b342797c1e
Impact: build fix on certain UP configs fix: arch/x86/kernel/cpu/common.c: In function 'cpu_init': arch/x86/kernel/cpu/common.c:1141: error: 'boot_cpu_id' undeclared (first use in this function) arch/x86/kernel/cpu/common.c:1141: error: (Each undeclared identifier is reported only once arch/x86/kernel/cpu/common.c:1141: error: for each function it appears in.) Pull in asm/smp.h on UP, so that we get the definition of boot_cpu_id. Signed-off-by: Ingo Molnar <mingo@elte.hu>
1149 lines
27 KiB
C
1149 lines
27 KiB
C
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/string.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kgdb.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/percpu.h>
|
|
#include <asm/i387.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/io.h>
|
|
#include <asm/linkage.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/pat.h>
|
|
#include <asm/asm.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/smp.h>
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
#include <asm/mpspec.h>
|
|
#include <asm/apic.h>
|
|
#include <mach_apic.h>
|
|
#include <asm/genapic.h>
|
|
#endif
|
|
|
|
#include <asm/pda.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/atomic.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/setup.h>
|
|
|
|
#include "cpu.h"
|
|
|
|
static struct cpu_dev *this_cpu __cpuinitdata;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* We need valid kernel segments for data and code in long mode too
|
|
* IRET will check the segment types kkeil 2000/10/28
|
|
* Also sysret mandates a special GDT layout
|
|
*/
|
|
/* The TLS descriptors are currently at a different place compared to i386.
|
|
Hopefully nobody expects them at a fixed place (Wine?) */
|
|
DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
|
|
[GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
|
|
[GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
|
|
[GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
|
|
[GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
|
|
[GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
|
|
[GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
|
|
} };
|
|
#else
|
|
DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
|
|
[GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
|
|
[GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
|
|
[GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
|
|
[GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
|
|
/*
|
|
* Segments used for calling PnP BIOS have byte granularity.
|
|
* They code segments and data segments have fixed 64k limits,
|
|
* the transfer segment sizes are set at run time.
|
|
*/
|
|
/* 32-bit code */
|
|
[GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
|
|
/* 16-bit code */
|
|
[GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
|
|
/* 16-bit data */
|
|
[GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
|
|
/* 16-bit data */
|
|
[GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
|
|
/* 16-bit data */
|
|
[GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
|
|
/*
|
|
* The APM segments have byte granularity and their bases
|
|
* are set at run time. All have 64k limits.
|
|
*/
|
|
/* 32-bit code */
|
|
[GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
|
|
/* 16-bit code */
|
|
[GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
|
|
/* data */
|
|
[GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
|
|
|
|
[GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
|
|
[GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
|
|
} };
|
|
#endif
|
|
EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
static int cachesize_override __cpuinitdata = -1;
|
|
static int disable_x86_serial_nr __cpuinitdata = 1;
|
|
|
|
static int __init cachesize_setup(char *str)
|
|
{
|
|
get_option(&str, &cachesize_override);
|
|
return 1;
|
|
}
|
|
__setup("cachesize=", cachesize_setup);
|
|
|
|
static int __init x86_fxsr_setup(char *s)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_FXSR);
|
|
setup_clear_cpu_cap(X86_FEATURE_XMM);
|
|
return 1;
|
|
}
|
|
__setup("nofxsr", x86_fxsr_setup);
|
|
|
|
static int __init x86_sep_setup(char *s)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_SEP);
|
|
return 1;
|
|
}
|
|
__setup("nosep", x86_sep_setup);
|
|
|
|
/* Standard macro to see if a specific flag is changeable */
|
|
static inline int flag_is_changeable_p(u32 flag)
|
|
{
|
|
u32 f1, f2;
|
|
|
|
/*
|
|
* Cyrix and IDT cpus allow disabling of CPUID
|
|
* so the code below may return different results
|
|
* when it is executed before and after enabling
|
|
* the CPUID. Add "volatile" to not allow gcc to
|
|
* optimize the subsequent calls to this function.
