kernel-fxtec-pro1x/net/mac80211/tx.c
Toke Høiland-Jørgensen a7c6cf3bdf mac80211: Change default tx_sk_pacing_shift to 7
commit 5c14a4d05f68415af9e41a4e667d1748d41d1baf upstream.

When we did the original tests for the optimal value of sk_pacing_shift, we
came up with 6 ms of buffering as the default. Sadly, 6 is not a power of
two, so when picking the shift value I erred on the size of less buffering
and picked 4 ms instead of 8. This was probably wrong; those 2 ms of extra
buffering makes a larger difference than I thought.

So, change the default pacing shift to 7, which corresponds to 8 ms of
buffering. The point of diminishing returns really kicks in after 8 ms, and
so having this as a default should cut down on the need for extensive
per-device testing and overrides needed in the drivers.

Cc: stable@vger.kernel.org
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-05 17:58:45 +01:00

4874 lines
129 KiB
C

/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright (C) 2018 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*
* Transmit and frame generation functions.
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/if_vlan.h>
#include <linux/etherdevice.h>
#include <linux/bitmap.h>
#include <linux/rcupdate.h>
#include <linux/export.h>
#include <net/net_namespace.h>
#include <net/ieee80211_radiotap.h>
#include <net/cfg80211.h>
#include <net/mac80211.h>
#include <net/codel.h>
#include <net/codel_impl.h>
#include <asm/unaligned.h>
#include <net/fq_impl.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "led.h"
#include "mesh.h"
#include "wep.h"
#include "wpa.h"
#include "wme.h"
#include "rate.h"
/* misc utils */
static inline void ieee80211_tx_stats(struct net_device *dev, u32 len)
{
struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
u64_stats_update_begin(&tstats->syncp);
tstats->tx_packets++;
tstats->tx_bytes += len;
u64_stats_update_end(&tstats->syncp);
}
static __le16 ieee80211_duration(struct ieee80211_tx_data *tx,
struct sk_buff *skb, int group_addr,
int next_frag_len)
{
int rate, mrate, erp, dur, i, shift = 0;
struct ieee80211_rate *txrate;
struct ieee80211_local *local = tx->local;
struct ieee80211_supported_band *sband;
struct ieee80211_hdr *hdr;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_chanctx_conf *chanctx_conf;
u32 rate_flags = 0;
/* assume HW handles this */
if (tx->rate.flags & (IEEE80211_TX_RC_MCS | IEEE80211_TX_RC_VHT_MCS))
return 0;
rcu_read_lock();
chanctx_conf = rcu_dereference(tx->sdata->vif.chanctx_conf);
if (chanctx_conf) {
shift = ieee80211_chandef_get_shift(&chanctx_conf->def);
rate_flags = ieee80211_chandef_rate_flags(&chanctx_conf->def);
}
rcu_read_unlock();
/* uh huh? */
if (WARN_ON_ONCE(tx->rate.idx < 0))
return 0;
sband = local->hw.wiphy->bands[info->band];
txrate = &sband->bitrates[tx->rate.idx];
erp = txrate->flags & IEEE80211_RATE_ERP_G;
/*
* data and mgmt (except PS Poll):
* - during CFP: 32768
* - during contention period:
* if addr1 is group address: 0
* if more fragments = 0 and addr1 is individual address: time to
* transmit one ACK plus SIFS
* if more fragments = 1 and addr1 is individual address: time to
* transmit next fragment plus 2 x ACK plus 3 x SIFS
*
* IEEE 802.11, 9.6:
* - control response frame (CTS or ACK) shall be transmitted using the
* same rate as the immediately previous frame in the frame exchange
* sequence, if this rate belongs to the PHY mandatory rates, or else
* at the highest possible rate belonging to the PHY rates in the
* BSSBasicRateSet
*/
hdr = (struct ieee80211_hdr *)skb->data;
if (ieee80211_is_ctl(hdr->frame_control)) {
/* TODO: These control frames are not currently sent by
* mac80211, but should they be implemented, this function
* needs to be updated to support duration field calculation.
*
* RTS: time needed to transmit pending data/mgmt frame plus
* one CTS frame plus one ACK frame plus 3 x SIFS
* CTS: duration of immediately previous RTS minus time
* required to transmit CTS and its SIFS
* ACK: 0 if immediately previous directed data/mgmt had
* more=0, with more=1 duration in ACK frame is duration
* from previous frame minus time needed to transmit ACK
* and its SIFS
* PS Poll: BIT(15) | BIT(14) | aid
*/
return 0;
}
/* data/mgmt */
if (0 /* FIX: data/mgmt during CFP */)
return cpu_to_le16(32768);
if (group_addr) /* Group address as the destination - no ACK */
return 0;
/* Individual destination address:
* IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
* CTS and ACK frames shall be transmitted using the highest rate in
* basic rate set that is less than or equal to the rate of the
* immediately previous frame and that is using the same modulation
* (CCK or OFDM). If no basic rate set matches with these requirements,
* the highest mandatory rate of the PHY that is less than or equal to
* the rate of the previous frame is used.
* Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
*/
rate = -1;
/* use lowest available if everything fails */
mrate = sband->bitrates[0].bitrate;
for (i = 0; i < sband->n_bitrates; i++) {
struct ieee80211_rate *r = &sband->bitrates[i];
if (r->bitrate > txrate->bitrate)
break;
if ((rate_flags & r->flags) != rate_flags)
continue;
if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
rate = DIV_ROUND_UP(r->bitrate, 1 << shift);
switch (sband->band) {
case NL80211_BAND_2GHZ: {
u32 flag;
if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
flag = IEEE80211_RATE_MANDATORY_G;
else
flag = IEEE80211_RATE_MANDATORY_B;
if (r->flags & flag)
mrate = r->bitrate;
break;
}
case NL80211_BAND_5GHZ:
if (r->flags & IEEE80211_RATE_MANDATORY_A)
mrate = r->bitrate;
break;
case NL80211_BAND_60GHZ:
/* TODO, for now fall through */
case NUM_NL80211_BANDS:
WARN_ON(1);
break;
}
}
if (rate == -1) {
/* No matching basic rate found; use highest suitable mandatory
* PHY rate */
rate = DIV_ROUND_UP(mrate, 1 << shift);
}
/* Don't calculate ACKs for QoS Frames with NoAck Policy set */
if (ieee80211_is_data_qos(hdr->frame_control) &&
*(ieee80211_get_qos_ctl(hdr)) & IEEE80211_QOS_CTL_ACK_POLICY_NOACK)
dur = 0;
else
/* Time needed to transmit ACK
* (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
* to closest integer */
dur = ieee80211_frame_duration(sband->band, 10, rate, erp,
tx->sdata->vif.bss_conf.use_short_preamble,
shift);
if (next_frag_len) {
/* Frame is fragmented: duration increases with time needed to
* transmit next fragment plus ACK and 2 x SIFS. */
dur *= 2; /* ACK + SIFS */
/* next fragment */
dur += ieee80211_frame_duration(sband->band, next_frag_len,
txrate->bitrate, erp,
tx->sdata->vif.bss_conf.use_short_preamble,
shift);
}
return cpu_to_le16(dur);
}
/* tx handlers */
static ieee80211_tx_result debug_noinline
ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx)
{
struct ieee80211_local *local = tx->local;
struct ieee80211_if_managed *ifmgd;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
/* driver doesn't support power save */
if (!ieee80211_hw_check(&local->hw, SUPPORTS_PS))
return TX_CONTINUE;
/* hardware does dynamic power save */
if (ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
return TX_CONTINUE;
/* dynamic power save disabled */
if (local->hw.conf.dynamic_ps_timeout <= 0)
return TX_CONTINUE;
/* we are scanning, don't enable power save */
if (local->scanning)
return TX_CONTINUE;
if (!local->ps_sdata)
return TX_CONTINUE;
/* No point if we're going to suspend */
if (local->quiescing)
return TX_CONTINUE;
/* dynamic ps is supported only in managed mode */
if (tx->sdata->vif.type != NL80211_IFTYPE_STATION)
return TX_CONTINUE;
if (unlikely(info->flags & IEEE80211_TX_INTFL_OFFCHAN_TX_OK))
return TX_CONTINUE;
ifmgd = &tx->sdata->u.mgd;
/*
* Don't wakeup from power save if u-apsd is enabled, voip ac has
* u-apsd enabled and the frame is in voip class. This effectively
* means that even if all access categories have u-apsd enabled, in
* practise u-apsd is only used with the voip ac. This is a
* workaround for the case when received voip class packets do not
* have correct qos tag for some reason, due the network or the
* peer application.
*
* Note: ifmgd->uapsd_queues access is racy here. If the value is
* changed via debugfs, user needs to reassociate manually to have
* everything in sync.
*/
if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) &&
(ifmgd->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) &&
skb_get_queue_mapping(tx->skb) == IEEE80211_AC_VO)
return TX_CONTINUE;
if (local->hw.conf.flags & IEEE80211_CONF_PS) {
ieee80211_stop_queues_by_reason(&local->hw,
IEEE80211_MAX_QUEUE_MAP,
IEEE80211_QUEUE_STOP_REASON_PS,
false);
ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED;
ieee80211_queue_work(&local->hw,
&local->dynamic_ps_disable_work);
}
/* Don't restart the timer if we're not disassociated */
if (!ifmgd->associated)
return TX_CONTINUE;
mod_timer(&local->dynamic_ps_timer, jiffies +
msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
return TX_CONTINUE;
}
static ieee80211_tx_result debug_noinline
ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
bool assoc = false;
if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
return TX_CONTINUE;
if (unlikely(test_bit(SCAN_SW_SCANNING, &tx->local->scanning)) &&
test_bit(SDATA_STATE_OFFCHANNEL, &tx->sdata->state) &&
!ieee80211_is_probe_req(hdr->frame_control) &&
!ieee80211_is_nullfunc(hdr->frame_control))
/*
* When software scanning only nullfunc frames (to notify
* the sleep state to the AP) and probe requests (for the
* active scan) are allowed, all other frames should not be
* sent and we should not get here, but if we do
* nonetheless, drop them to avoid sending them
* off-channel. See the link below and
* ieee80211_start_scan() for more.
*
* http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
*/
return TX_DROP;
if (tx->sdata->vif.type == NL80211_IFTYPE_OCB)
return TX_CONTINUE;
if (tx->sdata->vif.type == NL80211_IFTYPE_WDS)
return TX_CONTINUE;
if (tx->flags & IEEE80211_TX_PS_BUFFERED)
return TX_CONTINUE;
if (tx->sta)
assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC);
if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
if (unlikely(!assoc &&
ieee80211_is_data(hdr->frame_control))) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
sdata_info(tx->sdata,
"dropped data frame to not associated station %pM\n",
hdr->addr1);
#endif
I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
return TX_DROP;
}
} else if (unlikely(ieee80211_is_data(hdr->frame_control) &&
ieee80211_vif_get_num_mcast_if(tx->sdata) == 0)) {
/*
* No associated STAs - no need to send multicast
* frames.
*/
return TX_DROP;
}
return TX_CONTINUE;
}
/* This function is called whenever the AP is about to exceed the maximum limit
* of buffered frames for power saving STAs. This situation should not really
* happen often during normal operation, so dropping the oldest buffered packet
* from each queue should be OK to make some room for new frames. */
static void purge_old_ps_buffers(struct ieee80211_local *local)
{
int total = 0, purged = 0;
struct sk_buff *skb;
struct ieee80211_sub_if_data *sdata;
struct sta_info *sta;
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
struct ps_data *ps;
if (sdata->vif.type == NL80211_IFTYPE_AP)
ps = &sdata->u.ap.ps;
else if (ieee80211_vif_is_mesh(&sdata->vif))
ps = &sdata->u.mesh.ps;
else
continue;
skb = skb_dequeue(&ps->bc_buf);
if (skb) {
purged++;
ieee80211_free_txskb(&local->hw, skb);
}
total += skb_queue_len(&ps->bc_buf);
}
/*
* Drop one frame from each station from the lowest-priority
* AC that has frames at all.
*/
list_for_each_entry_rcu(sta, &local->sta_list, list) {
int ac;
for (ac = IEEE80211_AC_BK; ac >= IEEE80211_AC_VO; ac--) {
skb = skb_dequeue(&sta->ps_tx_buf[ac]);
total += skb_queue_len(&sta->ps_tx_buf[ac]);
if (skb) {
purged++;
ieee80211_free_txskb(&local->hw, skb);
break;
}
}
}
local->total_ps_buffered = total;
ps_dbg_hw(&local->hw, "PS buffers full - purged %d frames\n", purged);
}
static ieee80211_tx_result
ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
struct ps_data *ps;
/*
* broadcast/multicast frame
*
* If any of the associated/peer stations is in power save mode,
* the frame is buffered to be sent after DTIM beacon frame.
* This is done either by the hardware or us.
*/
/* powersaving STAs currently only in AP/VLAN/mesh mode */
if (tx->sdata->vif.type == NL80211_IFTYPE_AP ||
tx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
if (!tx->sdata->bss)
return TX_CONTINUE;
ps = &tx->sdata->bss->ps;
} else if (ieee80211_vif_is_mesh(&tx->sdata->vif)) {
ps = &tx->sdata->u.mesh.ps;
} else {
return TX_CONTINUE;
}
/* no buffering for ordered frames */
if (ieee80211_has_order(hdr->frame_control))
return TX_CONTINUE;
if (ieee80211_is_probe_req(hdr->frame_control))
return TX_CONTINUE;
if (ieee80211_hw_check(&tx->local->hw, QUEUE_CONTROL))
info->hw_queue = tx->sdata->vif.cab_queue;
/* no stations in PS mode and no buffered packets */
if (!atomic_read(&ps->num_sta_ps) && skb_queue_empty(&ps->bc_buf))
return TX_CONTINUE;
info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
/* device releases frame after DTIM beacon */
if (!ieee80211_hw_check(&tx->local->hw, HOST_BROADCAST_PS_BUFFERING))
return TX_CONTINUE;
/* buffered in mac80211 */
if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
purge_old_ps_buffers(tx->local);
if (skb_queue_len(&ps->bc_buf) >= AP_MAX_BC_BUFFER) {
ps_dbg(tx->sdata,
"BC TX buffer full - dropping the oldest frame\n");
ieee80211_free_txskb(&tx->local->hw, skb_dequeue(&ps->bc_buf));
} else
tx->local->total_ps_buffered++;
skb_queue_tail(&ps->bc_buf, tx->skb);
return TX_QUEUED;
}
static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
struct sk_buff *skb)
{
if (!ieee80211_is_mgmt(fc))
return 0;
if (sta == NULL || !test_sta_flag(sta, WLAN_STA_MFP))
return 0;
if (!ieee80211_is_robust_mgmt_frame(skb))
return 0;
return 1;
}
static ieee80211_tx_result
ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
{
struct sta_info *sta = tx->sta;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
struct ieee80211_local *local = tx->local;
if (unlikely(!sta))
return TX_CONTINUE;
if (unlikely((test_sta_flag(sta, WLAN_STA_PS_STA) ||
test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
test_sta_flag(sta, WLAN_STA_PS_DELIVER)) &&
!(info->flags & IEEE80211_TX_CTL_NO_PS_BUFFER))) {
int ac = skb_get_queue_mapping(tx->skb);
if (ieee80211_is_mgmt(hdr->frame_control) &&
!ieee80211_is_bufferable_mmpdu(hdr->frame_control)) {
info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
return TX_CONTINUE;
}
ps_dbg(sta->sdata, "STA %pM aid %d: PS buffer for AC %d\n",
sta->sta.addr, sta->sta.aid, ac);
if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
purge_old_ps_buffers(tx->local);
/* sync with ieee80211_sta_ps_deliver_wakeup */
spin_lock(&sta->ps_lock);
/*
* STA woke up the meantime and all the frames on ps_tx_buf have
* been queued to pending queue. No reordering can happen, go
* ahead and Tx the packet.
*/
if (!test_sta_flag(sta, WLAN_STA_PS_STA) &&
!test_sta_flag(sta, WLAN_STA_PS_DRIVER) &&
!test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
spin_unlock(&sta->ps_lock);
return TX_CONTINUE;
}
if (skb_queue_len(&sta->ps_tx_buf[ac]) >= STA_MAX_TX_BUFFER) {
struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf[ac]);
ps_dbg(tx->sdata,
"STA %pM TX buffer for AC %d full - dropping oldest frame\n",
sta->sta.addr, ac);
ieee80211_free_txskb(&local->hw, old);
} else
tx->local->total_ps_buffered++;
info->control.jiffies = jiffies;
info->control.vif = &tx->sdata->vif;
info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS;
skb_queue_tail(&sta->ps_tx_buf[ac], tx->skb);
spin_unlock(&sta->ps_lock);
if (!timer_pending(&local->sta_cleanup))
mod_timer(&local->sta_cleanup,
round_jiffies(jiffies +
STA_INFO_CLEANUP_INTERVAL));
/*
* We queued up some frames, so the TIM bit might
* need to be set, recalculate it.
