c_iobuffer_end;
static unsigned long sun4c_iobuffer_high;
static unsigned long *sun4c_iobuffer_map;
static int iobuffer_map_size;
/*
* Alias our pages so they do not cause a trap.
* Also one page may be aliased into several I/O areas and we may
* finish these I/O separately.
*/
static char *sun4c_lockarea(char *vaddr, unsigned long size)
{
unsigned long base, scan;
unsigned long npages;
unsigned long vpage;
unsigned long pte;
unsigned long apage;
unsigned long high;
unsigned long flags;
npages = (((unsigned long)vaddr & ~PAGE_MASK) +
size + (PAGE_SIZE-1)) >> PAGE_SHIFT;
scan = 0;
local_irq_save(flags);
for (;;) {
scan = find_next_zero_bit(sun4c_iobuffer_map,
iobuffer_map_size, scan);
if ((base = scan) + npages > iobuffer_map_size) goto abend;
for (;;) {
if (scan >= base + npages) goto found;
if (test_bit(scan, sun4c_iobuffer_map)) break;
scan++;
}
}
found:
high = ((base + npages) << PAGE_SHIFT) + sun4c_iobuffer_start;
high = SUN4C_REAL_PGDIR_ALIGN(high);
while (high > sun4c_iobuffer_high) {
get_locked_segment(sun4c_iobuffer_high);
sun4c_iobuffer_high += SUN4C_REAL_PGDIR_SIZE;
}
vpage = ((unsigned long) vaddr) & PAGE_MASK;
for (scan = base; scan < base+npages; scan++) {
pte = ((vpage-PAGE_OFFSET) >> PAGE_SHIFT);
pte |= pgprot_val(SUN4C_PAGE_KERNEL);
pte |= _SUN4C_PAGE_NOCACHE;
set_bit(scan, sun4c_iobuffer_map);
apage = (scan << PAGE_SHIFT) + sun4c_iobuffer_start;
/* Flush original mapping so we see the right things later. */
sun4c_flush_page(vpage);
sun4c_put_pte(apage, pte);
vpage += PAGE_SIZE;
}
local_irq_restore(flags);
return (char *) ((base << PAGE_SHIFT) + sun4c_iobuffer_start +
(((unsigned long) vaddr) & ~PAGE_MASK));
abend:
local_irq_restore(flags);
printk("DMA vaddr=0x%p size=%08lx\n", vaddr, size);
panic("Out of iobuffer table");
return NULL;
}
static void sun4c_unlockarea(char *vaddr, unsigned long size)
{
unsigned long vpage, npages;
unsigned long flags;
int scan, high;
vpage = (unsigned long)vaddr & PAGE_MASK;
npages = (((unsigned long)vaddr & ~PAGE_MASK) +
size + (PAGE_SIZE-1)) >> PAGE_SHIFT;
local_irq_save(flags);
while (npages != 0) {
--npages;
/* This mapping is marked non-cachable, no flush necessary. */
sun4c_put_pte(vpage, 0);
clear_bit((vpage - sun4c_iobuffer_start) >> PAGE_SHIFT,
sun4c_iobuffer_map);
vpage += PAGE_SIZE;
}
/* garbage collect */
scan = (sun4c_iobuffer_high - sun4c_iobuffer_start) >> PAGE_SHIFT;
while (scan >= 0 && !sun4c_iobuffer_map[scan >> 5])
scan -= 32;
scan += 32;
high = sun4c_iobuffer_start + (scan << PAGE_SHIFT);
high = SUN4C_REAL_PGDIR_ALIGN(high) + SUN4C_REAL_PGDIR_SIZE;
while (high < sun4c_iobuffer_high) {
sun4c_iobuffer_high -= SUN4C_REAL_PGDIR_SIZE;
free_locked_segment(sun4c_iobuffer_high);
}
local_irq_restore(flags);
}
/* Note the scsi code at init time passes to here buffers
* which sit on the kernel stack, those are already locked
* by implication and fool the page locking code above
* if passed to by mistake.