|
|
*/
|
|
asm volatile ("pushfl\n\t"
|
|
"pushfl\n\t"
|
|
"popl %0\n\t"
|
|
"movl %0,%1\n\t"
|
|
"xorl %2,%0\n\t"
|
|
"pushl %0\n\t"
|
|
"popfl\n\t"
|
|
"pushfl\n\t"
|
|
"popl %0\n\t"
|
|
"popfl\n\t"
|
|
: "=&r" (f1), "=&r" (f2)
|
|
: "ir" (flag));
|
|
|
|
return ((f1^f2) & flag) != 0;
|
|
}
|
|
|
|
/* Probe for the CPUID instruction */
|
|
static int __cpuinit have_cpuid_p(void)
|
|
{
|
|
return flag_is_changeable_p(X86_EFLAGS_ID);
|
|
}
|
|
|
|
static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
|
|
{
|
|
if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
|
|
/* Disable processor serial number */
|
|
unsigned long lo, hi;
|
|
rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
|
|
lo |= 0x200000;
|
|
wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
|
|
printk(KERN_NOTICE "CPU serial number disabled.\n");
|
|
clear_cpu_cap(c, X86_FEATURE_PN);
|
|
|
|
/* Disabling the serial number may affect the cpuid level */
|
|
c->cpuid_level = cpuid_eax(0);
|
|
}
|
|
}
|
|
|
|
static int __init x86_serial_nr_setup(char *s)
|
|
{
|
|
disable_x86_serial_nr = 0;
|
|
return 1;
|
|
}
|
|
__setup("serialnumber", x86_serial_nr_setup);
|
|
#else
|
|
static inline int flag_is_changeable_p(u32 flag)
|
|
{
|
|
return 1;
|
|
}
|
|
/* Probe for the CPUID instruction */
|
|
static inline int have_cpuid_p(void)
|
|
{
|
|
return 1;
|
|
}
|
|
static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Naming convention should be: <Name> [(<Codename>)]
|
|
* This table only is used unless init_<vendor>() below doesn't set it;
|
|
* in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
|
|
*
|
|
*/
|
|
|
|
/* Look up CPU names by table lookup. */
|
|
static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
|
|
{
|
|
struct cpu_model_info *info;
|
|
|
|
if (c->x86_model >= 16)
|
|
return NULL; /* Range check */
|
|
|
|
if (!this_cpu)
|
|
return NULL;
|
|
|
|
info = this_cpu->c_models;
|
|
|
|
while (info && info->family) {
|
|
if (info->family == c->x86)
|
|
return info->model_names[c->x86_model];
|
|
info++;
|
|
}
|
|
return NULL; /* Not found */
|
|
}
|
|
|
|
__u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
|
|
|
|
/* Current gdt points %fs at the "master" per-cpu area: after this,
|
|
* it's on the real one. */
|
|
void switch_to_new_gdt(void)
|
|
{
|
|
struct desc_ptr gdt_descr;
|
|
|
|
gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
|
|
gdt_descr.size = GDT_SIZE - 1;
|
|
load_gdt(&gdt_descr);
|
|
#ifdef CONFIG_X86_32
|
|
asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
|
|
#endif
|
|
}
|
|
|
|
static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
|
|
|
|
static void __cpuinit default_init(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
display_cacheinfo(c);
|
|
#else
|
|
/* Not much we can do here... */
|
|
/* Check if at least it has cpuid */
|
|
if (c->cpuid_level == -1) {
|
|
/* No cpuid. It must be an ancient CPU */
|
|
if (c->x86 == 4)
|
|
strcpy(c->x86_model_id, "486");
|
|
else if (c->x86 == 3)
|
|
strcpy(c->x86_model_id, "386");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static struct cpu_dev __cpuinitdata default_cpu = {
|
|
.c_init = default_init,
|
|
.c_vendor = "Unknown",
|
|
.c_x86_vendor = X86_VENDOR_UNKNOWN,
|
|
};
|
|
|
|
static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int *v;
|
|
char *p, *q;
|
|
|
|
if (c->extended_cpuid_level < 0x80000004)
|
|
return;
|
|
|
|
v = (unsigned int *) c->x86_model_id;
|
|
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
|
|
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
|
|
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
|
|
c->x86_model_id[48] = 0;
|
|
|
|
/* Intel chips right-justify this string for some dumb reason;
|
|
undo that brain damage */
|
|
p = q = &c->x86_model_id[0];
|
|
while (*p == ' ')
|
|
p++;
|
|
if (p != q) {
|
|
while (*p)
|
|
*q++ = *p++;
|
|
while (q <= &c->x86_model_id[48])
|
|
*q++ = '\0'; /* Zero-pad the rest */
|
|
}
|
