5f8c421814
The call stack below shows how this happens: basically eager_fpu_init() calls __thread_fpu_begin(current) which then does if (!use_eager_fpu()), which, in turn, uses static_cpu_has. And we're executing before alternatives so static_cpu_has doesn't work there yet. Use the safe variant in this path which becomes optimal after alternatives have run. WARNING: at arch/x86/kernel/cpu/common.c:1368 warn_pre_alternatives+0x1e/0x20() You're using static_cpu_has before alternatives have run! Modules linked in: Pid: 0, comm: swapper Not tainted 3.9.0-rc8+ #1 Call Trace: warn_slowpath_common warn_slowpath_fmt ? fpu_finit warn_pre_alternatives eager_fpu_init fpu_init cpu_init trap_init start_kernel ? repair_env_string x86_64_start_reservations x86_64_start_kernel Signed-off-by: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1370772454-6106-6-git-send-email-bp@alien8.de Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
618 lines
16 KiB
C
618 lines
16 KiB
C
/*
|
|
* Copyright (C) 1994 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* General FPU state handling cleanups
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
* x86-64 work by Andi Kleen 2002
|
|
*/
|
|
|
|
#ifndef _FPU_INTERNAL_H
|
|
#define _FPU_INTERNAL_H
|
|
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/regset.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/asm.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sigcontext.h>
|
|
#include <asm/user.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/xsave.h>
|
|
#include <asm/smap.h>
|
|
|
|
#ifdef CONFIG_X86_64
|
|
# include <asm/sigcontext32.h>
|
|
# include <asm/user32.h>
|
|
struct ksignal;
|
|
int ia32_setup_rt_frame(int sig, struct ksignal *ksig,
|
|
compat_sigset_t *set, struct pt_regs *regs);
|
|
int ia32_setup_frame(int sig, struct ksignal *ksig,
|
|
compat_sigset_t *set, struct pt_regs *regs);
|
|
#else
|
|
# define user_i387_ia32_struct user_i387_struct
|
|
# define user32_fxsr_struct user_fxsr_struct
|
|
# define ia32_setup_frame __setup_frame
|
|
# define ia32_setup_rt_frame __setup_rt_frame
|
|
#endif
|
|
|
|
extern unsigned int mxcsr_feature_mask;
|
|
extern void fpu_init(void);
|
|
extern void eager_fpu_init(void);
|
|
|
|
DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
|
|
|
|
extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
|
|
struct task_struct *tsk);
|
|
extern void convert_to_fxsr(struct task_struct *tsk,
|
|
const struct user_i387_ia32_struct *env);
|
|
|
|
extern user_regset_active_fn fpregs_active, xfpregs_active;
|
|
extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
|
|
xstateregs_get;
|
|
extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
|
|
xstateregs_set;
|
|
|
|
/*
|
|
* xstateregs_active == fpregs_active. Please refer to the comment
|
|
* at the definition of fpregs_active.
|
|
*/
|
|
#define xstateregs_active fpregs_active
|
|
|
|
#ifdef CONFIG_MATH_EMULATION
|
|
extern void finit_soft_fpu(struct i387_soft_struct *soft);
|
|
#else
|
|
static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
|
|
#endif
|
|
|
|
static inline int is_ia32_compat_frame(void)
|
|
{
|
|
return config_enabled(CONFIG_IA32_EMULATION) &&
|
|
test_thread_flag(TIF_IA32);
|
|
}
|
|
|
|
static inline int is_ia32_frame(void)
|
|
{
|
|
return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
|
|
}
|
|
|
|
static inline int is_x32_frame(void)
|
|
{
|
|
return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
|
|
}
|
|
|
|
#define X87_FSW_ES (1 << 7) /* Exception Summary */
|
|
|
|
static __always_inline __pure bool use_eager_fpu(void)
|
|
{
|
|
return static_cpu_has(X86_FEATURE_EAGER_FPU);
|
|
}
|
|
|
|
static __always_inline __pure bool use_xsaveopt(void)
|
|
{
|
|
return static_cpu_has(X86_FEATURE_XSAVEOPT);
|
|
}
|
|
|
|
