df6ad69838
Platform with advance system bus (like CAPI or CCIX) allow device memory to be accessible from CPU in a cache coherent fashion. Add a new type of ZONE_DEVICE to represent such memory. The use case are the same as for the un-addressable device memory but without all the corners cases. Link: http://lkml.kernel.org/r/20170817000548.32038-19-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
526 lines
15 KiB
C
526 lines
15 KiB
C
/*
|
|
* Copyright(c) 2015 Intel Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*/
|
|
#include <linux/radix-tree.h>
|
|
#include <linux/device.h>
|
|
#include <linux/types.h>
|
|
#include <linux/pfn_t.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/memory_hotplug.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
|
|
#ifndef ioremap_cache
|
|
/* temporary while we convert existing ioremap_cache users to memremap */
|
|
__weak void __iomem *ioremap_cache(resource_size_t offset, unsigned long size)
|
|
{
|
|
return ioremap(offset, size);
|
|
}
|
|
#endif
|
|
|
|
#ifndef arch_memremap_wb
|
|
static void *arch_memremap_wb(resource_size_t offset, unsigned long size)
|
|
{
|
|
return (__force void *)ioremap_cache(offset, size);
|
|
}
|
|
#endif
|
|
|
|
#ifndef arch_memremap_can_ram_remap
|
|
static bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size,
|
|
unsigned long flags)
|
|
{
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
static void *try_ram_remap(resource_size_t offset, size_t size,
|
|
unsigned long flags)
|
|
{
|
|
unsigned long pfn = PHYS_PFN(offset);
|
|
|
|
/* In the simple case just return the existing linear address */
|
|
if (pfn_valid(pfn) && !PageHighMem(pfn_to_page(pfn)) &&
|
|
arch_memremap_can_ram_remap(offset, size, flags))
|
|
return __va(offset);
|
|
|
|
return NULL; /* fallback to arch_memremap_wb */
|
|
}
|
|
|
|
/**
|
|
* memremap() - remap an iomem_resource as cacheable memory
|
|
* @offset: iomem resource start address
|
|
* @size: size of remap
|
|
* @flags: any of MEMREMAP_WB, MEMREMAP_WT, MEMREMAP_WC,
|
|
* MEMREMAP_ENC, MEMREMAP_DEC
|
|
*
|
|
* memremap() is "ioremap" for cases where it is known that the resource
|
|
* being mapped does not have i/o side effects and the __iomem
|
|
* annotation is not applicable. In the case of multiple flags, the different
|
|
* mapping types will be attempted in the order listed below until one of
|
|
* them succeeds.
|
|
*
|
|
* MEMREMAP_WB - matches the default mapping for System RAM on
|
|
* the architecture. This is usually a read-allocate write-back cache.
|
|
* Morever, if MEMREMAP_WB is specified and the requested remap region is RAM
|
|
* memremap() will bypass establishing a new mapping and instead return
|
|
* a pointer into the direct map.
|
|
*
|
|
* MEMREMAP_WT - establish a mapping whereby writes either bypass the
|
|
* cache or are written through to memory and never exist in a
|
|
* cache-dirty state with respect to program visibility. Attempts to
|
|
* map System RAM with this mapping type will fail.
|
|
*
|
|
* MEMREMAP_WC - establish a writecombine mapping, whereby writes may
|
|
* be coalesced together (e.g. in the CPU's write buffers), but is otherwise
|
|
* uncached. Attempts to map System RAM with this mapping type will fail.
|
|
*/
|
|
void *memremap(resource_size_t offset, size_t size, unsigned long flags)
|
|
{
|
|
int is_ram = region_intersects(offset, size,
|
|
IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE);
|
|
void *addr = NULL;
|
|
|
|
if (!flags)
|
|
return NULL;
|
|
|
|
if (is_ram == REGION_MIXED) {
|
|
WARN_ONCE(1, "memremap attempted on mixed range %pa size: %#lx\n",
|
|
&offset, (unsigned long) size);
|
|
return NULL;
|
|
}
|
|
|
|
/* Try all mapping types requested until one returns non-NULL */
|
|
if (flags & MEMREMAP_WB) {
|
|
/*
|
|
* MEMREMAP_WB is special in that it can be satisifed
|
|
* from the direct map. Some archs depend on the
|
|
* capability of memremap() to autodetect cases where
|
|
* the requested range is potentially in System RAM.
|
|
*/
|
|
if (is_ram == REGION_INTERSECTS)
|
|
addr = try_ram_remap(offset, size, flags);
|
|
if (!addr)
|
|
addr = arch_memremap_wb(offset, size);
|
|
}
|
|
|
|
/*
|
|
* If we don't have a mapping yet and other request flags are
|
|
* present then we will be attempting to establish a new virtual
|
|
* address mapping. Enforce that this mapping is not aliasing
|
|
* System RAM.