|
}
|
|
|
|
void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int n, dummy, ebx, ecx, edx, l2size;
|
|
|
|
n = c->extended_cpuid_level;
|
|
|
|
if (n >= 0x80000005) {
|
|
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
|
|
printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
|
|
edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
|
|
c->x86_cache_size = (ecx>>24) + (edx>>24);
|
|
#ifdef CONFIG_X86_64
|
|
/* On K8 L1 TLB is inclusive, so don't count it */
|
|
c->x86_tlbsize = 0;
|
|
#endif
|
|
}
|
|
|
|
if (n < 0x80000006) /* Some chips just has a large L1. */
|
|
return;
|
|
|
|
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
|
|
l2size = ecx >> 16;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
|
|
#else
|
|
/* do processor-specific cache resizing */
|
|
if (this_cpu->c_size_cache)
|
|
l2size = this_cpu->c_size_cache(c, l2size);
|
|
|
|
/* Allow user to override all this if necessary. */
|
|
if (cachesize_override != -1)
|
|
l2size = cachesize_override;
|
|
|
|
if (l2size == 0)
|
|
return; /* Again, no L2 cache is possible */
|
|
#endif
|
|
|
|
c->x86_cache_size = l2size;
|
|
|
|
printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
|
|
l2size, ecx & 0xFF);
|
|
}
|
|
|
|
void __cpuinit detect_ht(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_HT
|
|
u32 eax, ebx, ecx, edx;
|
|
int index_msb, core_bits;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_HT))
|
|
return;
|
|
|
|
if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
|
|
goto out;
|
|
|
|
if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
|
|
return;
|
|
|
|
cpuid(1, &eax, &ebx, &ecx, &edx);
|
|
|
|
smp_num_siblings = (ebx & 0xff0000) >> 16;
|
|
|
|
if (smp_num_siblings == 1) {
|
|
printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
|
|
} else if (smp_num_siblings > 1) {
|
|
|
|
if (smp_num_siblings > NR_CPUS) {
|
|
printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
|
|
smp_num_siblings);
|
|
smp_num_siblings = 1;
|
|
return;
|
|
}
|
|
|
|
index_msb = get_count_order(smp_num_siblings);
|
|
#ifdef CONFIG_X86_64
|
|
c->phys_proc_id = phys_pkg_id(index_msb);
|
|
#else
|
|
c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
|
|
#endif
|
|
|
|
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
|
|
|
|
index_msb = get_count_order(smp_num_siblings);
|
|
|
|
core_bits = get_count_order(c->x86_max_cores);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
c->cpu_core_id = phys_pkg_id(index_msb) &
|
|
((1 << core_bits) - 1);
|
|
#else
|
|
c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
|
|
((1 << core_bits) - 1);
|
|
#endif
|
|
}
|
|
|
|
out:
|
|
if ((c->x86_max_cores * smp_num_siblings) > 1) {
|
|
printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
|
|
c->phys_proc_id);
|
|
printk(KERN_INFO "CPU: Processor Core ID: %d\n",
|
|
c->cpu_core_id);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
|
|
{
|
|
char *v = c->x86_vendor_id;
|
|
int i;
|
|
static int printed;
|
|
|
|
for (i = 0; i < X86_VENDOR_NUM; i++) {
|
|
if (!cpu_devs[i])
|
|
break;
|
|
|
|
if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
|
|
(cpu_devs[i]->c_ident[1] &&
|
|
!strcmp(v, cpu_devs[i]->c_ident[1]))) {
|
|
this_cpu = cpu_devs[i];
|
|
c->x86_vendor = this_cpu->c_x86_vendor;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!printed) {
|
|
printed++;
|
|
printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
|
|
printk(KERN_ERR "CPU: Your system may be unstable.\n");
|
|
}
|
|
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
this_cpu = &default_cpu;
|
|
}
|
|
|
|
void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
|
|
{
|
|
/* Get vendor name */
|
|
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
|
|
(unsigned int *)&c->x86_vendor_id[0],
|
|
(unsigned int *)&c->x86_vendor_id[8],
|
|
(unsigned int *)&c->x86_vendor_id[4]);
|
|
|
|
c->x86 = 4;
|
|
/* Intel-defined flags: level 0x00000001 */
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