static __always_inline __pure bool use_xsave(void)
|
|
{
|
|
return static_cpu_has(X86_FEATURE_XSAVE);
|
|
}
|
|
|
|
static __always_inline __pure bool use_fxsr(void)
|
|
{
|
|
return static_cpu_has(X86_FEATURE_FXSR);
|
|
}
|
|
|
|
static inline void fx_finit(struct i387_fxsave_struct *fx)
|
|
{
|
|
memset(fx, 0, xstate_size);
|
|
fx->cwd = 0x37f;
|
|
fx->mxcsr = MXCSR_DEFAULT;
|
|
}
|
|
|
|
extern void __sanitize_i387_state(struct task_struct *);
|
|
|
|
static inline void sanitize_i387_state(struct task_struct *tsk)
|
|
{
|
|
if (!use_xsaveopt())
|
|
return;
|
|
__sanitize_i387_state(tsk);
|
|
}
|
|
|
|
#define user_insn(insn, output, input...) \
|
|
({ \
|
|
int err; \
|
|
asm volatile(ASM_STAC "\n" \
|
|
"1:" #insn "\n\t" \
|
|
"2: " ASM_CLAC "\n" \
|
|
".section .fixup,\"ax\"\n" \
|
|
"3: movl $-1,%[err]\n" \
|
|
" jmp 2b\n" \
|
|
".previous\n" \
|
|
_ASM_EXTABLE(1b, 3b) \
|
|
: [err] "=r" (err), output \
|
|
: "0"(0), input); \
|
|
err; \
|
|
})
|
|
|
|
#define check_insn(insn, output, input...) \
|
|
({ \
|
|
int err; \
|
|
asm volatile("1:" #insn "\n\t" \
|
|
"2:\n" \
|
|
".section .fixup,\"ax\"\n" \
|
|
"3: movl $-1,%[err]\n" \
|
|
" jmp 2b\n" \
|
|
".previous\n" \
|
|
_ASM_EXTABLE(1b, 3b) \
|
|
: [err] "=r" (err), output \
|
|
: "0"(0), input); \
|
|
err; \
|
|
})
|
|
|
|
static inline int fsave_user(struct i387_fsave_struct __user *fx)
|
|
{
|
|
return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
|
|
}
|
|
|
|
static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
|
|
{
|
|
if (config_enabled(CONFIG_X86_32))
|
|
return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
|
|
|
|
/* See comment in fpu_fxsave() below. */
|
|
return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
|
|
}
|
|
|
|
static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
|
|
{
|
|
if (config_enabled(CONFIG_X86_32))
|
|
return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
|
|
/* See comment in fpu_fxsave() below. */
|
|
return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
|
|
"m" (*fx));
|
|
}
|
|
|
|
static inline int fxrstor_user(struct i387_fxsave_struct __user *fx)
|
|
{
|
|
if (config_enabled(CONFIG_X86_32))
|
|
return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
|
|
/* See comment in fpu_fxsave() below. */
|
|
return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
|
|
"m" (*fx));
|
|
}
|
|
|
|
static inline int frstor_checking(struct i387_fsave_struct *fx)
|
|
{
|
|
return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
}
|
|
|
|
static inline int frstor_user(struct i387_fsave_struct __user *fx)
|
|
{
|
|
return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
}
|
|
|
|
static inline void fpu_fxsave(struct fpu *fpu)
|
|
{
|
|
if (config_enabled(CONFIG_X86_32))
|
|
asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
asm volatile("fxsaveq %0" : "=m" (fpu->state->fxsave));
|
|
else {
|
|
/* Using "rex64; fxsave %0" is broken because, if the memory
|
|
* operand uses any extended registers for addressing, a second
|
|
* REX prefix will be generated (to the assembler, rex64
|
|
* followed by semicolon is a separate instruction), and hence
|
|
* the 64-bitness is lost.
|
|
*
|
|
* Using "fxsaveq %0" would be the ideal choice, but is only
|
|
* supported starting with gas 2.16.
|
|
*
|
|
* Using, as a workaround, the properly prefixed form below
|
|
* isn't accepted by any binutils version so far released,
|
|
* complaining that the same type of prefix is used twice if
|
|
* an extended register is needed for addressing (fix submitted
|
|
* to mainline 2005-11-21).
|
|
*
|
|
* asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
|
|
*
|
|
* This, however, we can work around by forcing the compiler to
|
|
* select an addressing mode that doesn't require extended
|
|
* registers.