*/
sta_info_recalc_tim(sta);
return TX_QUEUED;
} else if (unlikely(test_sta_flag(sta, WLAN_STA_PS_STA))) {
ps_dbg(tx->sdata,
"STA %pM in PS mode, but polling/in SP -> send frame\n",
sta->sta.addr);
}
return TX_CONTINUE;
}
static ieee80211_tx_result debug_noinline
ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
{
if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
return TX_CONTINUE;
if (tx->flags & IEEE80211_TX_UNICAST)
return ieee80211_tx_h_unicast_ps_buf(tx);
else
return ieee80211_tx_h_multicast_ps_buf(tx);
}
static ieee80211_tx_result debug_noinline
ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol)) {
if (tx->sdata->control_port_no_encrypt)
info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
info->control.flags |= IEEE80211_TX_CTRL_PORT_CTRL_PROTO;
info->flags |= IEEE80211_TX_CTL_USE_MINRATE;
}
return TX_CONTINUE;
}
static ieee80211_tx_result debug_noinline
ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
{
struct ieee80211_key *key;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
tx->key = NULL;
else if (tx->sta &&
(key = rcu_dereference(tx->sta->ptk[tx->sta->ptk_idx])))
tx->key = key;
else if (ieee80211_is_group_privacy_action(tx->skb) &&
(key = rcu_dereference(tx->sdata->default_multicast_key)))
tx->key = key;
else if (ieee80211_is_mgmt(hdr->frame_control) &&
is_multicast_ether_addr(hdr->addr1) &&
ieee80211_is_robust_mgmt_frame(tx->skb) &&
(key = rcu_dereference(tx->sdata->default_mgmt_key)))
tx->key = key;
else if (is_multicast_ether_addr(hdr->addr1) &&
(key = rcu_dereference(tx->sdata->default_multicast_key)))
tx->key = key;
else if (!is_multicast_ether_addr(hdr->addr1) &&
(key = rcu_dereference(tx->sdata->default_unicast_key)))
tx->key = key;
else
tx->key = NULL;
if (tx->key) {
bool skip_hw = false;
/* TODO: add threshold stuff again */
switch (tx->key->conf.cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
case WLAN_CIPHER_SUITE_TKIP:
if (!ieee80211_is_data_present(hdr->frame_control))
tx->key = NULL;
break;
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
if (!ieee80211_is_data_present(hdr->frame_control) &&
!ieee80211_use_mfp(hdr->frame_control, tx->sta,
tx->skb) &&
!ieee80211_is_group_privacy_action(tx->skb))
tx->key = NULL;
else
skip_hw = (tx->key->conf.flags &
IEEE80211_KEY_FLAG_SW_MGMT_TX) &&
ieee80211_is_mgmt(hdr->frame_control);
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
if (!ieee80211_is_mgmt(hdr->frame_control))
tx->key = NULL;
break;
}
if (unlikely(tx->key && tx->key->flags & KEY_FLAG_TAINTED &&
!ieee80211_is_deauth(hdr->frame_control)))
return TX_DROP;
if (!skip_hw && tx->key &&
tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
info->control.hw_key = &tx->key->conf;
}
return TX_CONTINUE;
}
static ieee80211_tx_result debug_noinline
ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
struct ieee80211_hdr *hdr = (void *)tx->skb->data;
struct ieee80211_supported_band *sband;
u32 len;
struct ieee80211_tx_rate_control txrc;
struct ieee80211_sta_rates *ratetbl = NULL;
bool assoc = false;
memset(&txrc, 0, sizeof(txrc));
sband = tx->local->hw.wiphy->bands[info->band];
len = min_t(u32, tx->skb->len + FCS_LEN,
tx->local->hw.wiphy->frag_threshold);
/* set up the tx rate control struct we give the RC algo */
txrc.hw = &tx->local->hw;
txrc.sband = sband;
txrc.bss_conf = &tx->sdata->vif.bss_conf;
txrc.skb = tx->skb;
txrc.reported_rate.idx = -1;
txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[info->band];
if (tx->sdata->rc_has_mcs_mask[info->band])
txrc.rate_idx_mcs_mask =
tx->sdata->rc_rateidx_mcs_mask[info->band];
txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP ||
tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT ||
tx->sdata->vif.type == NL80211_IFTYPE_ADHOC ||
tx->sdata->vif.type == NL80211_IFTYPE_OCB);
/* set up RTS protection if desired */
if (len > tx->local->hw.wiphy->rts_threshold) {
txrc.rts = true;
}
info->control.use_rts = txrc.rts;
info->control.use_cts_prot = tx->sdata->vif.bss_conf.use_cts_prot;
/*
* Use short preamble if the BSS can handle it, but not for
* management frames unless we know the receiver can handle
* that -- the management frame might be to a station that
* just wants a probe response.
*/
if (tx->sdata->vif.bss_conf.use_short_preamble &&
(ieee80211_is_data(hdr->frame_control) ||
(tx->sta && test_sta_flag(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
txrc.short_preamble = true;
info->control.short_preamble = txrc.short_preamble;
/* don't ask rate control when rate already injected via radiotap */
if (info->control.flags & IEEE80211_TX_CTRL_RATE_INJECT)
return TX_CONTINUE;
if (tx->sta)
assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC);
/*
* Lets not bother rate control if we're associated and cannot
* talk to the sta. This should not happen.
*/
if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && assoc &&
!rate_usable_index_exists(sband, &tx->sta->sta),
"%s: Dropped data frame as no usable bitrate found while "
"scanning and associated. Target station: "
"%pM on %d GHz band\n",
tx->sdata->name, hdr->addr1,
info->band ? 5 : 2))
return TX_DROP;
/*
* If we're associated with the sta at this point we know we can at
* least send the frame at the lowest bit rate.
*/
rate_control_get_rate(tx->sdata, tx->sta, &txrc);
if (tx->sta && !info->control.skip_table)
ratetbl = rcu_dereference(tx->sta->sta.rates);
if (unlikely(info->control.rates[0].idx < 0)) {
if (ratetbl) {
struct ieee80211_tx_rate rate = {
.idx = ratetbl->rate[0].idx,
.flags = ratetbl->rate[0].flags,
.count = ratetbl->rate[0].count
};
if (ratetbl->rate[0].idx < 0)
return TX_DROP;
tx->rate = rate;
} else {
return TX_DROP;
}
} else {
tx->rate = info->control.rates[0];
}
if (txrc.reported_rate.idx < 0) {
txrc.reported_rate = tx->rate;
if (tx->sta && ieee80211_is_data(hdr->frame_control))
tx->sta->tx_stats.last_rate = txrc.reported_rate;
} else if (tx->sta)
tx->sta->tx_stats.last_rate = txrc.reported_rate;
if (ratetbl)
return TX_CONTINUE;
if (unlikely(!info->control.rates[0].count))
info->control.rates[0].count = 1;
if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
(info->flags & IEEE80211_TX_CTL_NO_ACK)))
info->control.rates[0].count = 1;
return TX_CONTINUE;
}
static __le16 ieee80211_tx_next_seq(struct sta_info *sta, int tid)
{
u16 *seq = &sta->tid_seq[tid];
__le16 ret = cpu_to_le16(*seq);
/* Increase the sequence number. */
*seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
return ret;
}
static ieee80211_tx_result debug_noinline
ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
int tid;
/*
* Packet injection may want to control the sequence
* number, if we have no matching interface then we
* neither assign one ourselves nor ask the driver to.
*/
if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
return TX_CONTINUE;
if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
return TX_CONTINUE;
if (ieee80211_hdrlen(hdr->frame_control) < 24)
return TX_CONTINUE;
if (ieee80211_is_qos_nullfunc(hdr->frame_control))
return TX_CONTINUE;
/*
* Anything but QoS data that has a sequence number field
* (is long enough) gets a sequence number from the global
* counter. QoS data frames with a multicast destination
* also use the global counter (802.11-2012 9.3.2.10).
*/
if (!ieee80211_is_data_qos(hdr->frame_control) ||
is_multicast_ether_addr(hdr->addr1)) {
if (tx->flags & IEEE80211_TX_NO_SEQNO)
return TX_CONTINUE;
/* driver should assign sequence number */
info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
/* for pure STA mode without beacons, we can do it */
hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
tx->sdata->sequence_number += 0x10;
if (tx->sta)
tx->sta->tx_stats.msdu[IEEE80211_NUM_TIDS]++;
return TX_CONTINUE;
}
/*
* This should be true for injected/management frames only, for
* management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
* above since they are not QoS-data frames.
*/
if (!tx->sta)
return TX_CONTINUE;
/* include per-STA, per-TID sequence counter */
tid = ieee80211_get_tid(hdr);
tx->sta->tx_stats.msdu[tid]++;
hdr->seq_ctrl = ieee80211_tx_next_seq(tx->sta, tid);
return TX_CONTINUE;
}
static int ieee80211_fragment(struct ieee80211_tx_data *tx,
struct sk_buff *skb, int hdrlen,
int frag_threshold)
{
struct ieee80211_local *local = tx->local;
struct ieee80211_tx_info *info;
struct sk_buff *tmp;
int per_fragm = frag_threshold - hdrlen - FCS_LEN;
int pos = hdrlen + per_fragm;
int rem = skb->len - hdrlen - per_fragm;
if (WARN_ON(rem < 0))
return -EINVAL;
/* first fragment was already added to queue by caller */
while (rem) {
int fraglen = per_fragm;
if (fraglen > rem)
fraglen = rem;
rem -= fraglen;
tmp = dev_alloc_skb(local->tx_headroom +
frag_threshold +
tx->sdata->encrypt_headroom +
IEEE80211_ENCRYPT_TAILROOM);
if (!tmp)
return -ENOMEM;
__skb_queue_tail(&tx->skbs, tmp);
skb_reserve(tmp,
local->tx_headroom + tx->sdata->encrypt_headroom);
/* copy control information */
memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
info = IEEE80211_SKB_CB(tmp);
info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
IEEE80211_TX_CTL_FIRST_FRAGMENT);
if (rem)
info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
skb_copy_queue_mapping(tmp, skb);
tmp->priority = skb->priority;
tmp->dev = skb->dev;
/* copy header and data */
skb_put_data(tmp, skb->data, hdrlen);
skb_put_data(tmp, skb->data + pos, fraglen);
pos += fraglen;
}
/* adjust first fragment's length */
skb_trim(skb, hdrlen + per_fragm);
return 0;
}
static ieee80211_tx_result debug_noinline
ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
{
struct sk_buff *skb = tx->skb;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (void *)skb->data;
int frag_threshold = tx->local->hw.wiphy->frag_threshold;
int hdrlen;
int fragnum;
/* no matter what happens, tx->skb moves to tx->skbs */
__skb_queue_tail(&tx->skbs, skb);
tx->skb = NULL;
if (info->flags & IEEE80211_TX_CTL_DONTFRAG)
return TX_CONTINUE;
if (ieee80211_hw_check(&tx->local->hw, SUPPORTS_TX_FRAG))
return TX_CONTINUE;
/*
* Warn when submitting a fragmented A-MPDU frame and drop it.
* This scenario is handled in ieee80211_tx_prepare but extra
* caution taken here as fragmented ampdu may cause Tx stop.
*/
if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
return TX_DROP;
hdrlen = ieee80211_hdrlen(hdr->frame_control);
/* internal error, why isn't DONTFRAG set? */
if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
return TX_DROP;
/*
* Now fragment the frame. This will allocate all the fragments and
* chain them (using skb as the first fragment) to skb->next.
* During transmission, we will remove the successfully transmitted
* fragments from this list. When the low-level driver rejects one
* of the fragments then we will simply pretend to accept the skb
* but store it away as pending.
*/
if (ieee80211_fragment(tx, skb, hdrlen, frag_threshold))
return TX_DROP;
/* update duration/seq/flags of fragments */
fragnum = 0;
skb_queue_walk(&tx->skbs, skb) {
const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
hdr = (void *)skb->data;
info = IEEE80211_SKB_CB(skb);
if (!skb_queue_is_last(&tx->skbs, skb)) {
hdr->frame_control |= morefrags;
/*
* No multi-rate retries for fragmented frames, that
* would completely throw off the NAV at other STAs.
*/
info->control.rates[1].idx = -1;
info->control.rates[2].idx = -1;
info->control.rates[3].idx = -1;
BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 4);
info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
} else {
hdr->frame_control &= ~morefrags;
}
hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
fragnum++;
}
return TX_CONTINUE;
}
static ieee80211_tx_result debug_noinline
ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
{
struct sk_buff *skb;
int ac = -1;
if (!tx->sta)
return TX_CONTINUE;
skb_queue_walk(&tx->skbs, skb) {
ac = skb_get_queue_mapping(skb);
tx->sta->tx_stats.bytes[ac] += skb->len;
}
if (ac >= 0)
tx->sta->tx_stats.packets[ac]++;
return TX_CONTINUE;
}
static ieee80211_tx_result debug_noinline
ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
{
if (!tx->key)
return TX_CONTINUE;
switch (tx->key->conf.cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
return ieee80211_crypto_wep_encrypt(tx);
case WLAN_CIPHER_SUITE_TKIP:
return ieee80211_crypto_tkip_encrypt(tx);
case WLAN_CIPHER_SUITE_CCMP:
return ieee80211_crypto_ccmp_encrypt(
tx, IEEE80211_CCMP_MIC_LEN);
case WLAN_CIPHER_SUITE_CCMP_256:
return ieee80211_crypto_ccmp_encrypt(
tx, IEEE80211_CCMP_256_MIC_LEN);
case WLAN_CIPHER_SUITE_AES_CMAC:
return ieee80211_crypto_aes_cmac_encrypt(tx);
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
return ieee80211_crypto_aes_cmac_256_encrypt(tx);
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
return ieee80211_crypto_aes_gmac_encrypt(tx);
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
return ieee80211_crypto_gcmp_encrypt(tx);
default:
return ieee80211_crypto_hw_encrypt(tx);
}
return TX_DROP;
}
static ieee80211_tx_result debug_noinline
ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
{
struct sk_buff *skb;
struct ieee80211_hdr *hdr;
int next_len;
bool group_addr;
skb_queue_walk(&tx->skbs, skb) {
hdr = (void *) skb->data;
if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
break; /* must not overwrite AID */
if (!skb_queue_is_last(&tx->skbs, skb)) {
struct sk_buff *next = skb_queue_next(&tx->skbs, skb);
next_len = next->len;
} else
next_len = 0;
group_addr = is_multicast_ether_addr(hdr->addr1);
hdr->duration_id =
ieee80211_duration(tx, skb, group_addr, next_len);
}
return TX_CONTINUE;
}
/* actual transmit path */
static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx,
struct sk_buff *skb,
struct ieee80211_tx_info *info,
struct tid_ampdu_tx *tid_tx,
int tid)
{
bool queued = false;
bool reset_agg_timer = false;
struct sk_buff *purge_skb = NULL;
if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
info->flags |= IEEE80211_TX_CTL_AMPDU;
reset_agg_timer = true;
} else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) {
/*
* nothing -- this aggregation session is being started
* but that might still fail with the driver
*/
} else if (!tx->sta->sta.txq[tid]) {
spin_lock(&tx->sta->lock);
/*
* Need to re-check now, because we may get here
*
* 1) in the window during which the setup is actually
* already done, but not marked yet because not all
* packets are spliced over to the driver pending
* queue yet -- if this happened we acquire the lock
* either before or after the splice happens, but
* need to recheck which of these cases happened.
*
* 2) during session teardown, if the OPERATIONAL bit
* was cleared due to the teardown but the pointer
* hasn't been assigned NULL yet (or we loaded it
* before it was assigned) -- in this case it may
* now be NULL which means we should just let the
* packet pass through because splicing the frames
* back is already done.
*/
tid_tx = rcu_dereference_protected_tid_tx(tx->sta, tid);
if (!tid_tx) {
/* do nothing, let packet pass through */
} else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
info->flags |= IEEE80211_TX_CTL_AMPDU;
reset_agg_timer = true;
} else {
queued = true;
if (info->flags & IEEE80211_TX_CTL_NO_PS_BUFFER) {
clear_sta_flag(tx->sta, WLAN_STA_SP);
ps_dbg(tx->sta->sdata,
"STA %pM aid %d: SP frame queued, close the SP w/o telling the peer\n",
tx->sta->sta.addr, tx->sta->sta.aid);
}
info->control.vif = &tx->sdata->vif;
info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS;
__skb_queue_tail(&tid_tx->pending, skb);
if (skb_queue_len(&tid_tx->pending) > STA_MAX_TX_BUFFER)
purge_skb = __skb_dequeue(&tid_tx->pending);
}
spin_unlock(&tx->sta->lock);
if (purge_skb)
ieee80211_free_txskb(&tx->local->hw, purge_skb);
}
/* reset session timer */
if (reset_agg_timer)
tid_tx->last_tx = jiffies;
return queued;
}
/*
* initialises @tx
* pass %NULL for the station if unknown, a valid pointer if known
* or an ERR_PTR() if the station is known not to exist
*/
static ieee80211_tx_result
ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
struct ieee80211_tx_data *tx,
struct sta_info *sta, struct sk_buff *skb)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_hdr *hdr;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
int tid;
memset(tx, 0, sizeof(*tx));
tx->skb = skb;
tx->local = local;
tx->sdata = sdata;
__skb_queue_head_init(&tx->skbs);
/*
* If this flag is set to true anywhere, and we get here,
* we are doing the needed processing, so remove the flag
* now.