u32 junk, tfms, cap0, misc;
|
|
cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
|
|
c->x86 = (tfms >> 8) & 0xf;
|
|
c->x86_model = (tfms >> 4) & 0xf;
|
|
c->x86_mask = tfms & 0xf;
|
|
if (c->x86 == 0xf)
|
|
c->x86 += (tfms >> 20) & 0xff;
|
|
if (c->x86 >= 0x6)
|
|
c->x86_model += ((tfms >> 16) & 0xf) << 4;
|
|
if (cap0 & (1<<19)) {
|
|
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 tfms, xlvl;
|
|
u32 ebx;
|
|
|
|
/* Intel-defined flags: level 0x00000001 */
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
u32 capability, excap;
|
|
cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
|
|
c->x86_capability[0] = capability;
|
|
c->x86_capability[4] = excap;
|
|
}
|
|
|
|
/* AMD-defined flags: level 0x80000001 */
|
|
xlvl = cpuid_eax(0x80000000);
|
|
c->extended_cpuid_level = xlvl;
|
|
if ((xlvl & 0xffff0000) == 0x80000000) {
|
|
if (xlvl >= 0x80000001) {
|
|
c->x86_capability[1] = cpuid_edx(0x80000001);
|
|
c->x86_capability[6] = cpuid_ecx(0x80000001);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (c->extended_cpuid_level >= 0x80000008) {
|
|
u32 eax = cpuid_eax(0x80000008);
|
|
|
|
c->x86_virt_bits = (eax >> 8) & 0xff;
|
|
c->x86_phys_bits = eax & 0xff;
|
|
}
|
|
#endif
|
|
|
|
if (c->extended_cpuid_level >= 0x80000007)
|
|
c->x86_power = cpuid_edx(0x80000007);
|
|
|
|
}
|
|
|
|
static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
int i;
|
|
|
|
/*
|
|
* First of all, decide if this is a 486 or higher
|
|
* It's a 486 if we can modify the AC flag
|
|
*/
|
|
if (flag_is_changeable_p(X86_EFLAGS_AC))
|
|
c->x86 = 4;
|
|
else
|
|
c->x86 = 3;
|
|
|
|
for (i = 0; i < X86_VENDOR_NUM; i++)
|
|
if (cpu_devs[i] && cpu_devs[i]->c_identify) {
|
|
c->x86_vendor_id[0] = 0;
|
|
cpu_devs[i]->c_identify(c);
|
|
if (c->x86_vendor_id[0]) {
|
|
get_cpu_vendor(c);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Do minimum CPU detection early.
|
|
* Fields really needed: vendor, cpuid_level, family, model, mask,
|
|
* cache alignment.
|
|
* The others are not touched to avoid unwanted side effects.
|
|
*
|
|
* WARNING: this function is only called on the BP. Don't add code here
|
|
* that is supposed to run on all CPUs.
|
|
*/
|
|
static void __init early_identify_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
c->x86_clflush_size = 64;
|
|
#else
|
|
c->x86_clflush_size = 32;
|
|
#endif
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
|
|
memset(&c->x86_capability, 0, sizeof c->x86_capability);
|
|
c->extended_cpuid_level = 0;
|
|
|
|
if (!have_cpuid_p())
|
|
identify_cpu_without_cpuid(c);
|
|
|
|
/* cyrix could have cpuid enabled via c_identify()*/
|
|
if (!have_cpuid_p())
|
|
return;
|
|
|
|
cpu_detect(c);
|
|
|
|
get_cpu_vendor(c);
|
|
|
|
get_cpu_cap(c);
|
|
|
|
if (this_cpu->c_early_init)
|
|
this_cpu->c_early_init(c);
|
|
|
|
validate_pat_support(c);
|
|
|
|
#ifdef CONFIG_SMP
|
|
c->cpu_index = boot_cpu_id;
|
|
#endif
|
|
}
|
|
|
|
void __init early_cpu_init(void)
|
|
{
|
|
struct cpu_dev **cdev;
|
|
int count = 0;
|
|
|
|
printk("KERNEL supported cpus:\n");
|
|
for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
|
|
struct cpu_dev *cpudev = *cdev;
|
|
unsigned int j;
|
|
|
|
if (count >= X86_VENDOR_NUM)
|
|
break;
|
|
cpu_devs[count] = cpudev;
|
|
count++;
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
if (!cpudev->c_ident[j])
|
|
continue;
|
|
printk(" %s %s\n", cpudev->c_vendor,
|
|
cpudev->c_ident[j]);
|
|
}
|
|
}
|
|
|
|
early_identify_cpu(&boot_cpu_data);
|
|
}
|
|
|
|
/*
|
|
* The NOPL instruction is supposed to exist on all CPUs with
|
|
* family >= 6; unfortunately, that's not true in practice because
|
|
* of early VIA chips and (more importantly) broken virtualizers that
|
|
* are not easy to detect. In the latter case it doesn't even *fail*
|
|
* reliably, so probing for it doesn't even work. Disable it completely
|
|
* unless we can find a reliable way to detect all the broken cases.