*/
static __u32 sun4c_get_scsi_one(struct device *dev, char *bufptr, unsigned long len)
{
unsigned long page;
page = ((unsigned long)bufptr) & PAGE_MASK;
if (!virt_addr_valid(page)) {
sun4c_flush_page(page);
return (__u32)bufptr; /* already locked */
}
return (__u32)sun4c_lockarea(bufptr, len);
}
static void sun4c_get_scsi_sgl(struct device *dev, struct scatterlist *sg, int sz)
{
while (sz != 0) {
--sz;
sg->dvma_address = (__u32)sun4c_lockarea(sg_virt(sg), sg->length);
sg->dvma_length = sg->length;
sg = sg_next(sg);
}
}
static void sun4c_release_scsi_one(struct device *dev, __u32 bufptr, unsigned long len)
{
if (bufptr < sun4c_iobuffer_start)
return; /* On kernel stack or similar, see above */
sun4c_unlockarea((char *)bufptr, len);
}
static void sun4c_release_scsi_sgl(struct device *dev, struct scatterlist *sg, int sz)
{
while (sz != 0) {
--sz;
sun4c_unlockarea((char *)sg->dvma_address, sg->length);
sg = sg_next(sg);
}
}
#define TASK_ENTRY_SIZE BUCKET_SIZE /* see above */
#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
struct vm_area_struct sun4c_kstack_vma;
static void __init sun4c_init_lock_areas(void)
{
unsigned long sun4c_taskstack_start;
unsigned long sun4c_taskstack_end;
int bitmap_size;
sun4c_init_buckets();
sun4c_taskstack_start = SUN4C_LOCK_VADDR;
sun4c_taskstack_end = (sun4c_taskstack_start +
(TASK_ENTRY_SIZE * NR_TASK_BUCKETS));
if (sun4c_taskstack_end >= SUN4C_LOCK_END) {
prom_printf("Too many tasks, decrease NR_TASK_BUCKETS please.\n");
prom_halt();
}
sun4c_iobuffer_start = sun4c_iobuffer_high =
SUN4C_REAL_PGDIR_ALIGN(sun4c_taskstack_end);
sun4c_iobuffer_end = SUN4C_LOCK_END;
bitmap_size = (sun4c_iobuffer_end - sun4c_iobuffer_start) >> PAGE_SHIFT;
bitmap_size = (bitmap_size + 7) >> 3;
bitmap_size = LONG_ALIGN(bitmap_size);
iobuffer_map_size = bitmap_size << 3;
sun4c_iobuffer_map = __alloc_bootmem(bitmap_size, SMP_CACHE_BYTES, 0UL);
memset((void *) sun4c_iobuffer_map, 0, bitmap_size);
sun4c_kstack_vma.vm_mm = &init_mm;
sun4c_kstack_vma.vm_start = sun4c_taskstack_start;
sun4c_kstack_vma.vm_end = sun4c_taskstack_end;
sun4c_kstack_vma.vm_page_prot = PAGE_SHARED;
sun4c_kstack_vma.vm_flags = VM_READ | VM_WRITE | VM_EXEC;
insert_vm_struct(&init_mm, &sun4c_kstack_vma);
}
/* Cache flushing on the sun4c. */
static void sun4c_flush_cache_all(void)
{
unsigned long begin, end;
flush_user_windows();
begin = (KERNBASE + SUN4C_REAL_PGDIR_SIZE);
end = (begin + SUN4C_VAC_SIZE);
if (sun4c_vacinfo.linesize == 32) {
while (begin < end) {
__asm__ __volatile__(
"ld [%0 + 0x00], %%g0\n\t"
"ld [%0 + 0x20], %%g0\n\t"
"ld [%0 + 0x40], %%g0\n\t"
"ld [%0 + 0x60], %%g0\n\t"
"ld [%0 + 0x80], %%g0\n\t"
"ld [%0 + 0xa0], %%g0\n\t"
"ld [%0 + 0xc0], %%g0\n\t"
"ld [%0 + 0xe0], %%g0\n\t"
"ld [%0 + 0x100], %%g0\n\t"
"ld [%0 + 0x120], %%g0\n\t"
"ld [%0 + 0x140], %%g0\n\t"
"ld [%0 + 0x160], %%g0\n\t"
"ld [%0 + 0x180], %%g0\n\t"
"ld [%0 + 0x1a0], %%g0\n\t"
"ld [%0 + 0x1c0], %%g0\n\t"
"ld [%0 + 0x1e0], %%g0\n"
: : "r" (begin));
begin += 512;
}
} else {
while (begin < end) {
__asm__ __volatile__(
"ld [%0 + 0x00], %%g0\n\t"
"ld [%0 + 0x10], %%g0\n\t"
"ld [%0 + 0x20], %%g0\n\t"
"ld [%0 + 0x30], %%g0\n\t"
"ld [%0 + 0x40], %%g0\n\t"
"ld [%0 + 0x50], %%g0\n\t"
"ld [%0 + 0x60], %%g0\n\t"
"ld [%0 + 0x70], %%g0\n\t"
"ld [%0 + 0x80], %%g0\n\t"
"ld [%0 + 0x90], %%g0\n\t"
"ld [%0 + 0xa0], %%g0\n\t"
"ld [%0 + 0xb0], %%g0\n\t"
"ld [%0 + 0xc0], %%g0\n\t"
"ld [%0 + 0xd0], %%g0\n\t"
"ld [%0 + 0xe0], %%g0\n\t"
"ld [%0 + 0xf0], %%g0\n"
: : "r" (begin));
begin += 256;
}
}
}
static void sun4c_flush_cache_mm(struct mm_struct *mm)
{
int new_ctx = mm->context;
if (new_ctx != NO_CONTEXT) {
flush_user_windows();
if (sun4c_context_ring[new_ctx].num_entries) {
struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd;
unsigned long flags;
local_irq_save(flags);
if (head->next != head) {
struct sun4c_mmu_entry *entry = head->next;
int savectx = sun4c_get_context();
sun4c_set_context(new_ctx);
sun4c_flush_context();
do {
struct sun4c_mmu_entry *next = entry->next;
sun4c_user_unmap(entry);
free_user_entry(new_ctx, entry);
entry = next;
} while (entry != head);
sun4c_set_context(savectx);
}
local_irq_restore(flags);
}
}
}
static void sun4c_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
int new_ctx = mm->context;
if (new_ctx != NO_CONTEXT) {
struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd;
struct sun4c_mmu_entry *entry;
unsigned long flags;
flush_user_windows();
local_irq_save(flags);
/* All user segmap chains are ordered on entry->vaddr. */
for (entry = head->next;
(entry != head) && ((entry->vaddr+SUN4C_REAL_PGDIR_SIZE) < start);
entry = entry->next)
;
/* Tracing various job mixtures showed that this conditional
* only passes ~35% of the time for most worse case situations,
* therefore we avoid all of this gross overhead ~65% of the time.