*/
info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
hdr = (struct ieee80211_hdr *) skb->data;
if (likely(sta)) {
if (!IS_ERR(sta))
tx->sta = sta;
} else {
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
tx->sta = rcu_dereference(sdata->u.vlan.sta);
if (!tx->sta && sdata->wdev.use_4addr)
return TX_DROP;
} else if (info->flags & (IEEE80211_TX_INTFL_NL80211_FRAME_TX |
IEEE80211_TX_CTL_INJECTED) ||
tx->sdata->control_port_protocol == tx->skb->protocol) {
tx->sta = sta_info_get_bss(sdata, hdr->addr1);
}
if (!tx->sta && !is_multicast_ether_addr(hdr->addr1))
tx->sta = sta_info_get(sdata, hdr->addr1);
}
if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
!ieee80211_is_qos_nullfunc(hdr->frame_control) &&
ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
!ieee80211_hw_check(&local->hw, TX_AMPDU_SETUP_IN_HW)) {
struct tid_ampdu_tx *tid_tx;
tid = ieee80211_get_tid(hdr);
tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]);
if (tid_tx) {
bool queued;
queued = ieee80211_tx_prep_agg(tx, skb, info,
tid_tx, tid);
if (unlikely(queued))
return TX_QUEUED;
}
}
if (is_multicast_ether_addr(hdr->addr1)) {
tx->flags &= ~IEEE80211_TX_UNICAST;
info->flags |= IEEE80211_TX_CTL_NO_ACK;
} else
tx->flags |= IEEE80211_TX_UNICAST;
if (!(info->flags & IEEE80211_TX_CTL_DONTFRAG)) {
if (!(tx->flags & IEEE80211_TX_UNICAST) ||
skb->len + FCS_LEN <= local->hw.wiphy->frag_threshold ||
info->flags & IEEE80211_TX_CTL_AMPDU)
info->flags |= IEEE80211_TX_CTL_DONTFRAG;
}
if (!tx->sta)
info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
else if (test_and_clear_sta_flag(tx->sta, WLAN_STA_CLEAR_PS_FILT)) {
info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
ieee80211_check_fast_xmit(tx->sta);
}
info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
return TX_CONTINUE;
}
static struct txq_info *ieee80211_get_txq(struct ieee80211_local *local,
struct ieee80211_vif *vif,
struct sta_info *sta,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_txq *txq = NULL;
if ((info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) ||
(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE))
return NULL;
if (!ieee80211_is_data_present(hdr->frame_control))
return NULL;
if (sta) {
u8 tid = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
if (!sta->uploaded)
return NULL;
txq = sta->sta.txq[tid];
} else if (vif) {
txq = vif->txq;
}
if (!txq)
return NULL;
return to_txq_info(txq);
}
static void ieee80211_set_skb_enqueue_time(struct sk_buff *skb)
{
IEEE80211_SKB_CB(skb)->control.enqueue_time = codel_get_time();
}
static u32 codel_skb_len_func(const struct sk_buff *skb)
{
return skb->len;
}
static codel_time_t codel_skb_time_func(const struct sk_buff *skb)
{
const struct ieee80211_tx_info *info;
info = (const struct ieee80211_tx_info *)skb->cb;
return info->control.enqueue_time;
}
static struct sk_buff *codel_dequeue_func(struct codel_vars *cvars,
void *ctx)
{
struct ieee80211_local *local;
struct txq_info *txqi;
struct fq *fq;
struct fq_flow *flow;
txqi = ctx;
local = vif_to_sdata(txqi->txq.vif)->local;
fq = &local->fq;
if (cvars == &txqi->def_cvars)
flow = &txqi->def_flow;
else
flow = &fq->flows[cvars - local->cvars];
return fq_flow_dequeue(fq, flow);
}
static void codel_drop_func(struct sk_buff *skb,
void *ctx)
{
struct ieee80211_local *local;
struct ieee80211_hw *hw;
struct txq_info *txqi;
txqi = ctx;
local = vif_to_sdata(txqi->txq.vif)->local;
hw = &local->hw;
ieee80211_free_txskb(hw, skb);
}
static struct sk_buff *fq_tin_dequeue_func(struct fq *fq,
struct fq_tin *tin,
struct fq_flow *flow)
{
struct ieee80211_local *local;
struct txq_info *txqi;
struct codel_vars *cvars;
struct codel_params *cparams;
struct codel_stats *cstats;
local = container_of(fq, struct ieee80211_local, fq);
txqi = container_of(tin, struct txq_info, tin);
cstats = &txqi->cstats;
if (txqi->txq.sta) {
struct sta_info *sta = container_of(txqi->txq.sta,
struct sta_info, sta);
cparams = &sta->cparams;
} else {
cparams = &local->cparams;
}
if (flow == &txqi->def_flow)
cvars = &txqi->def_cvars;
else
cvars = &local->cvars[flow - fq->flows];
return codel_dequeue(txqi,
&flow->backlog,
cparams,
cvars,
cstats,
codel_skb_len_func,
codel_skb_time_func,
codel_drop_func,
codel_dequeue_func);
}
static void fq_skb_free_func(struct fq *fq,
struct fq_tin *tin,
struct fq_flow *flow,
struct sk_buff *skb)
{
struct ieee80211_local *local;
local = container_of(fq, struct ieee80211_local, fq);
ieee80211_free_txskb(&local->hw, skb);
}
static struct fq_flow *fq_flow_get_default_func(struct fq *fq,
struct fq_tin *tin,
int idx,
struct sk_buff *skb)
{
struct txq_info *txqi;
txqi = container_of(tin, struct txq_info, tin);
return &txqi->def_flow;
}
static void ieee80211_txq_enqueue(struct ieee80211_local *local,
struct txq_info *txqi,
struct sk_buff *skb)
{
struct fq *fq = &local->fq;
struct fq_tin *tin = &txqi->tin;
ieee80211_set_skb_enqueue_time(skb);
fq_tin_enqueue(fq, tin, skb,
fq_skb_free_func,
fq_flow_get_default_func);
}
static bool fq_vlan_filter_func(struct fq *fq, struct fq_tin *tin,
struct fq_flow *flow, struct sk_buff *skb,
void *data)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
return info->control.vif == data;
}
void ieee80211_txq_remove_vlan(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata)
{
struct fq *fq = &local->fq;
struct txq_info *txqi;
struct fq_tin *tin;
struct ieee80211_sub_if_data *ap;
if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
return;
ap = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap);
if (!ap->vif.txq)
return;
txqi = to_txq_info(ap->vif.txq);
tin = &txqi->tin;
spin_lock_bh(&fq->lock);
fq_tin_filter(fq, tin, fq_vlan_filter_func, &sdata->vif,
fq_skb_free_func);
spin_unlock_bh(&fq->lock);
}
void ieee80211_txq_init(struct ieee80211_sub_if_data *sdata,
struct sta_info *sta,
struct txq_info *txqi, int tid)
{
fq_tin_init(&txqi->tin);
fq_flow_init(&txqi->def_flow);
codel_vars_init(&txqi->def_cvars);
codel_stats_init(&txqi->cstats);
__skb_queue_head_init(&txqi->frags);
txqi->txq.vif = &sdata->vif;
if (sta) {
txqi->txq.sta = &sta->sta;
sta->sta.txq[tid] = &txqi->txq;
txqi->txq.tid = tid;
txqi->txq.ac = ieee80211_ac_from_tid(tid);
} else {
sdata->vif.txq = &txqi->txq;
txqi->txq.tid = 0;
txqi->txq.ac = IEEE80211_AC_BE;
}
}
void ieee80211_txq_purge(struct ieee80211_local *local,
struct txq_info *txqi)
{
struct fq *fq = &local->fq;
struct fq_tin *tin = &txqi->tin;
fq_tin_reset(fq, tin, fq_skb_free_func);
ieee80211_purge_tx_queue(&local->hw, &txqi->frags);
}
void ieee80211_txq_set_params(struct ieee80211_local *local)
{
if (local->hw.wiphy->txq_limit)
local->fq.limit = local->hw.wiphy->txq_limit;
else
local->hw.wiphy->txq_limit = local->fq.limit;
if (local->hw.wiphy->txq_memory_limit)
local->fq.memory_limit = local->hw.wiphy->txq_memory_limit;
else
local->hw.wiphy->txq_memory_limit = local->fq.memory_limit;
if (local->hw.wiphy->txq_quantum)
local->fq.quantum = local->hw.wiphy->txq_quantum;
else
local->hw.wiphy->txq_quantum = local->fq.quantum;
}
int ieee80211_txq_setup_flows(struct ieee80211_local *local)
{
struct fq *fq = &local->fq;
int ret;
int i;
bool supp_vht = false;
enum nl80211_band band;
if (!local->ops->wake_tx_queue)
return 0;
ret = fq_init(fq, 4096);
if (ret)
return ret;
/*
* If the hardware doesn't support VHT, it is safe to limit the maximum
* queue size. 4 Mbytes is 64 max-size aggregates in 802.11n.
*/
for (band = 0; band < NUM_NL80211_BANDS; band++) {
struct ieee80211_supported_band *sband;
sband = local->hw.wiphy->bands[band];
if (!sband)
continue;
supp_vht = supp_vht || sband->vht_cap.vht_supported;
}
if (!supp_vht)
fq->memory_limit = 4 << 20; /* 4 Mbytes */
codel_params_init(&local->cparams);
local->cparams.interval = MS2TIME(100);
local->cparams.target = MS2TIME(20);
local->cparams.ecn = true;
local->cvars = kcalloc(fq->flows_cnt, sizeof(local->cvars[0]),
GFP_KERNEL);
if (!local->cvars) {
spin_lock_bh(&fq->lock);
fq_reset(fq, fq_skb_free_func);
spin_unlock_bh(&fq->lock);
return -ENOMEM;
}
for (i = 0; i < fq->flows_cnt; i++)
codel_vars_init(&local->cvars[i]);
ieee80211_txq_set_params(local);
return 0;
}
void ieee80211_txq_teardown_flows(struct ieee80211_local *local)
{
struct fq *fq = &local->fq;
if (!local->ops->wake_tx_queue)
return;
kfree(local->cvars);
local->cvars = NULL;
spin_lock_bh(&fq->lock);
fq_reset(fq, fq_skb_free_func);
spin_unlock_bh(&fq->lock);
}
static bool ieee80211_queue_skb(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
struct sta_info *sta,
struct sk_buff *skb)
{
struct fq *fq = &local->fq;
struct ieee80211_vif *vif;
struct txq_info *txqi;
if (!local->ops->wake_tx_queue ||
sdata->vif.type == NL80211_IFTYPE_MONITOR)
return false;
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
sdata = container_of(sdata->bss,
struct ieee80211_sub_if_data, u.ap);
vif = &sdata->vif;
txqi = ieee80211_get_txq(local, vif, sta, skb);
if (!txqi)
return false;
spin_lock_bh(&fq->lock);
ieee80211_txq_enqueue(local, txqi, skb);
spin_unlock_bh(&fq->lock);
drv_wake_tx_queue(local, txqi);
return true;
}
static bool ieee80211_tx_frags(struct ieee80211_local *local,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct sk_buff_head *skbs,
bool txpending)
{
struct ieee80211_tx_control control = {};
struct sk_buff *skb, *tmp;
unsigned long flags;
skb_queue_walk_safe(skbs, skb, tmp) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
int q = info->hw_queue;
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
if (WARN_ON_ONCE(q >= local->hw.queues)) {
__skb_unlink(skb, skbs);
ieee80211_free_txskb(&local->hw, skb);
continue;
}
#endif
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
if (local->queue_stop_reasons[q] ||
(!txpending && !skb_queue_empty(&local->pending[q]))) {
if (unlikely(info->flags &
IEEE80211_TX_INTFL_OFFCHAN_TX_OK)) {
if (local->queue_stop_reasons[q] &
~BIT(IEEE80211_QUEUE_STOP_REASON_OFFCHANNEL)) {
/*
* Drop off-channel frames if queues
* are stopped for any reason other
* than off-channel operation. Never
* queue them.
*/
spin_unlock_irqrestore(
&local->queue_stop_reason_lock,
flags);
ieee80211_purge_tx_queue(&local->hw,
skbs);
return true;
}
} else {
/*
* Since queue is stopped, queue up frames for
* later transmission from the tx-pending
* tasklet when the queue is woken again.
*/
if (txpending)
skb_queue_splice_init(skbs,
&local->pending[q]);
else
skb_queue_splice_tail_init(skbs,
&local->pending[q]);
spin_unlock_irqrestore(&local->queue_stop_reason_lock,
flags);
return false;
}
}
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
info->control.vif = vif;
control.sta = sta;
__skb_unlink(skb, skbs);
drv_tx(local, &control, skb);
}
return true;
}
/*
* Returns false if the frame couldn't be transmitted but was queued instead.
*/
static bool __ieee80211_tx(struct ieee80211_local *local,
struct sk_buff_head *skbs, int led_len,
struct sta_info *sta, bool txpending)
{
struct ieee80211_tx_info *info;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_vif *vif;
struct ieee80211_sta *pubsta;
struct sk_buff *skb;
bool result = true;
__le16 fc;
if (WARN_ON(skb_queue_empty(skbs)))
return true;
skb = skb_peek(skbs);
fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
info = IEEE80211_SKB_CB(skb);
sdata = vif_to_sdata(info->control.vif);
if (sta && !sta->uploaded)
sta = NULL;
if (sta)
pubsta = &sta->sta;
else
pubsta = NULL;
switch (sdata->vif.type) {
case NL80211_IFTYPE_MONITOR:
if (sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) {
vif = &sdata->vif;
break;
}
sdata = rcu_dereference(local->monitor_sdata);
if (sdata) {
vif = &sdata->vif;
info->hw_queue =
vif->hw_queue[skb_get_queue_mapping(skb)];
} else if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) {
ieee80211_purge_tx_queue(&local->hw, skbs);
return true;
} else
vif = NULL;
break;
case NL80211_IFTYPE_AP_VLAN:
sdata = container_of(sdata->bss,
struct ieee80211_sub_if_data, u.ap);
/* fall through */
default:
vif = &sdata->vif;
break;
}
result = ieee80211_tx_frags(local, vif, pubsta, skbs,
txpending);
ieee80211_tpt_led_trig_tx(local, fc, led_len);
WARN_ON_ONCE(!skb_queue_empty(skbs));
return result;
}
/*
* Invoke TX handlers, return 0 on success and non-zero if the
* frame was dropped or queued.
*
* The handlers are split into an early and late part. The latter is everything
* that can be sensitive to reordering, and will be deferred to after packets
* are dequeued from the intermediate queues (when they are enabled).
*/
static int invoke_tx_handlers_early(struct ieee80211_tx_data *tx)
{
ieee80211_tx_result res = TX_DROP;
#define CALL_TXH(txh) \
do { \
res = txh(tx); \
if (res != TX_CONTINUE) \
goto txh_done; \
} while (0)
CALL_TXH(ieee80211_tx_h_dynamic_ps);
CALL_TXH(ieee80211_tx_h_check_assoc);
CALL_TXH(ieee80211_tx_h_ps_buf);
CALL_TXH(ieee80211_tx_h_check_control_port_protocol);
CALL_TXH(ieee80211_tx_h_select_key);
if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL))
CALL_TXH(ieee80211_tx_h_rate_ctrl);
txh_done:
if (unlikely(res == TX_DROP)) {
I802_DEBUG_INC(tx->local->tx_handlers_drop);
if (tx->skb)
ieee80211_free_txskb(&tx->local->hw, tx->skb);
else
ieee80211_purge_tx_queue(&tx->local->hw, &tx->skbs);
return -1;
} else if (unlikely(res == TX_QUEUED)) {
I802_DEBUG_INC(tx->local->tx_handlers_queued);
return -1;
}
return 0;
}
/*
* Late handlers can be called while the sta lock is held. Handlers that can
* cause packets to be generated will cause deadlock!
