kernel-fxtec-pro1x/drivers/net/wireless/wl12xx/wl1271_spi.c
Luciano Coelho 938e30c930 wl1271: fix sparse warnings about undeclared functions
The following sparse warnings were fixed:

drivers/net/wireless/wl12xx/wl1271_spi.c:199:6: warning: symbol 'wl1271_spi_read_busy' was not declared. Should it be static?
drivers/net/wireless/wl12xx/wl1271_cmd.c:84:5: warning: symbol 'wl1271_cmd_cal_channel_tune' was not declared. Should it be static?
drivers/net/wireless/wl12xx/wl1271_cmd.c:107:5: warning: symbol 'wl1271_cmd_cal_update_ref_point' was not declared. Should it be static?
drivers/net/wireless/wl12xx/wl1271_cmd.c:132:5: warning: symbol 'wl1271_cmd_cal_p2g' was not declared. Should it be static?
drivers/net/wireless/wl12xx/wl1271_cmd.c:153:5: warning: symbol 'wl1271_cmd_cal' was not declared. Should it be static?

Reported-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Luciano Coelho <luciano.coelho@nokia.com>
Reviewed-by: Juuso Oikarinen <juuso.oikarinen@nokia.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-10-27 16:48:19 -04:00

415 lines
11 KiB
C

/*
* This file is part of wl1271
*
* Copyright (C) 2008-2009 Nokia Corporation
*
* Contact: Luciano Coelho <luciano.coelho@nokia.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/crc7.h>
#include <linux/spi/spi.h>
#include "wl1271.h"
#include "wl12xx_80211.h"
#include "wl1271_spi.h"
static int wl1271_translate_addr(struct wl1271 *wl, int addr)
{
/*
* To translate, first check to which window of addresses the
* particular address belongs. Then subtract the starting address
* of that window from the address. Then, add offset of the
* translated region.
*
* The translated regions occur next to each other in physical device
* memory, so just add the sizes of the preceeding address regions to
* get the offset to the new region.
*
* Currently, only the two first regions are addressed, and the
* assumption is that all addresses will fall into either of those
* two.
*/
if ((addr >= wl->part.reg.start) &&
(addr < wl->part.reg.start + wl->part.reg.size))
return addr - wl->part.reg.start + wl->part.mem.size;
else
return addr - wl->part.mem.start;
}
void wl1271_spi_reset(struct wl1271 *wl)
{
u8 *cmd;
struct spi_transfer t;
struct spi_message m;
cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
if (!cmd) {
wl1271_error("could not allocate cmd for spi reset");
return;
}
memset(&t, 0, sizeof(t));
spi_message_init(&m);
memset(cmd, 0xff, WSPI_INIT_CMD_LEN);
t.tx_buf = cmd;
t.len = WSPI_INIT_CMD_LEN;
spi_message_add_tail(&t, &m);
spi_sync(wl->spi, &m);
wl1271_dump(DEBUG_SPI, "spi reset -> ", cmd, WSPI_INIT_CMD_LEN);
}
void wl1271_spi_init(struct wl1271 *wl)
{
u8 crc[WSPI_INIT_CMD_CRC_LEN], *cmd;
struct spi_transfer t;
struct spi_message m;
cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
if (!cmd) {
wl1271_error("could not allocate cmd for spi init");
return;
}
memset(crc, 0, sizeof(crc));
memset(&t, 0, sizeof(t));
spi_message_init(&m);
/*
* Set WSPI_INIT_COMMAND
* the data is being send from the MSB to LSB
*/
cmd[2] = 0xff;
cmd[3] = 0xff;
cmd[1] = WSPI_INIT_CMD_START | WSPI_INIT_CMD_TX;
cmd[0] = 0;
cmd[7] = 0;
cmd[6] |= HW_ACCESS_WSPI_INIT_CMD_MASK << 3;
cmd[6] |= HW_ACCESS_WSPI_FIXED_BUSY_LEN & WSPI_INIT_CMD_FIXEDBUSY_LEN;
if (HW_ACCESS_WSPI_FIXED_BUSY_LEN == 0)
cmd[5] |= WSPI_INIT_CMD_DIS_FIXEDBUSY;
else
cmd[5] |= WSPI_INIT_CMD_EN_FIXEDBUSY;
cmd[5] |= WSPI_INIT_CMD_IOD | WSPI_INIT_CMD_IP | WSPI_INIT_CMD_CS
| WSPI_INIT_CMD_WSPI | WSPI_INIT_CMD_WS;
crc[0] = cmd[1];
crc[1] = cmd[0];
crc[2] = cmd[7];
crc[3] = cmd[6];
crc[4] = cmd[5];
cmd[4] |= crc7(0, crc, WSPI_INIT_CMD_CRC_LEN) << 1;
cmd[4] |= WSPI_INIT_CMD_END;
t.tx_buf = cmd;
t.len = WSPI_INIT_CMD_LEN;
spi_message_add_tail(&t, &m);
spi_sync(wl->spi, &m);
wl1271_dump(DEBUG_SPI, "spi init -> ", cmd, WSPI_INIT_CMD_LEN);
}
/* Set the SPI partitions to access the chip addresses
*
* To simplify driver code, a fixed (virtual) memory map is defined for
* register and memory addresses. Because in the chipset, in different stages
* of operation, those addresses will move around, an address translation
* mechanism is required.