*/
if ((entry != head) && (entry->vaddr < end)) {
int octx = sun4c_get_context();
sun4c_set_context(new_ctx);
/* At this point, always, (start >= entry->vaddr) and
* (entry->vaddr < end), once the latter condition
* ceases to hold, or we hit the end of the list, we
* exit the loop. The ordering of all user allocated
* segmaps makes this all work out so beautifully.
*/
do {
struct sun4c_mmu_entry *next = entry->next;
unsigned long realend;
/* "realstart" is always >= entry->vaddr */
realend = entry->vaddr + SUN4C_REAL_PGDIR_SIZE;
if (end < realend)
realend = end;
if ((realend - entry->vaddr) <= (PAGE_SIZE << 3)) {
unsigned long page = entry->vaddr;
while (page < realend) {
sun4c_flush_page(page);
page += PAGE_SIZE;
}
} else {
sun4c_flush_segment(entry->vaddr);
sun4c_user_unmap(entry);
free_user_entry(new_ctx, entry);
}
entry = next;
} while ((entry != head) && (entry->vaddr < end));
sun4c_set_context(octx);
}
local_irq_restore(flags);
}
}
static void sun4c_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
{
struct mm_struct *mm = vma->vm_mm;
int new_ctx = mm->context;
/* Sun4c has no separate I/D caches so cannot optimize for non
* text page flushes.
*/
if (new_ctx != NO_CONTEXT) {
int octx = sun4c_get_context();
unsigned long flags;
flush_user_windows();
local_irq_save(flags);
sun4c_set_context(new_ctx);
sun4c_flush_page(page);
sun4c_set_context(octx);
local_irq_restore(flags);
}
}
static void sun4c_flush_page_to_ram(unsigned long page)
{
unsigned long flags;
local_irq_save(flags);
sun4c_flush_page(page);
local_irq_restore(flags);
}
/* Sun4c cache is unified, both instructions and data live there, so
* no need to flush the on-stack instructions for new signal handlers.
*/
static void sun4c_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
{
}
/* TLB flushing on the sun4c. These routines count on the cache
* flushing code to flush the user register windows so that we need
* not do so when we get here.
*/
static void sun4c_flush_tlb_all(void)
{
struct sun4c_mmu_entry *this_entry, *next_entry;
unsigned long flags;
int savectx, ctx;
local_irq_save(flags);
this_entry = sun4c_kernel_ring.ringhd.next;
savectx = sun4c_get_context();
flush_user_windows();
while (sun4c_kernel_ring.num_entries) {
next_entry = this_entry->next;
sun4c_flush_segment(this_entry->vaddr);
for (ctx = 0; ctx < num_contexts; ctx++) {
sun4c_set_context(ctx);
sun4c_put_segmap(this_entry->vaddr, invalid_segment);
}
free_kernel_entry(this_entry, &sun4c_kernel_ring);
this_entry = next_entry;
}
sun4c_set_context(savectx);
local_irq_restore(flags);
}
static void sun4c_flush_tlb_mm(struct mm_struct *mm)
{
int new_ctx = mm->context;
if (new_ctx != NO_CONTEXT) {
struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd;
unsigned long flags;
local_irq_save(flags);
if (head->next != head) {
struct sun4c_mmu_entry *entry = head->next;
int savectx = sun4c_get_context();
sun4c_set_context(new_ctx);
sun4c_flush_context();
do {
struct sun4c_mmu_entry *next = entry->next;
sun4c_user_unmap(entry);
free_user_entry(new_ctx, entry);
entry = next;
} while (entry != head);
sun4c_set_context(savectx);
}
local_irq_restore(flags);
}
}
static void sun4c_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
int new_ctx = mm->context;
if (new_ctx != NO_CONTEXT) {
struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd;
struct sun4c_mmu_entry *entry;
unsigned long flags;
local_irq_save(flags);
/* See commentary in sun4c_flush_cache_range(). */
for (entry = head->next;
(entry != head) && ((entry->vaddr+SUN4C_REAL_PGDIR_SIZE) < start);
entry = entry->next)
;
if ((entry != head) && (entry->vaddr < end)) {
int octx = sun4c_get_context();
sun4c_set_context(new_ctx);
do {
struct sun4c_mmu_entry *next = entry->next;