*/
static int invoke_tx_handlers_late(struct ieee80211_tx_data *tx)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
ieee80211_tx_result res = TX_CONTINUE;
if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION)) {
__skb_queue_tail(&tx->skbs, tx->skb);
tx->skb = NULL;
goto txh_done;
}
CALL_TXH(ieee80211_tx_h_michael_mic_add);
CALL_TXH(ieee80211_tx_h_sequence);
CALL_TXH(ieee80211_tx_h_fragment);
/* handlers after fragment must be aware of tx info fragmentation! */
CALL_TXH(ieee80211_tx_h_stats);
CALL_TXH(ieee80211_tx_h_encrypt);
if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL))
CALL_TXH(ieee80211_tx_h_calculate_duration);
#undef CALL_TXH
txh_done:
if (unlikely(res == TX_DROP)) {
I802_DEBUG_INC(tx->local->tx_handlers_drop);
if (tx->skb)
ieee80211_free_txskb(&tx->local->hw, tx->skb);
else
ieee80211_purge_tx_queue(&tx->local->hw, &tx->skbs);
return -1;
} else if (unlikely(res == TX_QUEUED)) {
I802_DEBUG_INC(tx->local->tx_handlers_queued);
return -1;
}
return 0;
}
static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
{
int r = invoke_tx_handlers_early(tx);
if (r)
return r;
return invoke_tx_handlers_late(tx);
}
bool ieee80211_tx_prepare_skb(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, struct sk_buff *skb,
int band, struct ieee80211_sta **sta)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_tx_data tx;
struct sk_buff *skb2;
if (ieee80211_tx_prepare(sdata, &tx, NULL, skb) == TX_DROP)
return false;
info->band = band;
info->control.vif = vif;
info->hw_queue = vif->hw_queue[skb_get_queue_mapping(skb)];
if (invoke_tx_handlers(&tx))
return false;
if (sta) {
if (tx.sta)
*sta = &tx.sta->sta;
else
*sta = NULL;
}
/* this function isn't suitable for fragmented data frames */
skb2 = __skb_dequeue(&tx.skbs);
if (WARN_ON(skb2 != skb || !skb_queue_empty(&tx.skbs))) {
ieee80211_free_txskb(hw, skb2);
ieee80211_purge_tx_queue(hw, &tx.skbs);
return false;
}
return true;
}
EXPORT_SYMBOL(ieee80211_tx_prepare_skb);
/*
* Returns false if the frame couldn't be transmitted but was queued instead.
*/
static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata,
struct sta_info *sta, struct sk_buff *skb,
bool txpending, u32 txdata_flags)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_tx_data tx;
ieee80211_tx_result res_prepare;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
bool result = true;
int led_len;
if (unlikely(skb->len < 10)) {
dev_kfree_skb(skb);
return true;
}
/* initialises tx */
led_len = skb->len;
res_prepare = ieee80211_tx_prepare(sdata, &tx, sta, skb);
tx.flags |= txdata_flags;
if (unlikely(res_prepare == TX_DROP)) {
ieee80211_free_txskb(&local->hw, skb);
return true;
} else if (unlikely(res_prepare == TX_QUEUED)) {
return true;
}
/* set up hw_queue value early */
if (!(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) ||
!ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
info->hw_queue =
sdata->vif.hw_queue[skb_get_queue_mapping(skb)];
if (invoke_tx_handlers_early(&tx))
return true;
if (ieee80211_queue_skb(local, sdata, tx.sta, tx.skb))
return true;
if (!invoke_tx_handlers_late(&tx))
result = __ieee80211_tx(local, &tx.skbs, led_len,
tx.sta, txpending);
return result;
}
/* device xmit handlers */
static int ieee80211_skb_resize(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb,
int head_need, bool may_encrypt)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_hdr *hdr;
bool enc_tailroom;
int tail_need = 0;
hdr = (struct ieee80211_hdr *) skb->data;
enc_tailroom = may_encrypt &&
(sdata->crypto_tx_tailroom_needed_cnt ||
ieee80211_is_mgmt(hdr->frame_control));
if (enc_tailroom) {
tail_need = IEEE80211_ENCRYPT_TAILROOM;
tail_need -= skb_tailroom(skb);
tail_need = max_t(int, tail_need, 0);
}
if (skb_cloned(skb) &&
(!ieee80211_hw_check(&local->hw, SUPPORTS_CLONED_SKBS) ||
!skb_clone_writable(skb, ETH_HLEN) || enc_tailroom))
I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
else if (head_need || tail_need)
I802_DEBUG_INC(local->tx_expand_skb_head);
else
return 0;
if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
wiphy_debug(local->hw.wiphy,
"failed to reallocate TX buffer\n");
return -ENOMEM;
}
return 0;
}
void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
struct sta_info *sta, struct sk_buff *skb,
u32 txdata_flags)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr;
int headroom;
bool may_encrypt;
may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
headroom = local->tx_headroom;
if (may_encrypt)
headroom += sdata->encrypt_headroom;
headroom -= skb_headroom(skb);
headroom = max_t(int, 0, headroom);
if (ieee80211_skb_resize(sdata, skb, headroom, may_encrypt)) {
ieee80211_free_txskb(&local->hw, skb);
return;
}
hdr = (struct ieee80211_hdr *) skb->data;
info->control.vif = &sdata->vif;
if (ieee80211_vif_is_mesh(&sdata->vif)) {
if (ieee80211_is_data(hdr->frame_control) &&
is_unicast_ether_addr(hdr->addr1)) {
if (mesh_nexthop_resolve(sdata, skb))
return; /* skb queued: don't free */
} else {
ieee80211_mps_set_frame_flags(sdata, NULL, hdr);
}
}
ieee80211_set_qos_hdr(sdata, skb);
ieee80211_tx(sdata, sta, skb, false, txdata_flags);
}
static bool ieee80211_parse_tx_radiotap(struct ieee80211_local *local,
struct sk_buff *skb)
{
struct ieee80211_radiotap_iterator iterator;
struct ieee80211_radiotap_header *rthdr =
(struct ieee80211_radiotap_header *) skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_supported_band *sband =
local->hw.wiphy->bands[info->band];
int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len,
NULL);
u16 txflags;
u16 rate = 0;
bool rate_found = false;
u8 rate_retries = 0;
u16 rate_flags = 0;
u8 mcs_known, mcs_flags, mcs_bw;
u16 vht_known;
u8 vht_mcs = 0, vht_nss = 0;
int i;
info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
IEEE80211_TX_CTL_DONTFRAG;
/*
* for every radiotap entry that is present
* (ieee80211_radiotap_iterator_next returns -ENOENT when no more
* entries present, or -EINVAL on error)
*/
while (!ret) {
ret = ieee80211_radiotap_iterator_next(&iterator);
if (ret)
continue;
/* see if this argument is something we can use */
switch (iterator.this_arg_index) {
/*
* You must take care when dereferencing iterator.this_arg
* for multibyte types... the pointer is not aligned. Use
* get_unaligned((type *)iterator.this_arg) to dereference
* iterator.this_arg for type "type" safely on all arches.
*/
case IEEE80211_RADIOTAP_FLAGS:
if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
/*
* this indicates that the skb we have been
* handed has the 32-bit FCS CRC at the end...
* we should react to that by snipping it off
* because it will be recomputed and added
* on transmission
*/
if (skb->len < (iterator._max_length + FCS_LEN))
return false;
skb_trim(skb, skb->len - FCS_LEN);
}
if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
info->flags &= ~IEEE80211_TX_CTL_DONTFRAG;
break;
case IEEE80211_RADIOTAP_TX_FLAGS:
txflags = get_unaligned_le16(iterator.this_arg);
if (txflags & IEEE80211_RADIOTAP_F_TX_NOACK)
info->flags |= IEEE80211_TX_CTL_NO_ACK;
break;
case IEEE80211_RADIOTAP_RATE:
rate = *iterator.this_arg;
rate_flags = 0;
rate_found = true;
break;
case IEEE80211_RADIOTAP_DATA_RETRIES:
rate_retries = *iterator.this_arg;
break;
case IEEE80211_RADIOTAP_MCS:
mcs_known = iterator.this_arg[0];
mcs_flags = iterator.this_arg[1];
if (!(mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_MCS))
break;
rate_found = true;
rate = iterator.this_arg[2];
rate_flags = IEEE80211_TX_RC_MCS;
if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_GI &&
mcs_flags & IEEE80211_RADIOTAP_MCS_SGI)
rate_flags |= IEEE80211_TX_RC_SHORT_GI;
mcs_bw = mcs_flags & IEEE80211_RADIOTAP_MCS_BW_MASK;
if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_BW &&
mcs_bw == IEEE80211_RADIOTAP_MCS_BW_40)
rate_flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
break;
case IEEE80211_RADIOTAP_VHT:
vht_known = get_unaligned_le16(iterator.this_arg);
rate_found = true;
rate_flags = IEEE80211_TX_RC_VHT_MCS;
if ((vht_known & IEEE80211_RADIOTAP_VHT_KNOWN_GI) &&
(iterator.this_arg[2] &
IEEE80211_RADIOTAP_VHT_FLAG_SGI))
rate_flags |= IEEE80211_TX_RC_SHORT_GI;
if (vht_known &
IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH) {
if (iterator.this_arg[3] == 1)
rate_flags |=
IEEE80211_TX_RC_40_MHZ_WIDTH;
else if (iterator.this_arg[3] == 4)
rate_flags |=
IEEE80211_TX_RC_80_MHZ_WIDTH;
else if (iterator.this_arg[3] == 11)
rate_flags |=
IEEE80211_TX_RC_160_MHZ_WIDTH;
}
vht_mcs = iterator.this_arg[4] >> 4;
vht_nss = iterator.this_arg[4] & 0xF;
break;
/*
* Please update the file
* Documentation/networking/mac80211-injection.txt
* when parsing new fields here.
*/
default:
break;
}
}
if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
return false;
if (rate_found) {
info->control.flags |= IEEE80211_TX_CTRL_RATE_INJECT;
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
info->control.rates[i].idx = -1;
info->control.rates[i].flags = 0;
info->control.rates[i].count = 0;
}
if (rate_flags & IEEE80211_TX_RC_MCS) {
info->control.rates[0].idx = rate;
} else if (rate_flags & IEEE80211_TX_RC_VHT_MCS) {
ieee80211_rate_set_vht(info->control.rates, vht_mcs,
vht_nss);
} else {
for (i = 0; i < sband->n_bitrates; i++) {
if (rate * 5 != sband->bitrates[i].bitrate)
continue;
info->control.rates[0].idx = i;
break;
}
}
if (info->control.rates[0].idx < 0)
info->control.flags &= ~IEEE80211_TX_CTRL_RATE_INJECT;
info->control.rates[0].flags = rate_flags;
info->control.rates[0].count = min_t(u8, rate_retries + 1,
local->hw.max_rate_tries);
}
/*
* remove the radiotap header
* iterator->_max_length was sanity-checked against
* skb->len by iterator init
*/
skb_pull(skb, iterator._max_length);
return true;
}
netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_chanctx_conf *chanctx_conf;
struct ieee80211_radiotap_header *prthdr =
(struct ieee80211_radiotap_header *)skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr;
struct ieee80211_sub_if_data *tmp_sdata, *sdata;
struct cfg80211_chan_def *chandef;
u16 len_rthdr;
int hdrlen;
/* check for not even having the fixed radiotap header part */
if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
goto fail; /* too short to be possibly valid */
/* is it a header version we can trust to find length from? */
if (unlikely(prthdr->it_version))
goto fail; /* only version 0 is supported */
/* then there must be a radiotap header with a length we can use */
len_rthdr = ieee80211_get_radiotap_len(skb->data);
/* does the skb contain enough to deliver on the alleged length? */
if (unlikely(skb->len < len_rthdr))
goto fail; /* skb too short for claimed rt header extent */
/*
* fix up the pointers accounting for the radiotap
* header still being in there. We are being given
* a precooked IEEE80211 header so no need for
* normal processing
*/
skb_set_mac_header(skb, len_rthdr);
/*
* these are just fixed to the end of the rt area since we
* don't have any better information and at this point, nobody cares
*/
skb_set_network_header(skb, len_rthdr);
skb_set_transport_header(skb, len_rthdr);
if (skb->len < len_rthdr + 2)
goto fail;
hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
hdrlen = ieee80211_hdrlen(hdr->frame_control);
if (skb->len < len_rthdr + hdrlen)
goto fail;
/*
* Initialize skb->protocol if the injected frame is a data frame
* carrying a rfc1042 header
*/
if (ieee80211_is_data(hdr->frame_control) &&
skb->len >= len_rthdr + hdrlen + sizeof(rfc1042_header) + 2) {
u8 *payload = (u8 *)hdr + hdrlen;
if (ether_addr_equal(payload, rfc1042_header))
skb->protocol = cpu_to_be16((payload[6] << 8) |
payload[7]);
}
memset(info, 0, sizeof(*info));
info->flags = IEEE80211_TX_CTL_REQ_TX_STATUS |
IEEE80211_TX_CTL_INJECTED;
rcu_read_lock();
/*
* We process outgoing injected frames that have a local address
* we handle as though they are non-injected frames.
* This code here isn't entirely correct, the local MAC address
* isn't always enough to find the interface to use; for proper
* VLAN/WDS support we will need a different mechanism (which
* likely isn't going to be monitor interfaces).
*/
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
list_for_each_entry_rcu(tmp_sdata, &local->interfaces, list) {
if (!ieee80211_sdata_running(tmp_sdata))
continue;
if (tmp_sdata->vif.type == NL80211_IFTYPE_MONITOR ||
tmp_sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
tmp_sdata->vif.type == NL80211_IFTYPE_WDS)
continue;
if (ether_addr_equal(tmp_sdata->vif.addr, hdr->addr2)) {
sdata = tmp_sdata;
break;
}
}
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (!chanctx_conf) {
tmp_sdata = rcu_dereference(local->monitor_sdata);
if (tmp_sdata)
chanctx_conf =
rcu_dereference(tmp_sdata->vif.chanctx_conf);
}
if (chanctx_conf)
chandef = &chanctx_conf->def;
else if (!local->use_chanctx)
chandef = &local->_oper_chandef;
else
goto fail_rcu;
/*
* Frame injection is not allowed if beaconing is not allowed
* or if we need radar detection. Beaconing is usually not allowed when
* the mode or operation (Adhoc, AP, Mesh) does not support DFS.
* Passive scan is also used in world regulatory domains where
* your country is not known and as such it should be treated as
* NO TX unless the channel is explicitly allowed in which case
* your current regulatory domain would not have the passive scan
* flag.
*
* Since AP mode uses monitor interfaces to inject/TX management
* frames we can make AP mode the exception to this rule once it
* supports radar detection as its implementation can deal with
* radar detection by itself. We can do that later by adding a
* monitor flag interfaces used for AP support.
*/
if (!cfg80211_reg_can_beacon(local->hw.wiphy, chandef,
sdata->vif.type))
goto fail_rcu;
info->band = chandef->chan->band;
/* process and remove the injection radiotap header */
if (!ieee80211_parse_tx_radiotap(local, skb))
goto fail_rcu;
ieee80211_xmit(sdata, NULL, skb, 0);
rcu_read_unlock();
return NETDEV_TX_OK;
fail_rcu:
rcu_read_unlock();
fail:
dev_kfree_skb(skb);
return NETDEV_TX_OK; /* meaning, we dealt with the skb */
}
static inline bool ieee80211_is_tdls_setup(struct sk_buff *skb)
{
u16 ethertype = (skb->data[12] << 8) | skb->data[13];
return ethertype == ETH_P_TDLS &&
skb->len > 14 &&
skb->data[14] == WLAN_TDLS_SNAP_RFTYPE;
}
static int ieee80211_lookup_ra_sta(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb,
struct sta_info **sta_out)
{
struct sta_info *sta;
switch (sdata->vif.type) {
case NL80211_IFTYPE_AP_VLAN:
sta = rcu_dereference(sdata->u.vlan.sta);
if (sta) {
*sta_out = sta;
return 0;
} else if (sdata->wdev.use_4addr) {
return -ENOLINK;
}
/* fall through */
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_OCB:
case NL80211_IFTYPE_ADHOC:
if (is_multicast_ether_addr(skb->data)) {
*sta_out = ERR_PTR(-ENOENT);
return 0;
}
sta = sta_info_get_bss(sdata, skb->data);
break;
case NL80211_IFTYPE_WDS:
sta = sta_info_get(sdata, sdata->u.wds.remote_addr);
break;
#ifdef CONFIG_MAC80211_MESH
case NL80211_IFTYPE_MESH_POINT:
/* determined much later */
*sta_out = NULL;
return 0;
#endif
case NL80211_IFTYPE_STATION:
if (sdata->wdev.wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS) {
sta = sta_info_get(sdata, skb->data);
if (sta && test_sta_flag(sta, WLAN_STA_TDLS_PEER)) {
if (test_sta_flag(sta,
WLAN_STA_TDLS_PEER_AUTH)) {
*sta_out = sta;
return 0;
}
/*
* TDLS link during setup - throw out frames to
* peer. Allow TDLS-setup frames to unauthorized
* peers for the special case of a link teardown
* after a TDLS sta is removed due to being
* unreachable.
*/
if (!ieee80211_is_tdls_setup(skb))
return -EINVAL;
}
}
sta = sta_info_get(sdata, sdata->u.mgd.bssid);
if (!sta)
return -ENOLINK;
break;
default:
return -EINVAL;
}
*sta_out = sta ?: ERR_PTR(-ENOENT);
return 0;
}
/**
* ieee80211_build_hdr - build 802.11 header in the given frame
* @sdata: virtual interface to build the header for
* @skb: the skb to build the header in
* @info_flags: skb flags to set
*
* This function takes the skb with 802.3 header and reformats the header to
* the appropriate IEEE 802.11 header based on which interface the packet is
* being transmitted on.
*
* Note that this function also takes care of the TX status request and
* potential unsharing of the SKB - this needs to be interleaved with the
* header building.