|
|
*/
|
|
static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
|
|
{
|
|
clear_cpu_cap(c, X86_FEATURE_NOPL);
|
|
}
|
|
|
|
static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
|
|
{
|
|
c->extended_cpuid_level = 0;
|
|
|
|
if (!have_cpuid_p())
|
|
identify_cpu_without_cpuid(c);
|
|
|
|
/* cyrix could have cpuid enabled via c_identify()*/
|
|
if (!have_cpuid_p())
|
|
return;
|
|
|
|
cpu_detect(c);
|
|
|
|
get_cpu_vendor(c);
|
|
|
|
get_cpu_cap(c);
|
|
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
|
|
#ifdef CONFIG_X86_32
|
|
# ifdef CONFIG_X86_HT
|
|
c->apicid = phys_pkg_id(c->initial_apicid, 0);
|
|
# else
|
|
c->apicid = c->initial_apicid;
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_HT
|
|
c->phys_proc_id = c->initial_apicid;
|
|
#endif
|
|
}
|
|
|
|
get_model_name(c); /* Default name */
|
|
|
|
init_scattered_cpuid_features(c);
|
|
detect_nopl(c);
|
|
}
|
|
|
|
/*
|
|
* This does the hard work of actually picking apart the CPU stuff...
|
|
*/
|
|
static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
int i;
|
|
|
|
c->loops_per_jiffy = loops_per_jiffy;
|
|
c->x86_cache_size = -1;
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
c->x86_model = c->x86_mask = 0; /* So far unknown... */
|
|
c->x86_vendor_id[0] = '\0'; /* Unset */
|
|
c->x86_model_id[0] = '\0'; /* Unset */
|
|
c->x86_max_cores = 1;
|
|
c->x86_coreid_bits = 0;
|
|
#ifdef CONFIG_X86_64
|
|
c->x86_clflush_size = 64;
|
|
#else
|
|
c->cpuid_level = -1; /* CPUID not detected */
|
|
c->x86_clflush_size = 32;
|
|
#endif
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
memset(&c->x86_capability, 0, sizeof c->x86_capability);
|
|
|
|
generic_identify(c);
|
|
|
|
if (this_cpu->c_identify)
|
|
this_cpu->c_identify(c);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
c->apicid = phys_pkg_id(0);
|
|
#endif
|
|
|
|
/*
|
|
* Vendor-specific initialization. In this section we
|
|
* canonicalize the feature flags, meaning if there are
|
|
* features a certain CPU supports which CPUID doesn't
|
|
* tell us, CPUID claiming incorrect flags, or other bugs,
|
|
* we handle them here.
|
|
*
|
|
* At the end of this section, c->x86_capability better
|
|
* indicate the features this CPU genuinely supports!
|
|
*/
|
|
if (this_cpu->c_init)
|
|
this_cpu->c_init(c);
|
|
|
|
/* Disable the PN if appropriate */
|
|
squash_the_stupid_serial_number(c);
|
|
|
|
/*
|
|
* The vendor-specific functions might have changed features. Now
|
|
* we do "generic changes."
|
|
*/
|
|
|
|
/* If the model name is still unset, do table lookup. */
|
|
if (!c->x86_model_id[0]) {
|
|
char *p;
|
|
p = table_lookup_model(c);
|
|
if (p)
|
|
strcpy(c->x86_model_id, p);
|
|
else
|
|
/* Last resort... */
|
|
sprintf(c->x86_model_id, "%02x/%02x",
|
|
c->x86, c->x86_model);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
detect_ht(c);
|
|
#endif
|
|
|
|
/*
|
|
* On SMP, boot_cpu_data holds the common feature set between
|
|
* all CPUs; so make sure that we indicate which features are
|
|
* common between the CPUs. The first time this routine gets
|
|
* executed, c == &boot_cpu_data.