sun4c_flush_segment(entry->vaddr);
sun4c_user_unmap(entry);
free_user_entry(new_ctx, entry);
entry = next;
} while ((entry != head) && (entry->vaddr < end));
sun4c_set_context(octx);
}
local_irq_restore(flags);
}
}
static void sun4c_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
struct mm_struct *mm = vma->vm_mm;
int new_ctx = mm->context;
if (new_ctx != NO_CONTEXT) {
int savectx = sun4c_get_context();
unsigned long flags;
local_irq_save(flags);
sun4c_set_context(new_ctx);
page &= PAGE_MASK;
sun4c_flush_page(page);
sun4c_put_pte(page, 0);
sun4c_set_context(savectx);
local_irq_restore(flags);
}
}
static inline void sun4c_mapioaddr(unsigned long physaddr, unsigned long virt_addr)
{
unsigned long page_entry, pg_iobits;
pg_iobits = _SUN4C_PAGE_PRESENT | _SUN4C_READABLE | _SUN4C_WRITEABLE |
_SUN4C_PAGE_IO | _SUN4C_PAGE_NOCACHE;
page_entry = ((physaddr >> PAGE_SHIFT) & SUN4C_PFN_MASK);
page_entry |= ((pg_iobits | _SUN4C_PAGE_PRIV) & ~(_SUN4C_PAGE_PRESENT));
sun4c_put_pte(virt_addr, page_entry);
}
static void sun4c_mapiorange(unsigned int bus, unsigned long xpa,
unsigned long xva, unsigned int len)
{
while (len != 0) {
len -= PAGE_SIZE;
sun4c_mapioaddr(xpa, xva);
xva += PAGE_SIZE;
xpa += PAGE_SIZE;
}
}
static void sun4c_unmapiorange(unsigned long virt_addr, unsigned int len)
{
while (len != 0) {
len -= PAGE_SIZE;
sun4c_put_pte(virt_addr, 0);
virt_addr += PAGE_SIZE;
}
}
static void sun4c_alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
{
struct ctx_list *ctxp;
ctxp = ctx_free.next;
if (ctxp != &ctx_free) {
remove_from_ctx_list(ctxp);
add_to_used_ctxlist(ctxp);
mm->context = ctxp->ctx_number;
ctxp->ctx_mm = mm;
return;
}
ctxp = ctx_used.next;
if (ctxp->ctx_mm == old_mm)
ctxp = ctxp->next;
remove_from_ctx_list(ctxp);
add_to_used_ctxlist(ctxp);
ctxp->ctx_mm->context = NO_CONTEXT;
ctxp->ctx_mm = mm;
mm->context = ctxp->ctx_number;
sun4c_demap_context(&sun4c_context_ring[ctxp->ctx_number],
ctxp->ctx_number);
}
/* Switch the current MM context. */
static void sun4c_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, struct task_struct *tsk, int cpu)
{
struct ctx_list *ctx;
int dirty = 0;
if (mm->context == NO_CONTEXT) {
dirty = 1;
sun4c_alloc_context(old_mm, mm);
} else {
/* Update the LRU ring of contexts. */
ctx = ctx_list_pool + mm->context;
remove_from_ctx_list(ctx);
add_to_used_ctxlist(ctx);
}
if (dirty || old_mm != mm)
sun4c_set_context(mm->context);
}
static void sun4c_destroy_context(struct mm_struct *mm)
{
struct ctx_list *ctx_old;
if (mm->context != NO_CONTEXT) {
sun4c_demap_context(&sun4c_context_ring[mm->context], mm->context);
ctx_old = ctx_list_pool + mm->context;
remove_from_ctx_list(ctx_old);
add_to_free_ctxlist(ctx_old);
mm->context = NO_CONTEXT;
}
}
static void sun4c_mmu_info(struct seq_file *m)
{
int used_user_entries, i;
used_user_entries = 0;
for (i = 0; i < num_contexts; i++)
used_user_entries += sun4c_context_ring[i].num_entries;
seq_printf(m,
"vacsize\t\t: %d bytes\n"
"vachwflush\t: %s\n"
"vaclinesize\t: %d bytes\n"
"mmuctxs\t\t: %d\n"
"mmupsegs\t: %d\n"
"kernelpsegs\t: %d\n"
"kfreepsegs\t: %d\n"
"usedpsegs\t: %d\n"
"ufreepsegs\t: %d\n"
"user_taken\t: %d\n"
"max_taken\t: %d\n",
sun4c_vacinfo.num_bytes,
(sun4c_vacinfo.do_hwflushes ? "yes" : "no"),
sun4c_vacinfo.linesize,
num_contexts,
(invalid_segment + 1),
sun4c_kernel_ring.num_entries,
sun4c_kfree_ring.num_entries,
used_user_entries,
sun4c_ufree_ring.num_entries,
sun4c_user_taken_entries,
max_user_taken_entries);
}
/* Nothing below here should touch the mmu hardware nor the mmu_entry
* data structures.
*/
/* First the functions which the mid-level code uses to directly
* manipulate the software page tables. Some defines since we are
* emulating the i386 page directory layout.