*
* The function requires the read-side RCU lock held
*
* Returns: the (possibly reallocated) skb or an ERR_PTR() code
*/
static struct sk_buff *ieee80211_build_hdr(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb, u32 info_flags,
struct sta_info *sta)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_tx_info *info;
int head_need;
u16 ethertype, hdrlen, meshhdrlen = 0;
__le16 fc;
struct ieee80211_hdr hdr;
struct ieee80211s_hdr mesh_hdr __maybe_unused;
struct mesh_path __maybe_unused *mppath = NULL, *mpath = NULL;
const u8 *encaps_data;
int encaps_len, skip_header_bytes;
bool wme_sta = false, authorized = false;
bool tdls_peer;
bool multicast;
u16 info_id = 0;
struct ieee80211_chanctx_conf *chanctx_conf;
struct ieee80211_sub_if_data *ap_sdata;
enum nl80211_band band;
int ret;
if (IS_ERR(sta))
sta = NULL;
/* convert Ethernet header to proper 802.11 header (based on
* operation mode) */
ethertype = (skb->data[12] << 8) | skb->data[13];
fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
switch (sdata->vif.type) {
case NL80211_IFTYPE_AP_VLAN:
if (sdata->wdev.use_4addr) {
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
/* RA TA DA SA */
memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
memcpy(hdr.addr3, skb->data, ETH_ALEN);
memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
hdrlen = 30;
authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED);
wme_sta = sta->sta.wme;
}
ap_sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
u.ap);
chanctx_conf = rcu_dereference(ap_sdata->vif.chanctx_conf);
if (!chanctx_conf) {
ret = -ENOTCONN;
goto free;
}
band = chanctx_conf->def.chan->band;
if (sdata->wdev.use_4addr)
break;
/* fall through */
case NL80211_IFTYPE_AP:
if (sdata->vif.type == NL80211_IFTYPE_AP)
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (!chanctx_conf) {
ret = -ENOTCONN;
goto free;
}
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
/* DA BSSID SA */
memcpy(hdr.addr1, skb->data, ETH_ALEN);
memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
hdrlen = 24;
band = chanctx_conf->def.chan->band;
break;
case NL80211_IFTYPE_WDS:
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
/* RA TA DA SA */
memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
memcpy(hdr.addr3, skb->data, ETH_ALEN);
memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
hdrlen = 30;
/*
* This is the exception! WDS style interfaces are prohibited
* when channel contexts are in used so this must be valid
*/
band = local->hw.conf.chandef.chan->band;
break;
#ifdef CONFIG_MAC80211_MESH
case NL80211_IFTYPE_MESH_POINT:
if (!is_multicast_ether_addr(skb->data)) {
struct sta_info *next_hop;
bool mpp_lookup = true;
mpath = mesh_path_lookup(sdata, skb->data);
if (mpath) {
mpp_lookup = false;
next_hop = rcu_dereference(mpath->next_hop);
if (!next_hop ||
!(mpath->flags & (MESH_PATH_ACTIVE |
MESH_PATH_RESOLVING)))
mpp_lookup = true;
}
if (mpp_lookup) {
mppath = mpp_path_lookup(sdata, skb->data);
if (mppath)
mppath->exp_time = jiffies;
}
if (mppath && mpath)
mesh_path_del(sdata, mpath->dst);
}
/*
* Use address extension if it is a packet from
* another interface or if we know the destination
* is being proxied by a portal (i.e. portal address
* differs from proxied address)
*/
if (ether_addr_equal(sdata->vif.addr, skb->data + ETH_ALEN) &&
!(mppath && !ether_addr_equal(mppath->mpp, skb->data))) {
hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
skb->data, skb->data + ETH_ALEN);
meshhdrlen = ieee80211_new_mesh_header(sdata, &mesh_hdr,
NULL, NULL);
} else {
/* DS -> MBSS (802.11-2012 13.11.3.3).
* For unicast with unknown forwarding information,
* destination might be in the MBSS or if that fails
* forwarded to another mesh gate. In either case
* resolution will be handled in ieee80211_xmit(), so
* leave the original DA. This also works for mcast */
const u8 *mesh_da = skb->data;
if (mppath)
mesh_da = mppath->mpp;
else if (mpath)
mesh_da = mpath->dst;
hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
mesh_da, sdata->vif.addr);
if (is_multicast_ether_addr(mesh_da))
/* DA TA mSA AE:SA */
meshhdrlen = ieee80211_new_mesh_header(
sdata, &mesh_hdr,
skb->data + ETH_ALEN, NULL);
else
/* RA TA mDA mSA AE:DA SA */
meshhdrlen = ieee80211_new_mesh_header(
sdata, &mesh_hdr, skb->data,
skb->data + ETH_ALEN);
}
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (!chanctx_conf) {
ret = -ENOTCONN;
goto free;
}
band = chanctx_conf->def.chan->band;
break;
#endif
case NL80211_IFTYPE_STATION:
/* we already did checks when looking up the RA STA */
tdls_peer = test_sta_flag(sta, WLAN_STA_TDLS_PEER);
if (tdls_peer) {
/* DA SA BSSID */
memcpy(hdr.addr1, skb->data, ETH_ALEN);
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
memcpy(hdr.addr3, sdata->u.mgd.bssid, ETH_ALEN);
hdrlen = 24;
} else if (sdata->u.mgd.use_4addr &&
cpu_to_be16(ethertype) != sdata->control_port_protocol) {
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS |
IEEE80211_FCTL_TODS);
/* RA TA DA SA */
memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
memcpy(hdr.addr3, skb->data, ETH_ALEN);
memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
hdrlen = 30;
} else {
fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
/* BSSID SA DA */
memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
memcpy(hdr.addr3, skb->data, ETH_ALEN);
hdrlen = 24;
}
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (!chanctx_conf) {
ret = -ENOTCONN;
goto free;
}
band = chanctx_conf->def.chan->band;
break;
case NL80211_IFTYPE_OCB:
/* DA SA BSSID */
memcpy(hdr.addr1, skb->data, ETH_ALEN);
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
eth_broadcast_addr(hdr.addr3);
hdrlen = 24;
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (!chanctx_conf) {
ret = -ENOTCONN;
goto free;
}
band = chanctx_conf->def.chan->band;
break;
case NL80211_IFTYPE_ADHOC:
/* DA SA BSSID */
memcpy(hdr.addr1, skb->data, ETH_ALEN);
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
hdrlen = 24;
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (!chanctx_conf) {
ret = -ENOTCONN;
goto free;
}
band = chanctx_conf->def.chan->band;
break;
default:
ret = -EINVAL;
goto free;
}
multicast = is_multicast_ether_addr(hdr.addr1);
/* sta is always NULL for mesh */
if (sta) {
authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED);
wme_sta = sta->sta.wme;
} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
/* For mesh, the use of the QoS header is mandatory */
wme_sta = true;
}
/* receiver does QoS (which also means we do) use it */
if (wme_sta) {
fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
hdrlen += 2;
}
/*
* Drop unicast frames to unauthorised stations unless they are
* EAPOL frames from the local station.
*/
if (unlikely(!ieee80211_vif_is_mesh(&sdata->vif) &&
(sdata->vif.type != NL80211_IFTYPE_OCB) &&
!multicast && !authorized &&
(cpu_to_be16(ethertype) != sdata->control_port_protocol ||
!ether_addr_equal(sdata->vif.addr, skb->data + ETH_ALEN)))) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
net_info_ratelimited("%s: dropped frame to %pM (unauthorized port)\n",
sdata->name, hdr.addr1);
#endif
I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
ret = -EPERM;
goto free;
}
if (unlikely(!multicast && skb->sk &&
skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS)) {
struct sk_buff *ack_skb = skb_clone_sk(skb);
if (ack_skb) {
unsigned long flags;
int id;
spin_lock_irqsave(&local->ack_status_lock, flags);
id = idr_alloc(&local->ack_status_frames, ack_skb,
1, 0x10000, GFP_ATOMIC);
spin_unlock_irqrestore(&local->ack_status_lock, flags);
if (id >= 0) {
info_id = id;
info_flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
} else {
kfree_skb(ack_skb);
}
}
}
/*
* If the skb is shared we need to obtain our own copy.
*/
if (skb_shared(skb)) {
struct sk_buff *tmp_skb = skb;
/* can't happen -- skb is a clone if info_id != 0 */
WARN_ON(info_id);
skb = skb_clone(skb, GFP_ATOMIC);
kfree_skb(tmp_skb);
if (!skb) {
ret = -ENOMEM;
goto free;
}
}
hdr.frame_control = fc;
hdr.duration_id = 0;
hdr.seq_ctrl = 0;
skip_header_bytes = ETH_HLEN;
if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
encaps_data = bridge_tunnel_header;
encaps_len = sizeof(bridge_tunnel_header);
skip_header_bytes -= 2;
} else if (ethertype >= ETH_P_802_3_MIN) {
encaps_data = rfc1042_header;
encaps_len = sizeof(rfc1042_header);
skip_header_bytes -= 2;
} else {
encaps_data = NULL;
encaps_len = 0;
}
skb_pull(skb, skip_header_bytes);
head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
/*
* So we need to modify the skb header and hence need a copy of
* that. The head_need variable above doesn't, so far, include
* the needed header space that we don't need right away. If we
* can, then we don't reallocate right now but only after the
* frame arrives at the master device (if it does...)
*
* If we cannot, however, then we will reallocate to include all
* the ever needed space. Also, if we need to reallocate it anyway,
* make it big enough for everything we may ever need.
*/
if (head_need > 0 || skb_cloned(skb)) {
head_need += sdata->encrypt_headroom;
head_need += local->tx_headroom;
head_need = max_t(int, 0, head_need);
if (ieee80211_skb_resize(sdata, skb, head_need, true)) {
ieee80211_free_txskb(&local->hw, skb);
skb = NULL;
return ERR_PTR(-ENOMEM);
}
}
if (encaps_data)
memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
#ifdef CONFIG_MAC80211_MESH
if (meshhdrlen > 0)
memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
#endif
if (ieee80211_is_data_qos(fc)) {
__le16 *qos_control;
qos_control = skb_push(skb, 2);
memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
/*
* Maybe we could actually set some fields here, for now just
* initialise to zero to indicate no special operation.
*/
*qos_control = 0;
} else
memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
skb_reset_mac_header(skb);
info = IEEE80211_SKB_CB(skb);
memset(info, 0, sizeof(*info));
info->flags = info_flags;
info->ack_frame_id = info_id;
info->band = band;
return skb;
free:
kfree_skb(skb);
return ERR_PTR(ret);
}
/*
* fast-xmit overview
*
* The core idea of this fast-xmit is to remove per-packet checks by checking
* them out of band. ieee80211_check_fast_xmit() implements the out-of-band
* checks that are needed to get the sta->fast_tx pointer assigned, after which
* much less work can be done per packet. For example, fragmentation must be
* disabled or the fast_tx pointer will not be set. All the conditions are seen
* in the code here.
*
* Once assigned, the fast_tx data structure also caches the per-packet 802.11
* header and other data to aid packet processing in ieee80211_xmit_fast().
*
* The most difficult part of this is that when any of these assumptions
* change, an external trigger (i.e. a call to ieee80211_clear_fast_xmit(),
* ieee80211_check_fast_xmit() or friends) is required to reset the data,
* since the per-packet code no longer checks the conditions. This is reflected
* by the calls to these functions throughout the rest of the code, and must be
* maintained if any of the TX path checks change.
*/
void ieee80211_check_fast_xmit(struct sta_info *sta)
{
struct ieee80211_fast_tx build = {}, *fast_tx = NULL, *old;
struct ieee80211_local *local = sta->local;
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct ieee80211_hdr *hdr = (void *)build.hdr;
struct ieee80211_chanctx_conf *chanctx_conf;
__le16 fc;
if (!ieee80211_hw_check(&local->hw, SUPPORT_FAST_XMIT))
return;
/* Locking here protects both the pointer itself, and against concurrent
* invocations winning data access races to, e.g., the key pointer that
* is used.
* Without it, the invocation of this function right after the key
* pointer changes wouldn't be sufficient, as another CPU could access
* the pointer, then stall, and then do the cache update after the CPU
* that invalidated the key.
* With the locking, such scenarios cannot happen as the check for the
* key and the fast-tx assignment are done atomically, so the CPU that
* modifies the key will either wait or other one will see the key
* cleared/changed already.
*/
spin_lock_bh(&sta->lock);
if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
sdata->vif.type == NL80211_IFTYPE_STATION)
goto out;
if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
goto out;
if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
test_sta_flag(sta, WLAN_STA_PS_DELIVER) ||
test_sta_flag(sta, WLAN_STA_CLEAR_PS_FILT))
goto out;
if (sdata->noack_map)
goto out;
/* fast-xmit doesn't handle fragmentation at all */
if (local->hw.wiphy->frag_threshold != (u32)-1 &&
!ieee80211_hw_check(&local->hw, SUPPORTS_TX_FRAG))
goto out;
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (!chanctx_conf) {
rcu_read_unlock();
goto out;
}
build.band = chanctx_conf->def.chan->band;
rcu_read_unlock();
fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
switch (sdata->vif.type) {
case NL80211_IFTYPE_ADHOC:
/* DA SA BSSID */
build.da_offs = offsetof(struct ieee80211_hdr, addr1);
build.sa_offs = offsetof(struct ieee80211_hdr, addr2);
memcpy(hdr->addr3, sdata->u.ibss.bssid, ETH_ALEN);
build.hdr_len = 24;
break;
case NL80211_IFTYPE_STATION:
if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) {
/* DA SA BSSID */
build.da_offs = offsetof(struct ieee80211_hdr, addr1);
build.sa_offs = offsetof(struct ieee80211_hdr, addr2);
memcpy(hdr->addr3, sdata->u.mgd.bssid, ETH_ALEN);
build.hdr_len = 24;
break;
}
if (sdata->u.mgd.use_4addr) {
/* non-regular ethertype cannot use the fastpath */
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS |
IEEE80211_FCTL_TODS);
/* RA TA DA SA */
memcpy(hdr->addr1, sdata->u.mgd.bssid, ETH_ALEN);
memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN);
build.da_offs = offsetof(struct ieee80211_hdr, addr3);
build.sa_offs = offsetof(struct ieee80211_hdr, addr4);
build.hdr_len = 30;
break;
}
fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
/* BSSID SA DA */
memcpy(hdr->addr1, sdata->u.mgd.bssid, ETH_ALEN);
build.da_offs = offsetof(struct ieee80211_hdr, addr3);
build.sa_offs = offsetof(struct ieee80211_hdr, addr2);
build.hdr_len = 24;
break;
case NL80211_IFTYPE_AP_VLAN:
if (sdata->wdev.use_4addr) {
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS |
IEEE80211_FCTL_TODS);
/* RA TA DA SA */
memcpy(hdr->addr1, sta->sta.addr, ETH_ALEN);
memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN);
build.da_offs = offsetof(struct ieee80211_hdr, addr3);
build.sa_offs = offsetof(struct ieee80211_hdr, addr4);
build.hdr_len = 30;
break;
}
/* fall through */
case NL80211_IFTYPE_AP:
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
/* DA BSSID SA */
build.da_offs = offsetof(struct ieee80211_hdr, addr1);
memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN);
build.sa_offs = offsetof(struct ieee80211_hdr, addr3);
build.hdr_len = 24;
break;
default:
/* not handled on fast-xmit */
goto out;
}
if (sta->sta.wme) {
build.hdr_len += 2;
fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
}
/* We store the key here so there's no point in using rcu_dereference()
* but that's fine because the code that changes the pointers will call
* this function after doing so. For a single CPU that would be enough,
* for multiple see the comment above.