|
|
*/
|
|
asm volatile( "rex64/fxsave (%[fx])"
|
|
: "=m" (fpu->state->fxsave)
|
|
: [fx] "R" (&fpu->state->fxsave));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* These must be called with preempt disabled. Returns
|
|
* 'true' if the FPU state is still intact.
|
|
*/
|
|
static inline int fpu_save_init(struct fpu *fpu)
|
|
{
|
|
if (use_xsave()) {
|
|
fpu_xsave(fpu);
|
|
|
|
/*
|
|
* xsave header may indicate the init state of the FP.
|
|
*/
|
|
if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
|
|
return 1;
|
|
} else if (use_fxsr()) {
|
|
fpu_fxsave(fpu);
|
|
} else {
|
|
asm volatile("fnsave %[fx]; fwait"
|
|
: [fx] "=m" (fpu->state->fsave));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If exceptions are pending, we need to clear them so
|
|
* that we don't randomly get exceptions later.
|
|
*
|
|
* FIXME! Is this perhaps only true for the old-style
|
|
* irq13 case? Maybe we could leave the x87 state
|
|
* intact otherwise?
|
|
*/
|
|
if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
|
|
asm volatile("fnclex");
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static inline int __save_init_fpu(struct task_struct *tsk)
|
|
{
|
|
return fpu_save_init(&tsk->thread.fpu);
|
|
}
|
|
|
|
static inline int fpu_restore_checking(struct fpu *fpu)
|
|
{
|
|
if (use_xsave())
|
|
return fpu_xrstor_checking(&fpu->state->xsave);
|
|
else if (use_fxsr())
|
|
return fxrstor_checking(&fpu->state->fxsave);
|
|
else
|
|
return frstor_checking(&fpu->state->fsave);
|
|
}
|
|
|
|
static inline int restore_fpu_checking(struct task_struct *tsk)
|
|
{
|
|
/* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
|
|
is pending. Clear the x87 state here by setting it to fixed
|
|
values. "m" is a random variable that should be in L1 */
|
|
alternative_input(
|
|
ASM_NOP8 ASM_NOP2,
|
|
"emms\n\t" /* clear stack tags */
|
|
"fildl %P[addr]", /* set F?P to defined value */
|
|
X86_FEATURE_FXSAVE_LEAK,
|
|
[addr] "m" (tsk->thread.fpu.has_fpu));
|
|
|
|
return fpu_restore_checking(&tsk->thread.fpu);
|
|
}
|
|
|
|
/*
|
|
* Software FPU state helpers. Careful: these need to
|
|
* be preemption protection *and* they need to be
|
|
* properly paired with the CR0.TS changes!
|
|
*/
|
|
static inline int __thread_has_fpu(struct task_struct *tsk)
|
|
{
|
|
return tsk->thread.fpu.has_fpu;
|
|
}
|
|
|
|
/* Must be paired with an 'stts' after! */
|
|
static inline void __thread_clear_has_fpu(struct task_struct *tsk)
|
|
{
|
|
tsk->thread.fpu.has_fpu = 0;
|
|
this_cpu_write(fpu_owner_task, NULL);
|
|
}
|
|
|
|
/* Must be paired with a 'clts' before! */
|
|
static inline void __thread_set_has_fpu(struct task_struct *tsk)
|
|
{
|
|
tsk->thread.fpu.has_fpu = 1;
|
|
this_cpu_write(fpu_owner_task, tsk);
|
|
}
|
|
|
|
/*
|
|
* Encapsulate the CR0.TS handling together with the
|
|
* software flag.
|
|
*
|
|
* These generally need preemption protection to work,
|
|
* do try to avoid using these on their own.
|
|
*/
|
|
static inline void __thread_fpu_end(struct task_struct *tsk)
|
|
{
|
|
__thread_clear_has_fpu(tsk);
|
|
if (!use_eager_fpu())
|
|
stts();
|
|
}
|
|
|
|
static inline void __thread_fpu_begin(struct task_struct *tsk)
|
|
{
|
|
if (!static_cpu_has_safe(X86_FEATURE_EAGER_FPU))
|
|
clts();
|
|
__thread_set_has_fpu(tsk);
|
|
}
|
|
|
|
static inline void __drop_fpu(struct task_struct *tsk)
|
|
{
|
|
if (__thread_has_fpu(tsk)) {
|
|
/* Ignore delayed exceptions from user space */
|
|
asm volatile("1: fwait\n"
|
|
"2:\n"
|
|
_ASM_EXTABLE(1b, 2b));
|
|
__thread_fpu_end(tsk);
|
|
}
|
|
}
|
|
|
|
static inline void drop_fpu(struct task_struct *tsk)
|
|
{
|
|
/*
|
|
* Forget coprocessor state..