*/
#define PGD_PRESENT 0x001
#define PGD_RW 0x002
#define PGD_USER 0x004
#define PGD_ACCESSED 0x020
#define PGD_DIRTY 0x040
#define PGD_TABLE (PGD_PRESENT | PGD_RW | PGD_USER | PGD_ACCESSED | PGD_DIRTY)
static void sun4c_set_pte(pte_t *ptep, pte_t pte)
{
*ptep = pte;
}
static void sun4c_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
{
}
static void sun4c_pmd_set(pmd_t * pmdp, pte_t * ptep)
{
pmdp->pmdv[0] = PGD_TABLE | (unsigned long) ptep;
}
static void sun4c_pmd_populate(pmd_t * pmdp, struct page * ptep)
{
if (page_address(ptep) == NULL) BUG(); /* No highmem on sun4c */
pmdp->pmdv[0] = PGD_TABLE | (unsigned long) page_address(ptep);
}
static int sun4c_pte_present(pte_t pte)
{
return ((pte_val(pte) & (_SUN4C_PAGE_PRESENT | _SUN4C_PAGE_PRIV)) != 0);
}
static void sun4c_pte_clear(pte_t *ptep) { *ptep = __pte(0); }
static int sun4c_pmd_bad(pmd_t pmd)
{
return (((pmd_val(pmd) & ~PAGE_MASK) != PGD_TABLE) ||
(!virt_addr_valid(pmd_val(pmd))));
}
static int sun4c_pmd_present(pmd_t pmd)
{
return ((pmd_val(pmd) & PGD_PRESENT) != 0);
}
#if 0 /* if PMD takes one word */
static void sun4c_pmd_clear(pmd_t *pmdp) { *pmdp = __pmd(0); }
#else /* if pmd_t is a longish aggregate */
static void sun4c_pmd_clear(pmd_t *pmdp) {
memset((void *)pmdp, 0, sizeof(pmd_t));
}
#endif
static int sun4c_pgd_none(pgd_t pgd) { return 0; }
static int sun4c_pgd_bad(pgd_t pgd) { return 0; }
static int sun4c_pgd_present(pgd_t pgd) { return 1; }
static void sun4c_pgd_clear(pgd_t * pgdp) { }
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
static pte_t sun4c_pte_mkwrite(pte_t pte)
{
pte = __pte(pte_val(pte) | _SUN4C_PAGE_WRITE);
if (pte_val(pte) & _SUN4C_PAGE_MODIFIED)
pte = __pte(pte_val(pte) | _SUN4C_PAGE_SILENT_WRITE);
return pte;
}
static pte_t sun4c_pte_mkdirty(pte_t pte)
{
pte = __pte(pte_val(pte) | _SUN4C_PAGE_MODIFIED);
if (pte_val(pte) & _SUN4C_PAGE_WRITE)
pte = __pte(pte_val(pte) | _SUN4C_PAGE_SILENT_WRITE);
return pte;
}
static pte_t sun4c_pte_mkyoung(pte_t pte)
{
pte = __pte(pte_val(pte) | _SUN4C_PAGE_ACCESSED);
if (pte_val(pte) & _SUN4C_PAGE_READ)
pte = __pte(pte_val(pte) | _SUN4C_PAGE_SILENT_READ);
return pte;
}
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
static pte_t sun4c_mk_pte(struct page *page, pgprot_t pgprot)
{
return __pte(page_to_pfn(page) | pgprot_val(pgprot));
}
static pte_t sun4c_mk_pte_phys(unsigned long phys_page, pgprot_t pgprot)
{
return __pte((phys_page >> PAGE_SHIFT) | pgprot_val(pgprot));
}
static pte_t sun4c_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
{
return __pte(((page - PAGE_OFFSET) >> PAGE_SHIFT) | pgprot_val(pgprot));
}
static unsigned long sun4c_pte_pfn(pte_t pte)
{
return pte_val(pte) & SUN4C_PFN_MASK;
}
static pte_t sun4c_pgoff_to_pte(unsigned long pgoff)
{
return __pte(pgoff | _SUN4C_PAGE_FILE);
}
static unsigned long sun4c_pte_to_pgoff(pte_t pte)
{
return pte_val(pte) & ((1UL << PTE_FILE_MAX_BITS) - 1);
}
static inline unsigned long sun4c_pmd_page_v(pmd_t pmd)
{
return (pmd_val(pmd) & PAGE_MASK);
}
static struct page *sun4c_pmd_page(pmd_t pmd)
{
return virt_to_page(sun4c_pmd_page_v(pmd));
}
static unsigned long sun4c_pgd_page(pgd_t pgd) { return 0; }
/* to find an entry in a page-table-directory */
static inline pgd_t *sun4c_pgd_offset(struct mm_struct * mm, unsigned long address)
{
return mm->pgd + (address >> SUN4C_PGDIR_SHIFT);
}
/* Find an entry in the second-level page table.. */
static pmd_t *sun4c_pmd_offset(pgd_t * dir, unsigned long address)
{
return (pmd_t *) dir;
}
/* Find an entry in the third-level page table.. */
pte_t *sun4c_pte_offset_kernel(pmd_t * dir, unsigned long address)
{
return (pte_t *) sun4c_pmd_page_v(*dir) +
((address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1));
}
static unsigned long sun4c_swp_type(swp_entry_t entry)
{
return (entry.val & SUN4C_SWP_TYPE_MASK);
}
static unsigned long sun4c_swp_offset(swp_entry_t entry)
{
return (entry.val >> SUN4C_SWP_OFF_SHIFT) & SUN4C_SWP_OFF_MASK;
}
static swp_entry_t sun4c_swp_entry(unsigned long type, unsigned long offset)
{
return (swp_entry_t) {
(offset & SUN4C_SWP_OFF_MASK) << SUN4C_SWP_OFF_SHIFT
| (type & SUN4C_SWP_TYPE_MASK) };
}
static void sun4c_free_pte_slow(pte_t *pte)
{
free_page((unsigned long)pte);
}
static void sun4c_free_pgd_slow(pgd_t *pgd)
{
free_page((unsigned long)pgd);
}
static pgd_t *sun4c_get_pgd_fast(void)
{
unsigned long *ret;
if ((ret = pgd_quicklist) != NULL) {
pgd_quicklist = (unsigned long *)(*ret);