*/
build.key = rcu_access_pointer(sta->ptk[sta->ptk_idx]);
if (!build.key)
build.key = rcu_access_pointer(sdata->default_unicast_key);
if (build.key) {
bool gen_iv, iv_spc, mmic;
gen_iv = build.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV;
iv_spc = build.key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE;
mmic = build.key->conf.flags &
(IEEE80211_KEY_FLAG_GENERATE_MMIC |
IEEE80211_KEY_FLAG_PUT_MIC_SPACE);
/* don't handle software crypto */
if (!(build.key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
goto out;
switch (build.key->conf.cipher) {
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
/* add fixed key ID */
if (gen_iv) {
(build.hdr + build.hdr_len)[3] =
0x20 | (build.key->conf.keyidx << 6);
build.pn_offs = build.hdr_len;
}
if (gen_iv || iv_spc)
build.hdr_len += IEEE80211_CCMP_HDR_LEN;
break;
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
/* add fixed key ID */
if (gen_iv) {
(build.hdr + build.hdr_len)[3] =
0x20 | (build.key->conf.keyidx << 6);
build.pn_offs = build.hdr_len;
}
if (gen_iv || iv_spc)
build.hdr_len += IEEE80211_GCMP_HDR_LEN;
break;
case WLAN_CIPHER_SUITE_TKIP:
/* cannot handle MMIC or IV generation in xmit-fast */
if (mmic || gen_iv)
goto out;
if (iv_spc)
build.hdr_len += IEEE80211_TKIP_IV_LEN;
break;
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
/* cannot handle IV generation in fast-xmit */
if (gen_iv)
goto out;
if (iv_spc)
build.hdr_len += IEEE80211_WEP_IV_LEN;
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
WARN(1,
"management cipher suite 0x%x enabled for data\n",
build.key->conf.cipher);
goto out;
default:
/* we don't know how to generate IVs for this at all */
if (WARN_ON(gen_iv))
goto out;
/* pure hardware keys are OK, of course */
if (!(build.key->flags & KEY_FLAG_CIPHER_SCHEME))
break;
/* cipher scheme might require space allocation */
if (iv_spc &&
build.key->conf.iv_len > IEEE80211_FAST_XMIT_MAX_IV)
goto out;
if (iv_spc)
build.hdr_len += build.key->conf.iv_len;
}
fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
}
hdr->frame_control = fc;
memcpy(build.hdr + build.hdr_len,
rfc1042_header, sizeof(rfc1042_header));
build.hdr_len += sizeof(rfc1042_header);
fast_tx = kmemdup(&build, sizeof(build), GFP_ATOMIC);
/* if the kmemdup fails, continue w/o fast_tx */
if (!fast_tx)
goto out;
out:
/* we might have raced against another call to this function */
old = rcu_dereference_protected(sta->fast_tx,
lockdep_is_held(&sta->lock));
rcu_assign_pointer(sta->fast_tx, fast_tx);
if (old)
kfree_rcu(old, rcu_head);
spin_unlock_bh(&sta->lock);
}
void ieee80211_check_fast_xmit_all(struct ieee80211_local *local)
{
struct sta_info *sta;
rcu_read_lock();
list_for_each_entry_rcu(sta, &local->sta_list, list)
ieee80211_check_fast_xmit(sta);
rcu_read_unlock();
}
void ieee80211_check_fast_xmit_iface(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
rcu_read_lock();
list_for_each_entry_rcu(sta, &local->sta_list, list) {
if (sdata != sta->sdata &&
(!sta->sdata->bss || sta->sdata->bss != sdata->bss))
continue;
ieee80211_check_fast_xmit(sta);
}
rcu_read_unlock();
}
void ieee80211_clear_fast_xmit(struct sta_info *sta)
{
struct ieee80211_fast_tx *fast_tx;
spin_lock_bh(&sta->lock);
fast_tx = rcu_dereference_protected(sta->fast_tx,
lockdep_is_held(&sta->lock));
RCU_INIT_POINTER(sta->fast_tx, NULL);
spin_unlock_bh(&sta->lock);
if (fast_tx)
kfree_rcu(fast_tx, rcu_head);
}
static bool ieee80211_amsdu_realloc_pad(struct ieee80211_local *local,
struct sk_buff *skb, int headroom)
{
if (skb_headroom(skb) < headroom) {
I802_DEBUG_INC(local->tx_expand_skb_head);
if (pskb_expand_head(skb, headroom, 0, GFP_ATOMIC)) {
wiphy_debug(local->hw.wiphy,
"failed to reallocate TX buffer\n");
return false;
}
}
return true;
}
static bool ieee80211_amsdu_prepare_head(struct ieee80211_sub_if_data *sdata,
struct ieee80211_fast_tx *fast_tx,
struct sk_buff *skb)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr;
struct ethhdr *amsdu_hdr;
int hdr_len = fast_tx->hdr_len - sizeof(rfc1042_header);
int subframe_len = skb->len - hdr_len;
void *data;
u8 *qc, *h_80211_src, *h_80211_dst;
const u8 *bssid;
if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
return false;
if (info->control.flags & IEEE80211_TX_CTRL_AMSDU)
return true;
if (!ieee80211_amsdu_realloc_pad(local, skb, sizeof(*amsdu_hdr)))
return false;
data = skb_push(skb, sizeof(*amsdu_hdr));
memmove(data, data + sizeof(*amsdu_hdr), hdr_len);
hdr = data;
amsdu_hdr = data + hdr_len;
/* h_80211_src/dst is addr* field within hdr */
h_80211_src = data + fast_tx->sa_offs;
h_80211_dst = data + fast_tx->da_offs;
amsdu_hdr->h_proto = cpu_to_be16(subframe_len);
ether_addr_copy(amsdu_hdr->h_source, h_80211_src);
ether_addr_copy(amsdu_hdr->h_dest, h_80211_dst);
/* according to IEEE 802.11-2012 8.3.2 table 8-19, the outer SA/DA
* fields needs to be changed to BSSID for A-MSDU frames depending
* on FromDS/ToDS values.
*/
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
bssid = sdata->u.mgd.bssid;
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
bssid = sdata->vif.addr;
break;
default:
bssid = NULL;
}
if (bssid && ieee80211_has_fromds(hdr->frame_control))
ether_addr_copy(h_80211_src, bssid);
if (bssid && ieee80211_has_tods(hdr->frame_control))
ether_addr_copy(h_80211_dst, bssid);
qc = ieee80211_get_qos_ctl(hdr);
*qc |= IEEE80211_QOS_CTL_A_MSDU_PRESENT;
info->control.flags |= IEEE80211_TX_CTRL_AMSDU;
return true;
}
static bool ieee80211_amsdu_aggregate(struct ieee80211_sub_if_data *sdata,
struct sta_info *sta,
struct ieee80211_fast_tx *fast_tx,
struct sk_buff *skb)
{
struct ieee80211_local *local = sdata->local;
struct fq *fq = &local->fq;
struct fq_tin *tin;
struct fq_flow *flow;
u8 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK;
struct ieee80211_txq *txq = sta->sta.txq[tid];
struct txq_info *txqi;
struct sk_buff **frag_tail, *head;
int subframe_len = skb->len - ETH_ALEN;
u8 max_subframes = sta->sta.max_amsdu_subframes;
int max_frags = local->hw.max_tx_fragments;
int max_amsdu_len = sta->sta.max_amsdu_len;
__be16 len;
void *data;
bool ret = false;
unsigned int orig_len;
int n = 2, nfrags, pad = 0;
u16 hdrlen;
if (!ieee80211_hw_check(&local->hw, TX_AMSDU))
return false;
if (!txq)
return false;
txqi = to_txq_info(txq);
if (test_bit(IEEE80211_TXQ_NO_AMSDU, &txqi->flags))
return false;
if (sta->sta.max_rc_amsdu_len)
max_amsdu_len = min_t(int, max_amsdu_len,
sta->sta.max_rc_amsdu_len);
spin_lock_bh(&fq->lock);
/* TODO: Ideally aggregation should be done on dequeue to remain
* responsive to environment changes.
*/
tin = &txqi->tin;
flow = fq_flow_classify(fq, tin, skb, fq_flow_get_default_func);
head = skb_peek_tail(&flow->queue);
if (!head)
goto out;
orig_len = head->len;
if (skb->len + head->len > max_amsdu_len)
goto out;
nfrags = 1 + skb_shinfo(skb)->nr_frags;
nfrags += 1 + skb_shinfo(head)->nr_frags;
frag_tail = &skb_shinfo(head)->frag_list;
while (*frag_tail) {
nfrags += 1 + skb_shinfo(*frag_tail)->nr_frags;
frag_tail = &(*frag_tail)->next;
n++;
}
if (max_subframes && n > max_subframes)
goto out;
if (max_frags && nfrags > max_frags)
goto out;
if (!ieee80211_amsdu_prepare_head(sdata, fast_tx, head))
goto out;
/*
* Pad out the previous subframe to a multiple of 4 by adding the
* padding to the next one, that's being added. Note that head->len
* is the length of the full A-MSDU, but that works since each time
* we add a new subframe we pad out the previous one to a multiple
* of 4 and thus it no longer matters in the next round.
*/
hdrlen = fast_tx->hdr_len - sizeof(rfc1042_header);
if ((head->len - hdrlen) & 3)
pad = 4 - ((head->len - hdrlen) & 3);
if (!ieee80211_amsdu_realloc_pad(local, skb, sizeof(rfc1042_header) +
2 + pad))
goto out_recalc;
ret = true;
data = skb_push(skb, ETH_ALEN + 2);
memmove(data, data + ETH_ALEN + 2, 2 * ETH_ALEN);
data += 2 * ETH_ALEN;
len = cpu_to_be16(subframe_len);
memcpy(data, &len, 2);
memcpy(data + 2, rfc1042_header, sizeof(rfc1042_header));
memset(skb_push(skb, pad), 0, pad);
head->len += skb->len;
head->data_len += skb->len;
*frag_tail = skb;
out_recalc:
if (head->len != orig_len) {
flow->backlog += head->len - orig_len;
tin->backlog_bytes += head->len - orig_len;
fq_recalc_backlog(fq, tin, flow);
}
out:
spin_unlock_bh(&fq->lock);
return ret;
}
/*
* Can be called while the sta lock is held. Anything that can cause packets to
* be generated will cause deadlock!
*/
static void ieee80211_xmit_fast_finish(struct ieee80211_sub_if_data *sdata,
struct sta_info *sta, u8 pn_offs,
struct ieee80211_key *key,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (void *)skb->data;
u8 tid = IEEE80211_NUM_TIDS;
if (key)
info->control.hw_key = &key->conf;
ieee80211_tx_stats(skb->dev, skb->len);
if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) {
tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK;
hdr->seq_ctrl = ieee80211_tx_next_seq(sta, tid);
} else {
info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
hdr->seq_ctrl = cpu_to_le16(sdata->sequence_number);
sdata->sequence_number += 0x10;
}
if (skb_shinfo(skb)->gso_size)
sta->tx_stats.msdu[tid] +=
DIV_ROUND_UP(skb->len, skb_shinfo(skb)->gso_size);
else
sta->tx_stats.msdu[tid]++;
info->hw_queue = sdata->vif.hw_queue[skb_get_queue_mapping(skb)];
/* statistics normally done by ieee80211_tx_h_stats (but that
* has to consider fragmentation, so is more complex)
*/
sta->tx_stats.bytes[skb_get_queue_mapping(skb)] += skb->len;
sta->tx_stats.packets[skb_get_queue_mapping(skb)]++;
if (pn_offs) {
u64 pn;
u8 *crypto_hdr = skb->data + pn_offs;
switch (key->conf.cipher) {
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
pn = atomic64_inc_return(&key->conf.tx_pn);
crypto_hdr[0] = pn;
crypto_hdr[1] = pn >> 8;
crypto_hdr[4] = pn >> 16;
crypto_hdr[5] = pn >> 24;
crypto_hdr[6] = pn >> 32;
crypto_hdr[7] = pn >> 40;
break;
}
}
}
static bool ieee80211_xmit_fast(struct ieee80211_sub_if_data *sdata,
struct sta_info *sta,
struct ieee80211_fast_tx *fast_tx,
struct sk_buff *skb)
{
struct ieee80211_local *local = sdata->local;
u16 ethertype = (skb->data[12] << 8) | skb->data[13];
int extra_head = fast_tx->hdr_len - (ETH_HLEN - 2);
int hw_headroom = sdata->local->hw.extra_tx_headroom;
struct ethhdr eth;
struct ieee80211_tx_info *info;
struct ieee80211_hdr *hdr = (void *)fast_tx->hdr;
struct ieee80211_tx_data tx;
ieee80211_tx_result r;
struct tid_ampdu_tx *tid_tx = NULL;
u8 tid = IEEE80211_NUM_TIDS;
/* control port protocol needs a lot of special handling */
if (cpu_to_be16(ethertype) == sdata->control_port_protocol)
return false;
/* only RFC 1042 SNAP */
if (ethertype < ETH_P_802_3_MIN)
return false;
/* don't handle TX status request here either */
if (skb->sk && skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS)
return false;
if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) {
tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK;
tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]);
if (tid_tx) {
if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state))
return false;
if (tid_tx->timeout)
tid_tx->last_tx = jiffies;
}
}
/* after this point (skb is modified) we cannot return false */
if (skb_shared(skb)) {
struct sk_buff *tmp_skb = skb;
skb = skb_clone(skb, GFP_ATOMIC);
kfree_skb(tmp_skb);
if (!skb)
return true;
}
if ((hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) &&
ieee80211_amsdu_aggregate(sdata, sta, fast_tx, skb))
return true;
/* will not be crypto-handled beyond what we do here, so use false
* as the may-encrypt argument for the resize to not account for
* more room than we already have in 'extra_head'
*/
if (unlikely(ieee80211_skb_resize(sdata, skb,
max_t(int, extra_head + hw_headroom -
skb_headroom(skb), 0),
false))) {
kfree_skb(skb);
return true;
}
memcpy(&eth, skb->data, ETH_HLEN - 2);
hdr = skb_push(skb, extra_head);
memcpy(skb->data, fast_tx->hdr, fast_tx->hdr_len);
memcpy(skb->data + fast_tx->da_offs, eth.h_dest, ETH_ALEN);
memcpy(skb->data + fast_tx->sa_offs, eth.h_source, ETH_ALEN);
info = IEEE80211_SKB_CB(skb);
memset(info, 0, sizeof(*info));
info->band = fast_tx->band;
info->control.vif = &sdata->vif;
info->flags = IEEE80211_TX_CTL_FIRST_FRAGMENT |
IEEE80211_TX_CTL_DONTFRAG |
(tid_tx ? IEEE80211_TX_CTL_AMPDU : 0);
info->control.flags = IEEE80211_TX_CTRL_FAST_XMIT;
if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) {
tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK;
*ieee80211_get_qos_ctl(hdr) = tid;
}
__skb_queue_head_init(&tx.skbs);
tx.flags = IEEE80211_TX_UNICAST;
tx.local = local;
tx.sdata = sdata;
tx.sta = sta;
tx.key = fast_tx->key;
if (!ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) {
tx.skb = skb;
r = ieee80211_tx_h_rate_ctrl(&tx);
skb = tx.skb;
tx.skb = NULL;
if (r != TX_CONTINUE) {
if (r != TX_QUEUED)
kfree_skb(skb);
return true;
}
}
if (ieee80211_queue_skb(local, sdata, sta, skb))
return true;
ieee80211_xmit_fast_finish(sdata, sta, fast_tx->pn_offs,
fast_tx->key, skb);
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
sdata = container_of(sdata->bss,
struct ieee80211_sub_if_data, u.ap);
__skb_queue_tail(&tx.skbs, skb);
ieee80211_tx_frags(local, &sdata->vif, &sta->sta, &tx.skbs, false);
return true;
}
struct sk_buff *ieee80211_tx_dequeue(struct ieee80211_hw *hw,
struct ieee80211_txq *txq)
{
struct ieee80211_local *local = hw_to_local(hw);
struct txq_info *txqi = container_of(txq, struct txq_info, txq);
struct ieee80211_hdr *hdr;
struct sk_buff *skb = NULL;
struct fq *fq = &local->fq;
struct fq_tin *tin = &txqi->tin;
struct ieee80211_tx_info *info;
struct ieee80211_tx_data tx;
ieee80211_tx_result r;
struct ieee80211_vif *vif;
spin_lock_bh(&fq->lock);
if (test_bit(IEEE80211_TXQ_STOP, &txqi->flags))
goto out;
/* Make sure fragments stay together. */
skb = __skb_dequeue(&txqi->frags);
if (skb)
goto out;
begin:
skb = fq_tin_dequeue(fq, tin, fq_tin_dequeue_func);
if (!skb)
goto out;
hdr = (struct ieee80211_hdr *)skb->data;
info = IEEE80211_SKB_CB(skb);
memset(&tx, 0, sizeof(tx));
__skb_queue_head_init(&tx.skbs);
tx.local = local;
tx.skb = skb;
tx.sdata = vif_to_sdata(info->control.vif);
if (txq->sta)
tx.sta = container_of(txq->sta, struct sta_info, sta);
/*
* The key can be removed while the packet was queued, so need to call
* this here to get the current key.