*
* There are four partitions (three memory and one register partition),
* which are mapped to two different areas of the hardware memory.
*
* Virtual address
* space
*
* | |
* ...+----+--> mem.start
* Physical address ... | |
* space ... | | [PART_0]
* ... | |
* 00000000 <--+----+... ...+----+--> mem.start + mem.size
* | | ... | |
* |MEM | ... | |
* | | ... | |
* mem.size <--+----+... | | {unused area)
* | | ... | |
* |REG | ... | |
* mem.size | | ... | |
* + <--+----+... ...+----+--> reg.start
* reg.size | | ... | |
* |MEM2| ... | | [PART_1]
* | | ... | |
* ...+----+--> reg.start + reg.size
* | |
*
*/
int wl1271_set_partition(struct wl1271 *wl,
struct wl1271_partition_set *p)
{
/* copy partition info */
memcpy(&wl->part, p, sizeof(*p));
wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
p->mem.start, p->mem.size);
wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
p->reg.start, p->reg.size);
wl1271_debug(DEBUG_SPI, "mem2_start %08X mem2_size %08X",
p->mem2.start, p->mem2.size);
wl1271_debug(DEBUG_SPI, "mem3_start %08X mem3_size %08X",
p->mem3.start, p->mem3.size);
/* write partition info to the chipset */
wl1271_raw_write32(wl, HW_PART0_START_ADDR, p->mem.start);
wl1271_raw_write32(wl, HW_PART0_SIZE_ADDR, p->mem.size);
wl1271_raw_write32(wl, HW_PART1_START_ADDR, p->reg.start);
wl1271_raw_write32(wl, HW_PART1_SIZE_ADDR, p->reg.size);
wl1271_raw_write32(wl, HW_PART2_START_ADDR, p->mem2.start);
wl1271_raw_write32(wl, HW_PART2_SIZE_ADDR, p->mem2.size);
wl1271_raw_write32(wl, HW_PART3_START_ADDR, p->mem3.start);
return 0;
}
#define WL1271_BUSY_WORD_TIMEOUT 1000
/* FIXME: Check busy words, removed due to SPI bug */
#if 0
static void wl1271_spi_read_busy(struct wl1271 *wl, void *buf, size_t len)
{
struct spi_transfer t[1];
struct spi_message m;
u32 *busy_buf;
int num_busy_bytes = 0;
wl1271_info("spi read BUSY!");
/*
* Look for the non-busy word in the read buffer, and if found,
* read in the remaining data into the buffer.
*/
busy_buf = (u32 *)buf;
for (; (u32)busy_buf < (u32)buf + len; busy_buf++) {
num_busy_bytes += sizeof(u32);
if (*busy_buf & 0x1) {
spi_message_init(&m);
memset(t, 0, sizeof(t));
memmove(buf, busy_buf, len - num_busy_bytes);
t[0].rx_buf = buf + (len - num_busy_bytes);
t[0].len = num_busy_bytes;
spi_message_add_tail(&t[0], &m);
spi_sync(wl->spi, &m);
return;
}
}
/*
* Read further busy words from SPI until a non-busy word is
* encountered, then read the data itself into the buffer.