|
|
*/
|
|
preempt_disable();
|
|
tsk->fpu_counter = 0;
|
|
__drop_fpu(tsk);
|
|
clear_used_math();
|
|
preempt_enable();
|
|
}
|
|
|
|
static inline void drop_init_fpu(struct task_struct *tsk)
|
|
{
|
|
if (!use_eager_fpu())
|
|
drop_fpu(tsk);
|
|
else {
|
|
if (use_xsave())
|
|
xrstor_state(init_xstate_buf, -1);
|
|
else
|
|
fxrstor_checking(&init_xstate_buf->i387);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* FPU state switching for scheduling.
|
|
*
|
|
* This is a two-stage process:
|
|
*
|
|
* - switch_fpu_prepare() saves the old state and
|
|
* sets the new state of the CR0.TS bit. This is
|
|
* done within the context of the old process.
|
|
*
|
|
* - switch_fpu_finish() restores the new state as
|
|
* necessary.
|
|
*/
|
|
typedef struct { int preload; } fpu_switch_t;
|
|
|
|
/*
|
|
* Must be run with preemption disabled: this clears the fpu_owner_task,
|
|
* on this CPU.
|
|
*
|
|
* This will disable any lazy FPU state restore of the current FPU state,
|
|
* but if the current thread owns the FPU, it will still be saved by.
|
|
*/
|
|
static inline void __cpu_disable_lazy_restore(unsigned int cpu)
|
|
{
|
|
per_cpu(fpu_owner_task, cpu) = NULL;
|
|
}
|
|
|
|
static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
|
|
{
|
|
return new == this_cpu_read_stable(fpu_owner_task) &&
|
|
cpu == new->thread.fpu.last_cpu;
|
|
}
|
|
|
|
static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
|
|
{
|
|
fpu_switch_t fpu;
|
|
|
|
/*
|
|
* If the task has used the math, pre-load the FPU on xsave processors
|
|
* or if the past 5 consecutive context-switches used math.
|
|
*/
|
|
fpu.preload = tsk_used_math(new) && (use_eager_fpu() ||
|
|
new->fpu_counter > 5);
|
|
if (__thread_has_fpu(old)) {
|
|
if (!__save_init_fpu(old))
|
|
cpu = ~0;
|
|
old->thread.fpu.last_cpu = cpu;
|
|
old->thread.fpu.has_fpu = 0; /* But leave fpu_owner_task! */
|
|
|
|
/* Don't change CR0.TS if we just switch! */
|
|
if (fpu.preload) {
|
|
new->fpu_counter++;
|
|
__thread_set_has_fpu(new);
|
|
prefetch(new->thread.fpu.state);
|
|
} else if (!use_eager_fpu())
|
|
stts();
|
|
} else {
|
|
old->fpu_counter = 0;
|
|
old->thread.fpu.last_cpu = ~0;
|
|
if (fpu.preload) {
|
|
new->fpu_counter++;
|
|
if (!use_eager_fpu() && fpu_lazy_restore(new, cpu))
|
|
fpu.preload = 0;
|
|
else
|
|
prefetch(new->thread.fpu.state);
|
|
__thread_fpu_begin(new);
|
|
}
|
|
}
|
|
return fpu;
|
|
}
|
|
|
|
/*
|
|
* By the time this gets called, we've already cleared CR0.TS and
|
|
* given the process the FPU if we are going to preload the FPU
|
|
* state - all we need to do is to conditionally restore the register
|
|
* state itself.
|
|
*/
|
|
static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
|
|
{
|
|
if (fpu.preload) {
|
|
if (unlikely(restore_fpu_checking(new)))
|
|
drop_init_fpu(new);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Signal frame handlers...
|
|
*/
|
|
extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
|
|
extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
|
|
|
|
static inline int xstate_sigframe_size(void)
|
|
{
|
|
return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
|
|
}
|
|
|
|
static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
|
|
{
|
|
void __user *buf_fx = buf;
|
|
int size = xstate_sigframe_size();
|
|
|
|
if (ia32_frame && use_fxsr()) {
|
|
buf_fx = buf + sizeof(struct i387_fsave_struct);
|
|
size += sizeof(struct i387_fsave_struct);
|
|
}
|
|
|
|
return __restore_xstate_sig(buf, buf_fx, size);
|
|
}
|
|
|
|
/*
|
|
* Need to be preemption-safe.