*/
r = ieee80211_tx_h_select_key(&tx);
if (r != TX_CONTINUE) {
ieee80211_free_txskb(&local->hw, skb);
goto begin;
}
if (test_bit(IEEE80211_TXQ_AMPDU, &txqi->flags))
info->flags |= IEEE80211_TX_CTL_AMPDU;
else
info->flags &= ~IEEE80211_TX_CTL_AMPDU;
if (info->control.flags & IEEE80211_TX_CTRL_FAST_XMIT) {
struct sta_info *sta = container_of(txq->sta, struct sta_info,
sta);
u8 pn_offs = 0;
if (tx.key &&
(tx.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV))
pn_offs = ieee80211_hdrlen(hdr->frame_control);
ieee80211_xmit_fast_finish(sta->sdata, sta, pn_offs,
tx.key, skb);
} else {
if (invoke_tx_handlers_late(&tx))
goto begin;
skb = __skb_dequeue(&tx.skbs);
if (!skb_queue_empty(&tx.skbs))
skb_queue_splice_tail(&tx.skbs, &txqi->frags);
}
if (skb && skb_has_frag_list(skb) &&
!ieee80211_hw_check(&local->hw, TX_FRAG_LIST)) {
if (skb_linearize(skb)) {
ieee80211_free_txskb(&local->hw, skb);
goto begin;
}
}
switch (tx.sdata->vif.type) {
case NL80211_IFTYPE_MONITOR:
if (tx.sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) {
vif = &tx.sdata->vif;
break;
}
tx.sdata = rcu_dereference(local->monitor_sdata);
if (tx.sdata) {
vif = &tx.sdata->vif;
info->hw_queue =
vif->hw_queue[skb_get_queue_mapping(skb)];
} else if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) {
ieee80211_free_txskb(&local->hw, skb);
goto begin;
} else {
vif = NULL;
}
break;
case NL80211_IFTYPE_AP_VLAN:
tx.sdata = container_of(tx.sdata->bss,
struct ieee80211_sub_if_data, u.ap);
/* fall through */
default:
vif = &tx.sdata->vif;
break;
}
IEEE80211_SKB_CB(skb)->control.vif = vif;
out:
spin_unlock_bh(&fq->lock);
return skb;
}
EXPORT_SYMBOL(ieee80211_tx_dequeue);
void __ieee80211_subif_start_xmit(struct sk_buff *skb,
struct net_device *dev,
u32 info_flags)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct sta_info *sta;
struct sk_buff *next;
if (unlikely(skb->len < ETH_HLEN)) {
kfree_skb(skb);
return;
}
rcu_read_lock();
if (ieee80211_lookup_ra_sta(sdata, skb, &sta))
goto out_free;
if (!IS_ERR_OR_NULL(sta)) {
struct ieee80211_fast_tx *fast_tx;
/* We need a bit of data queued to build aggregates properly, so
* instruct the TCP stack to allow more than a single ms of data
* to be queued in the stack. The value is a bit-shift of 1
* second, so 7 is ~8ms of queued data. Only affects local TCP
* sockets.
*/
sk_pacing_shift_update(skb->sk, 7);
fast_tx = rcu_dereference(sta->fast_tx);
if (fast_tx &&
ieee80211_xmit_fast(sdata, sta, fast_tx, skb))
goto out;
}
if (skb_is_gso(skb)) {
struct sk_buff *segs;
segs = skb_gso_segment(skb, 0);
if (IS_ERR(segs)) {
goto out_free;
} else if (segs) {
consume_skb(skb);
skb = segs;
}
} else {
/* we cannot process non-linear frames on this path */
if (skb_linearize(skb)) {
kfree_skb(skb);
goto out;
}
/* the frame could be fragmented, software-encrypted, and other
* things so we cannot really handle checksum offload with it -
* fix it up in software before we handle anything else.
*/
if (skb->ip_summed == CHECKSUM_PARTIAL) {
skb_set_transport_header(skb,
skb_checksum_start_offset(skb));
if (skb_checksum_help(skb))
goto out_free;
}
}
next = skb;
while (next) {
skb = next;
next = skb->next;
skb->prev = NULL;
skb->next = NULL;
skb = ieee80211_build_hdr(sdata, skb, info_flags, sta);
if (IS_ERR(skb))
goto out;
ieee80211_tx_stats(dev, skb->len);
ieee80211_xmit(sdata, sta, skb, 0);
}
goto out;
out_free:
kfree_skb(skb);
out:
rcu_read_unlock();
}
static int ieee80211_change_da(struct sk_buff *skb, struct sta_info *sta)
{
struct ethhdr *eth;
int err;
err = skb_ensure_writable(skb, ETH_HLEN);
if (unlikely(err))
return err;
eth = (void *)skb->data;
ether_addr_copy(eth->h_dest, sta->sta.addr);
return 0;
}
static bool ieee80211_multicast_to_unicast(struct sk_buff *skb,
struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
const struct ethhdr *eth = (void *)skb->data;
const struct vlan_ethhdr *ethvlan = (void *)skb->data;
__be16 ethertype;
if (likely(!is_multicast_ether_addr(eth->h_dest)))
return false;
switch (sdata->vif.type) {
case NL80211_IFTYPE_AP_VLAN:
if (sdata->u.vlan.sta)
return false;
if (sdata->wdev.use_4addr)
return false;
/* fall through */
case NL80211_IFTYPE_AP:
/* check runtime toggle for this bss */
if (!sdata->bss->multicast_to_unicast)
return false;
break;
default:
return false;
}
/* multicast to unicast conversion only for some payload */
ethertype = eth->h_proto;
if (ethertype == htons(ETH_P_8021Q) && skb->len >= VLAN_ETH_HLEN)
ethertype = ethvlan->h_vlan_encapsulated_proto;
switch (ethertype) {
case htons(ETH_P_ARP):
case htons(ETH_P_IP):
case htons(ETH_P_IPV6):
break;
default:
return false;
}
return true;
}
static void
ieee80211_convert_to_unicast(struct sk_buff *skb, struct net_device *dev,
struct sk_buff_head *queue)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
const struct ethhdr *eth = (struct ethhdr *)skb->data;
struct sta_info *sta, *first = NULL;
struct sk_buff *cloned_skb;
rcu_read_lock();
list_for_each_entry_rcu(sta, &local->sta_list, list) {
if (sdata != sta->sdata)
/* AP-VLAN mismatch */
continue;
if (unlikely(ether_addr_equal(eth->h_source, sta->sta.addr)))
/* do not send back to source */
continue;
if (!first) {
first = sta;
continue;
}
cloned_skb = skb_clone(skb, GFP_ATOMIC);
if (!cloned_skb)
goto multicast;
if (unlikely(ieee80211_change_da(cloned_skb, sta))) {
dev_kfree_skb(cloned_skb);
goto multicast;
}
__skb_queue_tail(queue, cloned_skb);
}
if (likely(first)) {
if (unlikely(ieee80211_change_da(skb, first)))
goto multicast;
__skb_queue_tail(queue, skb);
} else {
/* no STA connected, drop */
kfree_skb(skb);
skb = NULL;
}
goto out;
multicast:
__skb_queue_purge(queue);
__skb_queue_tail(queue, skb);
out:
rcu_read_unlock();
}
/**
* ieee80211_subif_start_xmit - netif start_xmit function for 802.3 vifs
* @skb: packet to be sent
* @dev: incoming interface
*
* On failure skb will be freed.
*/
netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
if (unlikely(ieee80211_multicast_to_unicast(skb, dev))) {
struct sk_buff_head queue;
__skb_queue_head_init(&queue);
ieee80211_convert_to_unicast(skb, dev, &queue);
while ((skb = __skb_dequeue(&queue)))
__ieee80211_subif_start_xmit(skb, dev, 0);
} else {
__ieee80211_subif_start_xmit(skb, dev, 0);
}
return NETDEV_TX_OK;
}
struct sk_buff *
ieee80211_build_data_template(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb, u32 info_flags)
{
struct ieee80211_hdr *hdr;
struct ieee80211_tx_data tx = {
.local = sdata->local,
.sdata = sdata,
};
struct sta_info *sta;
rcu_read_lock();
if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) {
kfree_skb(skb);
skb = ERR_PTR(-EINVAL);
goto out;
}
skb = ieee80211_build_hdr(sdata, skb, info_flags, sta);
if (IS_ERR(skb))
goto out;
hdr = (void *)skb->data;
tx.sta = sta_info_get(sdata, hdr->addr1);
tx.skb = skb;
if (ieee80211_tx_h_select_key(&tx) != TX_CONTINUE) {
rcu_read_unlock();
kfree_skb(skb);
return ERR_PTR(-EINVAL);
}
out:
rcu_read_unlock();
return skb;
}
/*
* ieee80211_clear_tx_pending may not be called in a context where
* it is possible that it packets could come in again.
*/
void ieee80211_clear_tx_pending(struct ieee80211_local *local)
{
struct sk_buff *skb;
int i;
for (i = 0; i < local->hw.queues; i++) {
while ((skb = skb_dequeue(&local->pending[i])) != NULL)
ieee80211_free_txskb(&local->hw, skb);
}
}
/*
* Returns false if the frame couldn't be transmitted but was queued instead,
* which in this case means re-queued -- take as an indication to stop sending
* more pending frames.
*/
static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_sub_if_data *sdata;
struct sta_info *sta;
struct ieee80211_hdr *hdr;
bool result;
struct ieee80211_chanctx_conf *chanctx_conf;
sdata = vif_to_sdata(info->control.vif);
if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (unlikely(!chanctx_conf)) {
dev_kfree_skb(skb);
return true;
}
info->band = chanctx_conf->def.chan->band;
result = ieee80211_tx(sdata, NULL, skb, true, 0);
} else {
struct sk_buff_head skbs;
__skb_queue_head_init(&skbs);
__skb_queue_tail(&skbs, skb);
hdr = (struct ieee80211_hdr *)skb->data;
sta = sta_info_get(sdata, hdr->addr1);
result = __ieee80211_tx(local, &skbs, skb->len, sta, true);
}
return result;
}
/*
* Transmit all pending packets. Called from tasklet.
*/
void ieee80211_tx_pending(unsigned long data)
{
struct ieee80211_local *local = (struct ieee80211_local *)data;
unsigned long flags;
int i;
bool txok;
rcu_read_lock();
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
for (i = 0; i < local->hw.queues; i++) {
/*
* If queue is stopped by something other than due to pending
* frames, or we have no pending frames, proceed to next queue.
*/
if (local->queue_stop_reasons[i] ||
skb_queue_empty(&local->pending[i]))
continue;
while (!skb_queue_empty(&local->pending[i])) {
struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
if (WARN_ON(!info->control.vif)) {
ieee80211_free_txskb(&local->hw, skb);
continue;
}
spin_unlock_irqrestore(&local->queue_stop_reason_lock,
flags);
txok = ieee80211_tx_pending_skb(local, skb);
spin_lock_irqsave(&local->queue_stop_reason_lock,
flags);
if (!txok)
break;
}
if (skb_queue_empty(&local->pending[i]))
ieee80211_propagate_queue_wake(local, i);
}
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
rcu_read_unlock();
}
/* functions for drivers to get certain frames */
static void __ieee80211_beacon_add_tim(struct ieee80211_sub_if_data *sdata,
struct ps_data *ps, struct sk_buff *skb,
bool is_template)
{
u8 *pos, *tim;
int aid0 = 0;
int i, have_bits = 0, n1, n2;
/* Generate bitmap for TIM only if there are any STAs in power save
* mode. */
if (atomic_read(&ps->num_sta_ps) > 0)
/* in the hope that this is faster than
* checking byte-for-byte */
have_bits = !bitmap_empty((unsigned long *)ps->tim,
IEEE80211_MAX_AID+1);
if (!is_template) {
if (ps->dtim_count == 0)
ps->dtim_count = sdata->vif.bss_conf.dtim_period - 1;
else
ps->dtim_count--;
}
tim = pos = skb_put(skb, 6);
*pos++ = WLAN_EID_TIM;
*pos++ = 4;
*pos++ = ps->dtim_count;
*pos++ = sdata->vif.bss_conf.dtim_period;
if (ps->dtim_count == 0 && !skb_queue_empty(&ps->bc_buf))
aid0 = 1;
ps->dtim_bc_mc = aid0 == 1;
if (have_bits) {
/* Find largest even number N1 so that bits numbered 1 through
* (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
* (N2 + 1) x 8 through 2007 are 0. */
n1 = 0;
for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
if (ps->tim[i]) {
n1 = i & 0xfe;
break;
}
}
n2 = n1;
for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
if (ps->tim[i]) {
n2 = i;
break;
}
}
/* Bitmap control */
*pos++ = n1 | aid0;
/* Part Virt Bitmap */
skb_put(skb, n2 - n1);
memcpy(pos, ps->tim + n1, n2 - n1 + 1);
tim[1] = n2 - n1 + 4;
} else {
*pos++ = aid0; /* Bitmap control */
*pos++ = 0; /* Part Virt Bitmap */
}
}
static int ieee80211_beacon_add_tim(struct ieee80211_sub_if_data *sdata,
struct ps_data *ps, struct sk_buff *skb,
bool is_template)
{
struct ieee80211_local *local = sdata->local;
/*
* Not very nice, but we want to allow the driver to call
* ieee80211_beacon_get() as a response to the set_tim()
* callback. That, however, is already invoked under the
* sta_lock to guarantee consistent and race-free update
* of the tim bitmap in mac80211 and the driver.
*/
if (local->tim_in_locked_section) {
__ieee80211_beacon_add_tim(sdata, ps, skb, is_template);
} else {
spin_lock_bh(&local->tim_lock);
__ieee80211_beacon_add_tim(sdata, ps, skb, is_template);
spin_unlock_bh(&local->tim_lock);
}
return 0;
}
static void ieee80211_set_csa(struct ieee80211_sub_if_data *sdata,
struct beacon_data *beacon)
{
struct probe_resp *resp;
u8 *beacon_data;
size_t beacon_data_len;
int i;
u8 count = beacon->csa_current_counter;
switch (sdata->vif.type) {
case NL80211_IFTYPE_AP:
beacon_data = beacon->tail;
beacon_data_len = beacon->tail_len;
break;
case NL80211_IFTYPE_ADHOC:
beacon_data = beacon->head;
beacon_data_len = beacon->head_len;
break;
case NL80211_IFTYPE_MESH_POINT:
beacon_data = beacon->head;
beacon_data_len = beacon->head_len;
break;
default:
return;
}
rcu_read_lock();
for (i = 0; i < IEEE80211_MAX_CSA_COUNTERS_NUM; ++i) {
resp = rcu_dereference(sdata->u.ap.probe_resp);
if (beacon->csa_counter_offsets[i]) {
if (WARN_ON_ONCE(beacon->csa_counter_offsets[i] >=
beacon_data_len)) {
rcu_read_unlock();
return;
}
beacon_data[beacon->csa_counter_offsets[i]] = count;
}
if (sdata->vif.type == NL80211_IFTYPE_AP && resp)
resp->data[resp->csa_counter_offsets[i]] = count;
}
rcu_read_unlock();
}
static u8 __ieee80211_csa_update_counter(struct beacon_data *beacon)
{
beacon->csa_current_counter--;
/* the counter should never reach 0 */
WARN_ON_ONCE(!beacon->csa_current_counter);
return beacon->csa_current_counter;
}
u8 ieee80211_csa_update_counter(struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
struct beacon_data *beacon = NULL;
u8 count = 0;
rcu_read_lock();
if (sdata->vif.type == NL80211_IFTYPE_AP)
beacon = rcu_dereference(sdata->u.ap.beacon);
else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
beacon = rcu_dereference(sdata->u.ibss.presp);
else if (ieee80211_vif_is_mesh(&sdata->vif))
beacon = rcu_dereference(sdata->u.mesh.beacon);
if (!beacon)
goto unlock;
count = __ieee80211_csa_update_counter(beacon);
unlock:
rcu_read_unlock();
return count;
}
EXPORT_SYMBOL(ieee80211_csa_update_counter);
void ieee80211_csa_set_counter(struct ieee80211_vif *vif, u8 counter)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
struct beacon_data *beacon = NULL;
rcu_read_lock();
if (sdata->vif.type == NL80211_IFTYPE_AP)
beacon = rcu_dereference(sdata->u.ap.beacon);
else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
beacon = rcu_dereference(sdata->u.ibss.presp);
else if (ieee80211_vif_is_mesh(&sdata->vif))
beacon = rcu_dereference(sdata->u.mesh.beacon);
if (!beacon)
goto unlock;
if (counter < beacon->csa_current_counter)
beacon->csa_current_counter = counter;
unlock:
rcu_read_unlock();
}
EXPORT_SYMBOL(ieee80211_csa_set_counter);
bool ieee80211_csa_is_complete(struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
struct beacon_data *beacon = NULL;
u8 *beacon_data;
size_t beacon_data_len;
int ret = false;
if (!ieee80211_sdata_running(sdata))
return false;
rcu_read_lock();
if (vif->type == NL80211_IFTYPE_AP) {
struct ieee80211_if_ap *ap = &sdata->u.ap;
beacon = rcu_dereference(ap->beacon);
if (WARN_ON(!beacon || !beacon->tail))
goto out;
beacon_data = beacon->tail;
beacon_data_len = beacon->tail_len;
} else if (vif->type == NL80211_IFTYPE_ADHOC) {
struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
beacon = rcu_dereference(ifibss->presp);
if (!beacon)
goto out;
beacon_data = beacon->head;
beacon_data_len = beacon->head_len;
} else if (vif->type == NL80211_IFTYPE_MESH_POINT) {
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
beacon = rcu_dereference(ifmsh->beacon);
if (!beacon)
goto out;
beacon_data = beacon->head;
beacon_data_len = beacon->head_len;
} else {
WARN_ON(1);
goto out;
}
if (!beacon->csa_counter_offsets[0])
goto out;
if (WARN_ON_ONCE(beacon->csa_counter_offsets[0] > beacon_data_len))
goto out;
if (beacon_data[beacon->csa_counter_offsets[0]] == 1)
ret = true;
out:
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL(ieee80211_csa_is_complete);
static struct sk_buff *
__ieee80211_beacon_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_mutable_offsets *offs,
bool is_template)
{
struct ieee80211_local *local = hw_to_local(hw);
struct beacon_data *beacon = NULL;
struct sk_buff *skb = NULL;
struct ieee80211_tx_info *info;
struct ieee80211_sub_if_data *sdata = NULL;
enum nl80211_band band;
struct ieee80211_tx_rate_control txrc;
struct ieee80211_chanctx_conf *chanctx_conf;
int csa_off_base = 0;
rcu_read_lock();
sdata = vif_to_sdata(vif);
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (!ieee80211_sdata_running(sdata) || !chanctx_conf)
goto out;
if (offs)
memset(offs, 0, sizeof(*offs));
if (sdata->vif.type == NL80211_IFTYPE_AP) {
struct ieee80211_if_ap *ap = &sdata->u.ap;
beacon = rcu_dereference(ap->beacon);
if (beacon) {
if (beacon->csa_counter_offsets[0]) {
if (!is_template)
__ieee80211_csa_update_counter(beacon);
ieee80211_set_csa(sdata, beacon);
}
/*
* headroom, head length,
* tail length and maximum TIM length
*/
skb = dev_alloc_skb(local->tx_headroom +
beacon->head_len +
beacon->tail_len + 256 +
local->hw.extra_beacon_tailroom);
if (!skb)
goto out;
skb_reserve(skb, local->tx_headroom);
skb_put_data(skb, beacon->head, beacon->head_len);
ieee80211_beacon_add_tim(sdata, &ap->ps, skb,
is_template);
if (offs) {
offs->tim_offset = beacon->head_len;
offs->tim_length = skb->len - beacon->head_len;
/* for AP the csa offsets are from tail */
csa_off_base = skb->len;
}
if (beacon->tail)
skb_put_data(skb, beacon->tail,
beacon->tail_len);
} else
goto out;
} else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
struct ieee80211_hdr *hdr;
beacon = rcu_dereference(ifibss->presp);
if (!beacon)
goto out;
if (beacon->csa_counter_offsets[0]) {
if (!is_template)
__ieee80211_csa_update_counter(beacon);
ieee80211_set_csa(sdata, beacon);
}
skb = dev_alloc_skb(local->tx_headroom + beacon->head_len +
local->hw.extra_beacon_tailroom);
if (!skb)
goto out;
skb_reserve(skb, local->tx_headroom);
skb_put_data(skb, beacon->head, beacon->head_len);
hdr = (struct ieee80211_hdr *) skb->data;
hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_BEACON);
} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
beacon = rcu_dereference(ifmsh->beacon);
if (!beacon)
goto out;
if (beacon->csa_counter_offsets[0]) {
if (!is_template)
/* TODO: For mesh csa_counter is in TU, so
* decrementing it by one isn't correct, but
* for now we leave it consistent with overall
* mac80211's behavior.