|
|
*/
|
|
if (c != &boot_cpu_data) {
|
|
/* AND the already accumulated flags with these */
|
|
for (i = 0; i < NCAPINTS; i++)
|
|
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
|
|
}
|
|
|
|
/* Clear all flags overriden by options */
|
|
for (i = 0; i < NCAPINTS; i++)
|
|
c->x86_capability[i] &= ~cleared_cpu_caps[i];
|
|
|
|
#ifdef CONFIG_X86_MCE
|
|
/* Init Machine Check Exception if available. */
|
|
mcheck_init(c);
|
|
#endif
|
|
|
|
select_idle_routine(c);
|
|
|
|
#if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
|
|
numa_add_cpu(smp_processor_id());
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static void vgetcpu_set_mode(void)
|
|
{
|
|
if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
|
|
vgetcpu_mode = VGETCPU_RDTSCP;
|
|
else
|
|
vgetcpu_mode = VGETCPU_LSL;
|
|
}
|
|
#endif
|
|
|
|
void __init identify_boot_cpu(void)
|
|
{
|
|
identify_cpu(&boot_cpu_data);
|
|
#ifdef CONFIG_X86_32
|
|
sysenter_setup();
|
|
enable_sep_cpu();
|
|
#else
|
|
vgetcpu_set_mode();
|
|
#endif
|
|
}
|
|
|
|
void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
BUG_ON(c == &boot_cpu_data);
|
|
identify_cpu(c);
|
|
#ifdef CONFIG_X86_32
|
|
enable_sep_cpu();
|
|
#endif
|
|
mtrr_ap_init();
|
|
}
|
|
|
|
struct msr_range {
|
|
unsigned min;
|
|
unsigned max;
|
|
};
|
|
|
|
static struct msr_range msr_range_array[] __cpuinitdata = {
|
|
{ 0x00000000, 0x00000418},
|
|
{ 0xc0000000, 0xc000040b},
|
|
{ 0xc0010000, 0xc0010142},
|
|
{ 0xc0011000, 0xc001103b},
|
|
};
|
|
|
|
static void __cpuinit print_cpu_msr(void)
|
|
{
|
|
unsigned index;
|
|
u64 val;
|
|
int i;
|
|
unsigned index_min, index_max;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
|
|
index_min = msr_range_array[i].min;
|
|
index_max = msr_range_array[i].max;
|
|
for (index = index_min; index < index_max; index++) {
|
|
if (rdmsrl_amd_safe(index, &val))
|
|
continue;
|
|
printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int show_msr __cpuinitdata;
|
|
static __init int setup_show_msr(char *arg)
|
|
{
|
|
int num;
|
|
|
|
get_option(&arg, &num);
|
|
|
|
if (num > 0)
|
|
show_msr = num;
|
|
return 1;
|
|
}
|
|
__setup("show_msr=", setup_show_msr);
|
|
|
|
static __init int setup_noclflush(char *arg)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
|
|
return 1;
|
|
}
|
|
__setup("noclflush", setup_noclflush);
|
|
|
|
void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
|
|
{
|
|
char *vendor = NULL;
|
|
|
|
if (c->x86_vendor < X86_VENDOR_NUM)
|
|
vendor = this_cpu->c_vendor;
|
|
else if (c->cpuid_level >= 0)
|
|
vendor = c->x86_vendor_id;
|
|
|
|
if (vendor && !strstr(c->x86_model_id, vendor))
|
|
printk(KERN_CONT "%s ", vendor);
|
|
|
|
if (c->x86_model_id[0])
|
|
printk(KERN_CONT "%s", c->x86_model_id);
|
|
else
|
|
printk(KERN_CONT "%d86", c->x86);
|
|
|
|
if (c->x86_mask || c->cpuid_level >= 0)
|
|
printk(KERN_CONT " stepping %02x\n", c->x86_mask);
|
|
else
|
|
printk(KERN_CONT "\n");
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (c->cpu_index < show_msr)
|
|
print_cpu_msr();
|
|
#else
|
|
if (show_msr)
|
|
print_cpu_msr();
|
|
#endif
|
|
}
|
|
|
|
static __init int setup_disablecpuid(char *arg)
|
|
{
|
|
int bit;
|
|
if (get_option(&arg, &bit) && bit < NCAPINTS*32)
|
|
setup_clear_cpu_cap(bit);
|
|
else
|
|
return 0;
|
|
return 1;
|
|
}
|
|
__setup("clearcpuid=", setup_disablecpuid);
|
|
|
|
cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
struct x8664_pda **_cpu_pda __read_mostly;
|
|
EXPORT_SYMBOL(_cpu_pda);
|
|
|
|
struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
|
|
|
|
char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
|
|
|
|
void __cpuinit pda_init(int cpu)
|
|
{
|
|
struct x8664_pda *pda = cpu_pda(cpu);
|
|
|
|
/* Setup up data that may be needed in __get_free_pages early */
|
|
loadsegment(fs, 0);
|
|
loadsegment(gs, 0);
|
|
/* Memory clobbers used to order PDA accessed */
|
|
mb();
|
|
wrmsrl(MSR_GS_BASE, pda);
|
|
mb();
|
|
|
|
pda->cpunumber = cpu;
|
|
pda->irqcount = -1;
|
|
pda->kernelstack = (unsigned long)stack_thread_info() -
|
|
PDA_STACKOFFSET + THREAD_SIZE;
|
|
pda->active_mm = &init_mm;
|
|
pda->mmu_state = 0;
|
|
|
|
if (cpu == 0) {
|
|
/* others are initialized in smpboot.c */
|
|
pda->pcurrent = &init_task;
|
|
pda->irqstackptr = boot_cpu_stack;
|
|
pda->irqstackptr += IRQSTACKSIZE - 64;
|
|
} else {
|
|
if (!pda->irqstackptr) {
|
|
pda->irqstackptr = (char *)
|
|
__get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
|
|
if (!pda->irqstackptr)
|
|
panic("cannot allocate irqstack for cpu %d",
|
|
cpu);
|
|
pda->irqstackptr += IRQSTACKSIZE - 64;
|
|
}
|
|
|
|
if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
|
|
pda->nodenumber = cpu_to_node(cpu);
|
|
}
|
|
}
|
|
|
|
char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
|
|
DEBUG_STKSZ] __page_aligned_bss;
|
|
|
|
extern asmlinkage void ignore_sysret(void);
|
|
|
|
/* May not be marked __init: used by software suspend */
|
|
void syscall_init(void)
|
|
{
|
|
/*
|
|
* LSTAR and STAR live in a bit strange symbiosis.