ret[0] = ret[1];
pgtable_cache_size--;
} else {
pgd_t *init;
ret = (unsigned long *)__get_free_page(GFP_KERNEL);
memset (ret, 0, (KERNBASE / SUN4C_PGDIR_SIZE) * sizeof(pgd_t));
init = sun4c_pgd_offset(&init_mm, 0);
memcpy (((pgd_t *)ret) + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
}
return (pgd_t *)ret;
}
static void sun4c_free_pgd_fast(pgd_t *pgd)
{
*(unsigned long *)pgd = (unsigned long) pgd_quicklist;
pgd_quicklist = (unsigned long *) pgd;
pgtable_cache_size++;
}
static inline pte_t *
sun4c_pte_alloc_one_fast(struct mm_struct *mm, unsigned long address)
{
unsigned long *ret;
if ((ret = (unsigned long *)pte_quicklist) != NULL) {
pte_quicklist = (unsigned long *)(*ret);
ret[0] = ret[1];
pgtable_cache_size--;
}
return (pte_t *)ret;
}
static pte_t *sun4c_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
pte_t *pte;
if ((pte = sun4c_pte_alloc_one_fast(mm, address)) != NULL)
return pte;
pte = (pte_t *)get_zeroed_page(GFP_KERNEL|__GFP_REPEAT);
return pte;
}
static pgtable_t sun4c_pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
pte_t *pte;
struct page *page;
pte = sun4c_pte_alloc_one_kernel(mm, address);
if (pte == NULL)
return NULL;
page = virt_to_page(pte);
pgtable_page_ctor(page);
return page;
}
static inline void sun4c_free_pte_fast(pte_t *pte)
{
*(unsigned long *)pte = (unsigned long) pte_quicklist;
pte_quicklist = (unsigned long *) pte;
pgtable_cache_size++;
}
static void sun4c_pte_free(pgtable_t pte)
{
pgtable_page_dtor(pte);
sun4c_free_pte_fast(page_address(pte));
}
/*
* allocating and freeing a pmd is trivial: the 1-entry pmd is
* inside the pgd, so has no extra memory associated with it.
*/
static pmd_t *sun4c_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
{
BUG();
return NULL;
}
static void sun4c_free_pmd_fast(pmd_t * pmd) { }
static void sun4c_check_pgt_cache(int low, int high)
{
if (pgtable_cache_size > high) {
do {
if (pgd_quicklist)
sun4c_free_pgd_slow(sun4c_get_pgd_fast());
if (pte_quicklist)
sun4c_free_pte_slow(sun4c_pte_alloc_one_fast(NULL, 0));
} while (pgtable_cache_size > low);
}
}
/* An experiment, turn off by default for now... -DaveM */
#define SUN4C_PRELOAD_PSEG
void sun4c_update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
{
unsigned long flags;
int pseg;
if (vma->vm_mm->context == NO_CONTEXT)
return;
local_irq_save(flags);
address &= PAGE_MASK;
if ((pseg = sun4c_get_segmap(address)) == invalid_segment) {
struct sun4c_mmu_entry *entry = sun4c_user_strategy();
struct mm_struct *mm = vma->vm_mm;
unsigned long start, end;
entry->vaddr = start = (address & SUN4C_REAL_PGDIR_MASK);
entry->ctx = mm->context;
add_ring_ordered(sun4c_context_ring + mm->context, entry);
sun4c_put_segmap(entry->vaddr, entry->pseg);
end = start + SUN4C_REAL_PGDIR_SIZE;
while (start < end) {
#ifdef SUN4C_PRELOAD_PSEG
pgd_t *pgdp = sun4c_pgd_offset(mm, start);
pte_t *ptep;
if (!pgdp)
goto no_mapping;
ptep = sun4c_pte_offset_kernel((pmd_t *) pgdp, start);
if (!ptep || !(pte_val(*ptep) & _SUN4C_PAGE_PRESENT))
goto no_mapping;
sun4c_put_pte(start, pte_val(*ptep));
goto next;
no_mapping:
#endif
sun4c_put_pte(start, 0);
#ifdef SUN4C_PRELOAD_PSEG
next:
#endif
start += PAGE_SIZE;
}
#ifndef SUN4C_PRELOAD_PSEG
sun4c_put_pte(address, pte_val(pte));
#endif
local_irq_restore(flags);
return;
} else {
struct sun4c_mmu_entry *entry = &mmu_entry_pool[pseg];
remove_lru(entry);
add_lru(entry);
}
sun4c_put_pte(address, pte_val(pte));
local_irq_restore(flags);
}
extern void sparc_context_init(int);
extern unsigned long end;
extern unsigned long bootmem_init(unsigned long *pages_avail);
extern unsigned long last_valid_pfn;
void __init sun4c_paging_init(void)
{
int i, cnt;
unsigned long kernel_end, vaddr;
extern struct resource sparc_iomap;
unsigned long end_pfn, pages_avail;
kernel_end = (unsigned long) &end;
kernel_end = SUN4C_REAL_PGDIR_ALIGN(kernel_end);
pages_avail = 0;
last_valid_pfn = bootmem_init(&pages_avail);
end_pfn = last_valid_pfn;
sun4c_probe_mmu();
invalid_segment = (num_segmaps - 1);
sun4c_init_mmu_entry_pool();
sun4c_init_rings();
sun4c_init_map_kernelprom(kernel_end);
sun4c_init_clean_mmu(kernel_end);
sun4c_init_fill_kernel_ring(SUN4C_KERNEL_BUCKETS);
sun4c_init_lock_area(sparc_iomap.start, IOBASE_END);
sun4c_init_lock_area(DVMA_VADDR, DVMA_END);
sun4c_init_lock_areas();
sun4c_init_fill_user_ring();
sun4c_set_context(0);
memset(swapper_pg_dir, 0, PAGE_SIZE);
memset(pg0, 0, PAGE_SIZE);