|
|
*
|
|
* NOTE! user_fpu_begin() must be used only immediately before restoring
|
|
* it. This function does not do any save/restore on their own.
|
|
*/
|
|
static inline void user_fpu_begin(void)
|
|
{
|
|
preempt_disable();
|
|
if (!user_has_fpu())
|
|
__thread_fpu_begin(current);
|
|
preempt_enable();
|
|
}
|
|
|
|
static inline void __save_fpu(struct task_struct *tsk)
|
|
{
|
|
if (use_xsave())
|
|
xsave_state(&tsk->thread.fpu.state->xsave, -1);
|
|
else
|
|
fpu_fxsave(&tsk->thread.fpu);
|
|
}
|
|
|
|
/*
|
|
* These disable preemption on their own and are safe
|
|
*/
|
|
static inline void save_init_fpu(struct task_struct *tsk)
|
|
{
|
|
WARN_ON_ONCE(!__thread_has_fpu(tsk));
|
|
|
|
if (use_eager_fpu()) {
|
|
__save_fpu(tsk);
|
|
return;
|
|
}
|
|
|
|
preempt_disable();
|
|
__save_init_fpu(tsk);
|
|
__thread_fpu_end(tsk);
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* i387 state interaction
|
|
*/
|
|
static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
|
|
{
|
|
if (cpu_has_fxsr) {
|
|
return tsk->thread.fpu.state->fxsave.cwd;
|
|
} else {
|
|
return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
|
|
}
|
|
}
|
|
|
|
static inline unsigned short get_fpu_swd(struct task_struct *tsk)
|
|
{
|
|
if (cpu_has_fxsr) {
|
|
return tsk->thread.fpu.state->fxsave.swd;
|
|
} else {
|
|
return (unsigned short)tsk->thread.fpu.state->fsave.swd;
|
|
}
|
|
}
|
|
|
|
static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
|
|
{
|
|
if (cpu_has_xmm) {
|
|
return tsk->thread.fpu.state->fxsave.mxcsr;
|
|
} else {
|
|
return MXCSR_DEFAULT;
|
|
}
|
|
}
|
|
|
|
static bool fpu_allocated(struct fpu *fpu)
|
|
{
|
|
return fpu->state != NULL;
|
|
}
|
|
|
|
static inline int fpu_alloc(struct fpu *fpu)
|
|
{
|
|
if (fpu_allocated(fpu))
|
|
return 0;
|
|
fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
|
|
if (!fpu->state)
|
|
return -ENOMEM;
|
|
WARN_ON((unsigned long)fpu->state & 15);
|
|
return 0;
|
|
}
|
|
|
|
static inline void fpu_free(struct fpu *fpu)
|
|
{
|
|
if (fpu->state) {
|
|
kmem_cache_free(task_xstate_cachep, fpu->state);
|
|
fpu->state = NULL;
|
|
}
|
|
}
|
|
|
|
static inline void fpu_copy(struct task_struct *dst, struct task_struct *src)
|
|
{
|
|
if (use_eager_fpu()) {
|
|
memset(&dst->thread.fpu.state->xsave, 0, xstate_size);
|
|
__save_fpu(dst);
|
|
} else {
|
|
struct fpu *dfpu = &dst->thread.fpu;
|
|
struct fpu *sfpu = &src->thread.fpu;
|
|
|
|
unlazy_fpu(src);
|
|
memcpy(dfpu->state, sfpu->state, xstate_size);
|
|
}
|
|
}
|
|
|
|
static inline unsigned long
|
|
alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
|
|
unsigned long *size)
|
|
{
|
|
unsigned long frame_size = xstate_sigframe_size();
|
|
|
|
*buf_fx = sp = round_down(sp - frame_size, 64);
|
|
if (ia32_frame && use_fxsr()) {
|
|
frame_size += sizeof(struct i387_fsave_struct);
|
|
sp -= sizeof(struct i387_fsave_struct);
|
|
}
|
|
|
|
*size = frame_size;
|
|
return sp;
|
|
}
|
|
|
|
#endif
|