|
|
* They both write to the same internal register. STAR allows to
|
|
* set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
|
|
*/
|
|
wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
|
|
wrmsrl(MSR_LSTAR, system_call);
|
|
wrmsrl(MSR_CSTAR, ignore_sysret);
|
|
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
syscall32_cpu_init();
|
|
#endif
|
|
|
|
/* Flags to clear on syscall */
|
|
wrmsrl(MSR_SYSCALL_MASK,
|
|
X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
|
|
}
|
|
|
|
unsigned long kernel_eflags;
|
|
|
|
/*
|
|
* Copies of the original ist values from the tss are only accessed during
|
|
* debugging, no special alignment required.
|
|
*/
|
|
DEFINE_PER_CPU(struct orig_ist, orig_ist);
|
|
|
|
#else
|
|
|
|
/* Make sure %fs is initialized properly in idle threads */
|
|
struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
|
|
{
|
|
memset(regs, 0, sizeof(struct pt_regs));
|
|
regs->fs = __KERNEL_PERCPU;
|
|
return regs;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* cpu_init() initializes state that is per-CPU. Some data is already
|
|
* initialized (naturally) in the bootstrap process, such as the GDT
|
|
* and IDT. We reload them nevertheless, this function acts as a
|
|
* 'CPU state barrier', nothing should get across.
|
|
* A lot of state is already set up in PDA init for 64 bit
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
void __cpuinit cpu_init(void)
|
|
{
|
|
int cpu = stack_smp_processor_id();
|
|
struct tss_struct *t = &per_cpu(init_tss, cpu);
|
|
struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
|
|
unsigned long v;
|
|
char *estacks = NULL;
|
|
struct task_struct *me;
|
|
int i;
|
|
|
|
/* CPU 0 is initialised in head64.c */
|
|
if (cpu != 0)
|
|
pda_init(cpu);
|
|
else
|
|
estacks = boot_exception_stacks;
|
|
|
|
me = current;
|
|
|
|
if (cpu_test_and_set(cpu, cpu_initialized))
|
|
panic("CPU#%d already initialized!\n", cpu);
|
|
|
|
printk(KERN_INFO "Initializing CPU#%d\n", cpu);
|
|
|
|
clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
|
|
|
|
/*
|
|
* Initialize the per-CPU GDT with the boot GDT,
|
|
* and set up the GDT descriptor:
|
|
*/
|
|
|
|
switch_to_new_gdt();
|
|
load_idt((const struct desc_ptr *)&idt_descr);
|
|
|
|
memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
|
|
syscall_init();
|
|
|
|
wrmsrl(MSR_FS_BASE, 0);
|
|
wrmsrl(MSR_KERNEL_GS_BASE, 0);
|
|
barrier();
|
|
|
|
check_efer();
|
|
if (cpu != 0 && x2apic)
|
|
enable_x2apic();
|
|
|
|
/*
|
|
* set up and load the per-CPU TSS
|
|
*/
|
|
if (!orig_ist->ist[0]) {
|
|
static const unsigned int order[N_EXCEPTION_STACKS] = {
|
|
[0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
|
|
[DEBUG_STACK - 1] = DEBUG_STACK_ORDER
|
|
};
|
|
for (v = 0; v < N_EXCEPTION_STACKS; v++) {
|
|
if (cpu) {
|
|
estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
|
|
if (!estacks)
|
|
panic("Cannot allocate exception "
|
|
"stack %ld %d\n", v, cpu);
|
|
}
|
|
estacks += PAGE_SIZE << order[v];
|
|
orig_ist->ist[v] = t->x86_tss.ist[v] =
|
|
(unsigned long)estacks;
|
|
}
|
|
}
|
|
|
|
t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
|
|
/*
|
|
* <= is required because the CPU will access up to
|
|
* 8 bits beyond the end of the IO permission bitmap.