memset(pg1, 0, PAGE_SIZE);
memset(pg2, 0, PAGE_SIZE);
memset(pg3, 0, PAGE_SIZE);
/* Save work later. */
vaddr = VMALLOC_START;
swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg0);
vaddr += SUN4C_PGDIR_SIZE;
swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg1);
vaddr += SUN4C_PGDIR_SIZE;
swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg2);
vaddr += SUN4C_PGDIR_SIZE;
swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg3);
sun4c_init_ss2_cache_bug();
sparc_context_init(num_contexts);
{
unsigned long zones_size[MAX_NR_ZONES];
unsigned long zholes_size[MAX_NR_ZONES];
unsigned long npages;
int znum;
for (znum = 0; znum < MAX_NR_ZONES; znum++)
zones_size[znum] = zholes_size[znum] = 0;
npages = max_low_pfn - pfn_base;
zones_size[ZONE_DMA] = npages;
zholes_size[ZONE_DMA] = npages - pages_avail;
npages = highend_pfn - max_low_pfn;
zones_size[ZONE_HIGHMEM] = npages;
zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
free_area_init_node(0, zones_size, pfn_base, zholes_size);
}
cnt = 0;
for (i = 0; i < num_segmaps; i++)
if (mmu_entry_pool[i].locked)
cnt++;
max_user_taken_entries = num_segmaps - cnt - 40 - 1;
printk("SUN4C: %d mmu entries for the kernel\n", cnt);
}
static pgprot_t sun4c_pgprot_noncached(pgprot_t prot)
{
prot |= __pgprot(_SUN4C_PAGE_IO | _SUN4C_PAGE_NOCACHE);
return prot;
}
/* Load up routines and constants for sun4c mmu */
void __init ld_mmu_sun4c(void)
{
extern void ___xchg32_sun4c(void);
printk("Loading sun4c MMU routines\n");
/* First the constants */
BTFIXUPSET_SIMM13(pgdir_shift, SUN4C_PGDIR_SHIFT);
BTFIXUPSET_SETHI(pgdir_size, SUN4C_PGDIR_SIZE);
BTFIXUPSET_SETHI(pgdir_mask, SUN4C_PGDIR_MASK);
BTFIXUPSET_SIMM13(ptrs_per_pmd, SUN4C_PTRS_PER_PMD);
BTFIXUPSET_SIMM13(ptrs_per_pgd, SUN4C_PTRS_PER_PGD);
BTFIXUPSET_SIMM13(user_ptrs_per_pgd, KERNBASE / SUN4C_PGDIR_SIZE);
BTFIXUPSET_INT(page_none, pgprot_val(SUN4C_PAGE_NONE));
PAGE_SHARED = pgprot_val(SUN4C_PAGE_SHARED);
BTFIXUPSET_INT(page_copy, pgprot_val(SUN4C_PAGE_COPY));
BTFIXUPSET_INT(page_readonly, pgprot_val(SUN4C_PAGE_READONLY));
BTFIXUPSET_INT(page_kernel, pgprot_val(SUN4C_PAGE_KERNEL));
page_kernel = pgprot_val(SUN4C_PAGE_KERNEL);
/* Functions */
BTFIXUPSET_CALL(pgprot_noncached, sun4c_pgprot_noncached, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4c, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(do_check_pgt_cache, sun4c_check_pgt_cache, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_all, sun4c_flush_cache_all, BTFIXUPCALL_NORM);
if (sun4c_vacinfo.do_hwflushes) {
BTFIXUPSET_CALL(sun4c_flush_page, sun4c_flush_page_hw, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(sun4c_flush_segment, sun4c_flush_segment_hw, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(sun4c_flush_context, sun4c_flush_context_hw, BTFIXUPCALL_NORM);
} else {
BTFIXUPSET_CALL(sun4c_flush_page, sun4c_flush_page_sw, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(sun4c_flush_segment, sun4c_flush_segment_sw, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(sun4c_flush_context, sun4c_flush_context_sw, BTFIXUPCALL_NORM);
}
BTFIXUPSET_CALL(flush_tlb_mm, sun4c_flush_tlb_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_mm, sun4c_flush_cache_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(destroy_context, sun4c_destroy_context, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(switch_mm, sun4c_switch_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_page, sun4c_flush_cache_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_page, sun4c_flush_tlb_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_range, sun4c_flush_tlb_range, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_range, sun4c_flush_cache_range, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__flush_page_to_ram, sun4c_flush_page_to_ram, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_all, sun4c_flush_tlb_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_sig_insns, sun4c_flush_sig_insns, BTFIXUPCALL_NOP);
BTFIXUPSET_CALL(set_pte, sun4c_set_pte, BTFIXUPCALL_STO1O0);
/* The 2.4.18 code does not set this on sun4c, how does it work? XXX */
/* BTFIXUPSET_SETHI(none_mask, 0x00000000); */ /* Defaults to zero? */
BTFIXUPSET_CALL(pte_pfn, sun4c_pte_pfn, BTFIXUPCALL_NORM);
#if 0 /* PAGE_SHIFT <= 12 */ /* Eek. Investigate. XXX */
BTFIXUPSET_CALL(pmd_page, sun4c_pmd_page, BTFIXUPCALL_ANDNINT(PAGE_SIZE - 1));
#else
BTFIXUPSET_CALL(pmd_page, sun4c_pmd_page, BTFIXUPCALL_NORM);