*/
__ieee80211_csa_update_counter(beacon);
ieee80211_set_csa(sdata, beacon);
}
if (ifmsh->sync_ops)
ifmsh->sync_ops->adjust_tsf(sdata, beacon);
skb = dev_alloc_skb(local->tx_headroom +
beacon->head_len +
256 + /* TIM IE */
beacon->tail_len +
local->hw.extra_beacon_tailroom);
if (!skb)
goto out;
skb_reserve(skb, local->tx_headroom);
skb_put_data(skb, beacon->head, beacon->head_len);
ieee80211_beacon_add_tim(sdata, &ifmsh->ps, skb, is_template);
if (offs) {
offs->tim_offset = beacon->head_len;
offs->tim_length = skb->len - beacon->head_len;
}
skb_put_data(skb, beacon->tail, beacon->tail_len);
} else {
WARN_ON(1);
goto out;
}
/* CSA offsets */
if (offs && beacon) {
int i;
for (i = 0; i < IEEE80211_MAX_CSA_COUNTERS_NUM; i++) {
u16 csa_off = beacon->csa_counter_offsets[i];
if (!csa_off)
continue;
offs->csa_counter_offs[i] = csa_off_base + csa_off;
}
}
band = chanctx_conf->def.chan->band;
info = IEEE80211_SKB_CB(skb);
info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
info->flags |= IEEE80211_TX_CTL_NO_ACK;
info->band = band;
memset(&txrc, 0, sizeof(txrc));
txrc.hw = hw;
txrc.sband = local->hw.wiphy->bands[band];
txrc.bss_conf = &sdata->vif.bss_conf;
txrc.skb = skb;
txrc.reported_rate.idx = -1;
txrc.rate_idx_mask = sdata->rc_rateidx_mask[band];
txrc.bss = true;
rate_control_get_rate(sdata, NULL, &txrc);
info->control.vif = vif;
info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT |
IEEE80211_TX_CTL_ASSIGN_SEQ |
IEEE80211_TX_CTL_FIRST_FRAGMENT;
out:
rcu_read_unlock();
return skb;
}
struct sk_buff *
ieee80211_beacon_get_template(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_mutable_offsets *offs)
{
return __ieee80211_beacon_get(hw, vif, offs, true);
}
EXPORT_SYMBOL(ieee80211_beacon_get_template);
struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u16 *tim_offset, u16 *tim_length)
{
struct ieee80211_mutable_offsets offs = {};
struct sk_buff *bcn = __ieee80211_beacon_get(hw, vif, &offs, false);
struct sk_buff *copy;
struct ieee80211_supported_band *sband;
int shift;
if (!bcn)
return bcn;
if (tim_offset)
*tim_offset = offs.tim_offset;
if (tim_length)
*tim_length = offs.tim_length;
if (ieee80211_hw_check(hw, BEACON_TX_STATUS) ||
!hw_to_local(hw)->monitors)
return bcn;
/* send a copy to monitor interfaces */
copy = skb_copy(bcn, GFP_ATOMIC);
if (!copy)
return bcn;
shift = ieee80211_vif_get_shift(vif);
sband = ieee80211_get_sband(vif_to_sdata(vif));
if (!sband)
return bcn;
ieee80211_tx_monitor(hw_to_local(hw), copy, sband, 1, shift, false);
return bcn;
}
EXPORT_SYMBOL(ieee80211_beacon_get_tim);
struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ieee80211_if_ap *ap = NULL;
struct sk_buff *skb = NULL;
struct probe_resp *presp = NULL;
struct ieee80211_hdr *hdr;
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
if (sdata->vif.type != NL80211_IFTYPE_AP)
return NULL;
rcu_read_lock();
ap = &sdata->u.ap;
presp = rcu_dereference(ap->probe_resp);
if (!presp)
goto out;
skb = dev_alloc_skb(presp->len);
if (!skb)
goto out;
skb_put_data(skb, presp->data, presp->len);
hdr = (struct ieee80211_hdr *) skb->data;
memset(hdr->addr1, 0, sizeof(hdr->addr1));
out:
rcu_read_unlock();
return skb;
}
EXPORT_SYMBOL(ieee80211_proberesp_get);
struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_managed *ifmgd;
struct ieee80211_pspoll *pspoll;
struct ieee80211_local *local;
struct sk_buff *skb;
if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
return NULL;
sdata = vif_to_sdata(vif);
ifmgd = &sdata->u.mgd;
local = sdata->local;
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll));
if (!skb)
return NULL;
skb_reserve(skb, local->hw.extra_tx_headroom);
pspoll = skb_put_zero(skb, sizeof(*pspoll));
pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
IEEE80211_STYPE_PSPOLL);
pspoll->aid = cpu_to_le16(ifmgd->aid);
/* aid in PS-Poll has its two MSBs each set to 1 */
pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14);
memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN);
memcpy(pspoll->ta, vif->addr, ETH_ALEN);
return skb;
}
EXPORT_SYMBOL(ieee80211_pspoll_get);
struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
bool qos_ok)
{
struct ieee80211_hdr_3addr *nullfunc;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_managed *ifmgd;
struct ieee80211_local *local;
struct sk_buff *skb;
bool qos = false;
if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
return NULL;
sdata = vif_to_sdata(vif);
ifmgd = &sdata->u.mgd;
local = sdata->local;
if (qos_ok) {
struct sta_info *sta;
rcu_read_lock();
sta = sta_info_get(sdata, ifmgd->bssid);
qos = sta && sta->sta.wme;
rcu_read_unlock();
}
skb = dev_alloc_skb(local->hw.extra_tx_headroom +
sizeof(*nullfunc) + 2);
if (!skb)
return NULL;
skb_reserve(skb, local->hw.extra_tx_headroom);
nullfunc = skb_put_zero(skb, sizeof(*nullfunc));
nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
IEEE80211_STYPE_NULLFUNC |
IEEE80211_FCTL_TODS);
if (qos) {
__le16 qos = cpu_to_le16(7);
BUILD_BUG_ON((IEEE80211_STYPE_QOS_NULLFUNC |
IEEE80211_STYPE_NULLFUNC) !=
IEEE80211_STYPE_QOS_NULLFUNC);
nullfunc->frame_control |=
cpu_to_le16(IEEE80211_STYPE_QOS_NULLFUNC);
skb->priority = 7;
skb_set_queue_mapping(skb, IEEE80211_AC_VO);
skb_put_data(skb, &qos, sizeof(qos));
}
memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN);
memcpy(nullfunc->addr2, vif->addr, ETH_ALEN);
memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN);
return skb;
}
EXPORT_SYMBOL(ieee80211_nullfunc_get);
struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
const u8 *src_addr,
const u8 *ssid, size_t ssid_len,
size_t tailroom)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_hdr_3addr *hdr;
struct sk_buff *skb;
size_t ie_ssid_len;
u8 *pos;
ie_ssid_len = 2 + ssid_len;
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) +
ie_ssid_len + tailroom);
if (!skb)
return NULL;
skb_reserve(skb, local->hw.extra_tx_headroom);
hdr = skb_put_zero(skb, sizeof(*hdr));
hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_PROBE_REQ);
eth_broadcast_addr(hdr->addr1);
memcpy(hdr->addr2, src_addr, ETH_ALEN);
eth_broadcast_addr(hdr->addr3);
pos = skb_put(skb, ie_ssid_len);
*pos++ = WLAN_EID_SSID;
*pos++ = ssid_len;
if (ssid_len)
memcpy(pos, ssid, ssid_len);
pos += ssid_len;
return skb;
}
EXPORT_SYMBOL(ieee80211_probereq_get);
void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
const void *frame, size_t frame_len,
const struct ieee80211_tx_info *frame_txctl,
struct ieee80211_rts *rts)
{
const struct ieee80211_hdr *hdr = frame;
rts->frame_control =
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
frame_txctl);
memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
}
EXPORT_SYMBOL(ieee80211_rts_get);
void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
const void *frame, size_t frame_len,
const struct ieee80211_tx_info *frame_txctl,
struct ieee80211_cts *cts)
{
const struct ieee80211_hdr *hdr = frame;
cts->frame_control =
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
cts->duration = ieee80211_ctstoself_duration(hw, vif,
frame_len, frame_txctl);
memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
}
EXPORT_SYMBOL(ieee80211_ctstoself_get);
struct sk_buff *
ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ieee80211_local *local = hw_to_local(hw);
struct sk_buff *skb = NULL;
struct ieee80211_tx_data tx;
struct ieee80211_sub_if_data *sdata;
struct ps_data *ps;
struct ieee80211_tx_info *info;
struct ieee80211_chanctx_conf *chanctx_conf;
sdata = vif_to_sdata(vif);
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (!chanctx_conf)
goto out;
if (sdata->vif.type == NL80211_IFTYPE_AP) {
struct beacon_data *beacon =
rcu_dereference(sdata->u.ap.beacon);
if (!beacon || !beacon->head)
goto out;
ps = &sdata->u.ap.ps;
} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
ps = &sdata->u.mesh.ps;
} else {
goto out;
}
if (ps->dtim_count != 0 || !ps->dtim_bc_mc)
goto out; /* send buffered bc/mc only after DTIM beacon */
while (1) {
skb = skb_dequeue(&ps->bc_buf);
if (!skb)
goto out;
local->total_ps_buffered--;
if (!skb_queue_empty(&ps->bc_buf) && skb->len >= 2) {
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *) skb->data;
/* more buffered multicast/broadcast frames ==> set
* MoreData flag in IEEE 802.11 header to inform PS
* STAs */
hdr->frame_control |=
cpu_to_le16(IEEE80211_FCTL_MOREDATA);
}
if (sdata->vif.type == NL80211_IFTYPE_AP)
sdata = IEEE80211_DEV_TO_SUB_IF(skb->dev);
if (!ieee80211_tx_prepare(sdata, &tx, NULL, skb))
break;
ieee80211_free_txskb(hw, skb);
}
info = IEEE80211_SKB_CB(skb);
tx.flags |= IEEE80211_TX_PS_BUFFERED;
info->band = chanctx_conf->def.chan->band;
if (invoke_tx_handlers(&tx))
skb = NULL;
out:
rcu_read_unlock();
return skb;
}
EXPORT_SYMBOL(ieee80211_get_buffered_bc);
int ieee80211_reserve_tid(struct ieee80211_sta *pubsta, u8 tid)
{
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct ieee80211_local *local = sdata->local;
int ret;
u32 queues;
lockdep_assert_held(&local->sta_mtx);
/* only some cases are supported right now */
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
break;
default:
WARN_ON(1);
return -EINVAL;
}
if (WARN_ON(tid >= IEEE80211_NUM_UPS))
return -EINVAL;
if (sta->reserved_tid == tid) {
ret = 0;
goto out;
}
if (sta->reserved_tid != IEEE80211_TID_UNRESERVED) {
sdata_err(sdata, "TID reservation already active\n");
ret = -EALREADY;
goto out;
}
ieee80211_stop_vif_queues(sdata->local, sdata,
IEEE80211_QUEUE_STOP_REASON_RESERVE_TID);
synchronize_net();
/* Tear down BA sessions so we stop aggregating on this TID */
if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) {
set_sta_flag(sta, WLAN_STA_BLOCK_BA);
__ieee80211_stop_tx_ba_session(sta, tid,
AGG_STOP_LOCAL_REQUEST);
}
queues = BIT(sdata->vif.hw_queue[ieee802_1d_to_ac[tid]]);
__ieee80211_flush_queues(local, sdata, queues, false);
sta->reserved_tid = tid;
ieee80211_wake_vif_queues(local, sdata,
IEEE80211_QUEUE_STOP_REASON_RESERVE_TID);
if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION))
clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
ret = 0;
out:
return ret;
}
EXPORT_SYMBOL(ieee80211_reserve_tid);
void ieee80211_unreserve_tid(struct ieee80211_sta *pubsta, u8 tid)
{
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
struct ieee80211_sub_if_data *sdata = sta->sdata;
lockdep_assert_held(&sdata->local->sta_mtx);
/* only some cases are supported right now */
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
break;
default:
WARN_ON(1);
return;
}
if (tid != sta->reserved_tid) {
sdata_err(sdata, "TID to unreserve (%d) isn't reserved\n", tid);
return;
}
sta->reserved_tid = IEEE80211_TID_UNRESERVED;
}
EXPORT_SYMBOL(ieee80211_unreserve_tid);
void __ieee80211_tx_skb_tid_band(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb, int tid,
enum nl80211_band band, u32 txdata_flags)
{
int ac = ieee80211_ac_from_tid(tid);
skb_reset_mac_header(skb);
skb_set_queue_mapping(skb, ac);
skb->priority = tid;
skb->dev = sdata->dev;
/*
* The other path calling ieee80211_xmit is from the tasklet,
* and while we can handle concurrent transmissions locking
* requirements are that we do not come into tx with bhs on.
*/
local_bh_disable();
IEEE80211_SKB_CB(skb)->band = band;
ieee80211_xmit(sdata, NULL, skb, txdata_flags);
local_bh_enable();
}
int ieee80211_tx_control_port(struct wiphy *wiphy, struct net_device *dev,
const u8 *buf, size_t len,
const u8 *dest, __be16 proto, bool unencrypted)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb;
struct ethhdr *ehdr;
u32 flags;
/* Only accept CONTROL_PORT_PROTOCOL configured in CONNECT/ASSOCIATE
* or Pre-Authentication
*/
if (proto != sdata->control_port_protocol &&
proto != cpu_to_be16(ETH_P_PREAUTH))
return -EINVAL;
if (unencrypted)
flags = IEEE80211_TX_INTFL_DONT_ENCRYPT;
else
flags = 0;
skb = dev_alloc_skb(local->hw.extra_tx_headroom +
sizeof(struct ethhdr) + len);
if (!skb)
return -ENOMEM;
skb_reserve(skb, local->hw.extra_tx_headroom + sizeof(struct ethhdr));
skb_put_data(skb, buf, len);
ehdr = skb_push(skb, sizeof(struct ethhdr));
memcpy(ehdr->h_dest, dest, ETH_ALEN);
memcpy(ehdr->h_source, sdata->vif.addr, ETH_ALEN);
ehdr->h_proto = proto;
skb->dev = dev;
skb->protocol = htons(ETH_P_802_3);
skb_reset_network_header(skb);
skb_reset_mac_header(skb);
local_bh_disable();
__ieee80211_subif_start_xmit(skb, skb->dev, flags);
local_bh_enable();
return 0;
}