|
|
*/
|
|
for (i = 0; i <= IO_BITMAP_LONGS; i++)
|
|
t->io_bitmap[i] = ~0UL;
|
|
|
|
atomic_inc(&init_mm.mm_count);
|
|
me->active_mm = &init_mm;
|
|
if (me->mm)
|
|
BUG();
|
|
enter_lazy_tlb(&init_mm, me);
|
|
|
|
load_sp0(t, ¤t->thread);
|
|
set_tss_desc(cpu, t);
|
|
load_TR_desc();
|
|
load_LDT(&init_mm.context);
|
|
|
|
#ifdef CONFIG_KGDB
|
|
/*
|
|
* If the kgdb is connected no debug regs should be altered. This
|
|
* is only applicable when KGDB and a KGDB I/O module are built
|
|
* into the kernel and you are using early debugging with
|
|
* kgdbwait. KGDB will control the kernel HW breakpoint registers.
|
|
*/
|
|
if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
|
|
arch_kgdb_ops.correct_hw_break();
|
|
else {
|
|
#endif
|
|
/*
|
|
* Clear all 6 debug registers:
|
|
*/
|
|
|
|
set_debugreg(0UL, 0);
|
|
set_debugreg(0UL, 1);
|
|
set_debugreg(0UL, 2);
|
|
set_debugreg(0UL, 3);
|
|
set_debugreg(0UL, 6);
|
|
set_debugreg(0UL, 7);
|
|
#ifdef CONFIG_KGDB
|
|
/* If the kgdb is connected no debug regs should be altered. */
|
|
}
|
|
#endif
|
|
|
|
fpu_init();
|
|
|
|
raw_local_save_flags(kernel_eflags);
|
|
|
|
if (is_uv_system())
|
|
uv_cpu_init();
|
|
}
|
|
|
|
#else
|
|
|
|
void __cpuinit cpu_init(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct task_struct *curr = current;
|
|
struct tss_struct *t = &per_cpu(init_tss, cpu);
|
|
struct thread_struct *thread = &curr->thread;
|
|
|
|
if (cpu_test_and_set(cpu, cpu_initialized)) {
|
|
printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
|
|
for (;;) local_irq_enable();
|
|
}
|
|
|
|
printk(KERN_INFO "Initializing CPU#%d\n", cpu);
|
|
|
|
if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
|
|
clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
|
|
|
|
load_idt(&idt_descr);
|
|
switch_to_new_gdt();
|
|
|
|
/*
|
|
* Set up and load the per-CPU TSS and LDT
|
|
*/
|
|
atomic_inc(&init_mm.mm_count);
|
|
curr->active_mm = &init_mm;
|
|
if (curr->mm)
|
|
BUG();
|
|
enter_lazy_tlb(&init_mm, curr);
|
|
|
|
load_sp0(t, thread);
|
|
set_tss_desc(cpu, t);
|
|
load_TR_desc();
|
|
load_LDT(&init_mm.context);
|
|
|
|
#ifdef CONFIG_DOUBLEFAULT
|
|
/* Set up doublefault TSS pointer in the GDT */
|
|
__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
|
|
#endif
|
|
|
|
/* Clear %gs. */
|
|
asm volatile ("mov %0, %%gs" : : "r" (0));
|
|
|
|
/* Clear all 6 debug registers: */
|
|
set_debugreg(0, 0);
|
|
set_debugreg(0, 1);
|
|
set_debugreg(0, 2);
|
|
set_debugreg(0, 3);
|
|
set_debugreg(0, 6);
|
|
set_debugreg(0, 7);
|
|
|
|
/*
|
|
* Force FPU initialization:
|
|
*/
|
|
if (cpu_has_xsave)
|
|
current_thread_info()->status = TS_XSAVE;
|
|
else
|
|
current_thread_info()->status = 0;
|
|
clear_used_math();
|
|
mxcsr_feature_mask_init();
|
|
|
|
/*
|
|
* Boot processor to setup the FP and extended state context info.
|
|
*/
|
|
if (smp_processor_id() == boot_cpu_id)
|
|
init_thread_xstate();
|
|
|
|
xsave_init();
|
|
}
|
|
|
|
|
|
#endif
|