#endif
BTFIXUPSET_CALL(pmd_set, sun4c_pmd_set, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pmd_populate, sun4c_pmd_populate, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_present, sun4c_pte_present, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_clear, sun4c_pte_clear, BTFIXUPCALL_STG0O0);
BTFIXUPSET_CALL(pmd_bad, sun4c_pmd_bad, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pmd_present, sun4c_pmd_present, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pmd_clear, sun4c_pmd_clear, BTFIXUPCALL_STG0O0);
BTFIXUPSET_CALL(pgd_none, sun4c_pgd_none, BTFIXUPCALL_RETINT(0));
BTFIXUPSET_CALL(pgd_bad, sun4c_pgd_bad, BTFIXUPCALL_RETINT(0));
BTFIXUPSET_CALL(pgd_present, sun4c_pgd_present, BTFIXUPCALL_RETINT(1));
BTFIXUPSET_CALL(pgd_clear, sun4c_pgd_clear, BTFIXUPCALL_NOP);
BTFIXUPSET_CALL(mk_pte, sun4c_mk_pte, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mk_pte_phys, sun4c_mk_pte_phys, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mk_pte_io, sun4c_mk_pte_io, BTFIXUPCALL_NORM);
BTFIXUPSET_INT(pte_modify_mask, _SUN4C_PAGE_CHG_MASK);
BTFIXUPSET_CALL(pmd_offset, sun4c_pmd_offset, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_offset_kernel, sun4c_pte_offset_kernel, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(free_pte_fast, sun4c_free_pte_fast, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_free, sun4c_pte_free, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_alloc_one_kernel, sun4c_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_alloc_one, sun4c_pte_alloc_one, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(free_pmd_fast, sun4c_free_pmd_fast, BTFIXUPCALL_NOP);
BTFIXUPSET_CALL(pmd_alloc_one, sun4c_pmd_alloc_one, BTFIXUPCALL_RETO0);
BTFIXUPSET_CALL(free_pgd_fast, sun4c_free_pgd_fast, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(get_pgd_fast, sun4c_get_pgd_fast, BTFIXUPCALL_NORM);
BTFIXUPSET_HALF(pte_writei, _SUN4C_PAGE_WRITE);
BTFIXUPSET_HALF(pte_dirtyi, _SUN4C_PAGE_MODIFIED);
BTFIXUPSET_HALF(pte_youngi, _SUN4C_PAGE_ACCESSED);
BTFIXUPSET_HALF(pte_filei, _SUN4C_PAGE_FILE);
BTFIXUPSET_HALF(pte_wrprotecti, _SUN4C_PAGE_WRITE|_SUN4C_PAGE_SILENT_WRITE);
BTFIXUPSET_HALF(pte_mkcleani, _SUN4C_PAGE_MODIFIED|_SUN4C_PAGE_SILENT_WRITE);
BTFIXUPSET_HALF(pte_mkoldi, _SUN4C_PAGE_ACCESSED|_SUN4C_PAGE_SILENT_READ);
BTFIXUPSET_CALL(pte_mkwrite, sun4c_pte_mkwrite, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_mkdirty, sun4c_pte_mkdirty, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_mkyoung, sun4c_pte_mkyoung, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(update_mmu_cache, sun4c_update_mmu_cache, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_to_pgoff, sun4c_pte_to_pgoff, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pgoff_to_pte, sun4c_pgoff_to_pte, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_lockarea, sun4c_lockarea, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_unlockarea, sun4c_unlockarea, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_get_scsi_one, sun4c_get_scsi_one, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_get_scsi_sgl, sun4c_get_scsi_sgl, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_release_scsi_one, sun4c_release_scsi_one, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_release_scsi_sgl, sun4c_release_scsi_sgl, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_map_dma_area, sun4c_map_dma_area, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_unmap_dma_area, sun4c_unmap_dma_area, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(sparc_mapiorange, sun4c_mapiorange, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(sparc_unmapiorange, sun4c_unmapiorange, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__swp_type, sun4c_swp_type, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__swp_offset, sun4c_swp_offset, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__swp_entry, sun4c_swp_entry, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(alloc_thread_info, sun4c_alloc_thread_info, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(free_thread_info, sun4c_free_thread_info, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_info, sun4c_mmu_info, BTFIXUPCALL_NORM);
/* These should _never_ get called with two level tables. */
BTFIXUPSET_CALL(pgd_set, sun4c_pgd_set, BTFIXUPCALL_NOP);
BTFIXUPSET_CALL(pgd_page_vaddr, sun4c_pgd_page, BTFIXUPCALL_RETO0);
}