*/
wl1271_info("spi read BUSY-polling needed!");
num_busy_bytes = WL1271_BUSY_WORD_TIMEOUT;
busy_buf = wl->buffer_busyword;
while (num_busy_bytes) {
num_busy_bytes--;
spi_message_init(&m);
memset(t, 0, sizeof(t));
t[0].rx_buf = busy_buf;
t[0].len = sizeof(u32);
spi_message_add_tail(&t[0], &m);
spi_sync(wl->spi, &m);
if (*busy_buf & 0x1) {
spi_message_init(&m);
memset(t, 0, sizeof(t));
t[0].rx_buf = buf;
t[0].len = len;
spi_message_add_tail(&t[0], &m);
spi_sync(wl->spi, &m);
return;
}
}
/* The SPI bus is unresponsive, the read failed. */
memset(buf, 0, len);
wl1271_error("SPI read busy-word timeout!\n");
}
#endif
void wl1271_spi_raw_read(struct wl1271 *wl, int addr, void *buf,
size_t len, bool fixed)
{
struct spi_transfer t[3];
struct spi_message m;
u32 *busy_buf;
u32 *cmd;
cmd = &wl->buffer_cmd;
busy_buf = wl->buffer_busyword;
*cmd = 0;
*cmd |= WSPI_CMD_READ;
*cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
*cmd |= addr & WSPI_CMD_BYTE_ADDR;
if (fixed)
*cmd |= WSPI_CMD_FIXED;
spi_message_init(&m);
memset(t, 0, sizeof(t));
t[0].tx_buf = cmd;
t[0].len = 4;
spi_message_add_tail(&t[0], &m);
/* Busy and non busy words read */
t[1].rx_buf = busy_buf;
t[1].len = WL1271_BUSY_WORD_LEN;
spi_message_add_tail(&t[1], &m);
t[2].rx_buf = buf;
t[2].len = len;
spi_message_add_tail(&t[2], &m);
spi_sync(wl->spi, &m);
/* FIXME: Check busy words, removed due to SPI bug */
/* if (!(busy_buf[WL1271_BUSY_WORD_CNT - 1] & 0x1))
wl1271_spi_read_busy(wl, buf, len); */
wl1271_dump(DEBUG_SPI, "spi_read cmd -> ", cmd, sizeof(*cmd));
wl1271_dump(DEBUG_SPI, "spi_read buf <- ", buf, len);
}
void wl1271_spi_raw_write(struct wl1271 *wl, int addr, void *buf,
size_t len, bool fixed)
{
struct spi_transfer t[2];
struct spi_message m;
u32 *cmd;
cmd = &wl->buffer_cmd;
*cmd = 0;
*cmd |= WSPI_CMD_WRITE;
*cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
*cmd |= addr & WSPI_CMD_BYTE_ADDR;
if (fixed)
*cmd |= WSPI_CMD_FIXED;
spi_message_init(&m);
memset(t, 0, sizeof(t));
t[0].tx_buf = cmd;
t[0].len = sizeof(*cmd);
spi_message_add_tail(&t[0], &m);
t[1].tx_buf = buf;
t[1].len = len;
spi_message_add_tail(&t[1], &m);
spi_sync(wl->spi, &m);
wl1271_dump(DEBUG_SPI, "spi_write cmd -> ", cmd, sizeof(*cmd));
wl1271_dump(DEBUG_SPI, "spi_write buf -> ", buf, len);
}
void wl1271_spi_read(struct wl1271 *wl, int addr, void *buf, size_t len,
bool fixed)
{
int physical;
physical = wl1271_translate_addr(wl, addr);
wl1271_spi_raw_read(wl, physical, buf, len, fixed);
}
void wl1271_spi_write(struct wl1271 *wl, int addr, void *buf, size_t len,
bool fixed)
{
int physical;
physical = wl1271_translate_addr(wl, addr);
wl1271_spi_raw_write(wl, physical, buf, len, fixed);
}
u32 wl1271_spi_read32(struct wl1271 *wl, int addr)
{
return wl1271_raw_read32(wl, wl1271_translate_addr(wl, addr));
}
void wl1271_spi_write32(struct wl1271 *wl, int addr, u32 val)
{
wl1271_raw_write32(wl, wl1271_translate_addr(wl, addr), val);
}
void wl1271_top_reg_write(struct wl1271 *wl, int addr, u16 val)
{
/* write address >> 1 + 0x30000 to OCP_POR_CTR */
addr = (addr >> 1) + 0x30000;
wl1271_spi_write32(wl, OCP_POR_CTR, addr);
/* write value to OCP_POR_WDATA */
wl1271_spi_write32(wl, OCP_DATA_WRITE, val);
/* write 1 to OCP_CMD */
wl1271_spi_write32(wl, OCP_CMD, OCP_CMD_WRITE);
}
u16 wl1271_top_reg_read(struct wl1271 *wl, int addr)
{
u32 val;
int timeout = OCP_CMD_LOOP;
/* write address >> 1 + 0x30000 to OCP_POR_CTR */
addr = (addr >> 1) + 0x30000;
wl1271_spi_write32(wl, OCP_POR_CTR, addr);
/* write 2 to OCP_CMD */
wl1271_spi_write32(wl, OCP_CMD, OCP_CMD_READ);
/* poll for data ready */
do {
val = wl1271_spi_read32(wl, OCP_DATA_READ);
timeout--;
} while (!(val & OCP_READY_MASK) && timeout);
if (!timeout) {
wl1271_warning("Top register access timed out.");
return 0xffff;
}
/* check data status and return if OK */
if ((val & OCP_STATUS_MASK) == OCP_STATUS_OK)
return val & 0xffff;
else {
wl1271_warning("Top register access returned error.");
return 0xffff;
}
}