|
|
*/
|
|
if (!addr && is_ram == REGION_INTERSECTS && flags != MEMREMAP_WB) {
|
|
WARN_ONCE(1, "memremap attempted on ram %pa size: %#lx\n",
|
|
&offset, (unsigned long) size);
|
|
return NULL;
|
|
}
|
|
|
|
if (!addr && (flags & MEMREMAP_WT))
|
|
addr = ioremap_wt(offset, size);
|
|
|
|
if (!addr && (flags & MEMREMAP_WC))
|
|
addr = ioremap_wc(offset, size);
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(memremap);
|
|
|
|
void memunmap(void *addr)
|
|
{
|
|
if (is_vmalloc_addr(addr))
|
|
iounmap((void __iomem *) addr);
|
|
}
|
|
EXPORT_SYMBOL(memunmap);
|
|
|
|
static void devm_memremap_release(struct device *dev, void *res)
|
|
{
|
|
memunmap(*(void **)res);
|
|
}
|
|
|
|
static int devm_memremap_match(struct device *dev, void *res, void *match_data)
|
|
{
|
|
return *(void **)res == match_data;
|
|
}
|
|
|
|
void *devm_memremap(struct device *dev, resource_size_t offset,
|
|
size_t size, unsigned long flags)
|
|
{
|
|
void **ptr, *addr;
|
|
|
|
ptr = devres_alloc_node(devm_memremap_release, sizeof(*ptr), GFP_KERNEL,
|
|
dev_to_node(dev));
|
|
if (!ptr)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
addr = memremap(offset, size, flags);
|
|
if (addr) {
|
|
*ptr = addr;
|
|
devres_add(dev, ptr);
|
|
} else {
|
|
devres_free(ptr);
|
|
return ERR_PTR(-ENXIO);
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(devm_memremap);
|
|
|
|
void devm_memunmap(struct device *dev, void *addr)
|
|
{
|
|
WARN_ON(devres_release(dev, devm_memremap_release,
|
|
devm_memremap_match, addr));
|
|
}
|
|
EXPORT_SYMBOL(devm_memunmap);
|
|
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
static DEFINE_MUTEX(pgmap_lock);
|
|
static RADIX_TREE(pgmap_radix, GFP_KERNEL);
|
|
#define SECTION_MASK ~((1UL << PA_SECTION_SHIFT) - 1)
|
|
#define SECTION_SIZE (1UL << PA_SECTION_SHIFT)
|
|
|
|
struct page_map {
|
|
struct resource res;
|
|
struct percpu_ref *ref;
|
|
struct dev_pagemap pgmap;
|
|
struct vmem_altmap altmap;
|
|
};
|
|
|
|
static unsigned long order_at(struct resource *res, unsigned long pgoff)
|
|
{
|
|
unsigned long phys_pgoff = PHYS_PFN(res->start) + pgoff;
|
|
unsigned long nr_pages, mask;
|
|
|
|
nr_pages = PHYS_PFN(resource_size(res));
|
|
if (nr_pages == pgoff)
|
|
return ULONG_MAX;
|
|
|
|
/*
|
|
* What is the largest aligned power-of-2 range available from
|
|
* this resource pgoff to the end of the resource range,
|
|
* considering the alignment of the current pgoff?
|
|
*/
|
|
mask = phys_pgoff | rounddown_pow_of_two(nr_pages - pgoff);
|
|
if (!mask)
|
|
return ULONG_MAX;
|
|
|
|
return find_first_bit(&mask, BITS_PER_LONG);
|
|
}
|
|
|
|
#define foreach_order_pgoff(res, order, pgoff) \
|
|
for (pgoff = 0, order = order_at((res), pgoff); order < ULONG_MAX; \
|
|
pgoff += 1UL << order, order = order_at((res), pgoff))
|
|
|
|
#if IS_ENABLED(CONFIG_DEVICE_PRIVATE)
|
|
int device_private_entry_fault(struct vm_area_struct *vma,
|
|
unsigned long addr,
|
|
swp_entry_t entry,
|
|
unsigned int flags,
|
|
pmd_t *pmdp)
|
|
{
|
|
struct page *page = device_private_entry_to_page(entry);
|
|
|
|
/*
|
|
* The page_fault() callback must migrate page back to system memory
|
|
* so that CPU can access it. This might fail for various reasons
|
|
* (device issue, device was unsafely unplugged, ...). When such
|
|
* error conditions happen, the callback must return VM_FAULT_SIGBUS.
|
|
*
|
|
* Note that because memory cgroup charges are accounted to the device
|
|
* memory, this should never fail because of memory restrictions (but
|
|
* allocation of regular system page might still fail because we are
|
|
* out of memory).
|
|
*
|
|
* There is a more in-depth description of what that callback can and
|
|
* cannot do, in include/linux/memremap.h
|
|
*/
|
|
return page->pgmap->page_fault(vma, addr, page, flags, pmdp);
|
|
}
|
|
EXPORT_SYMBOL(device_private_entry_fault);
|
|
#endif /* CONFIG_DEVICE_PRIVATE */
|
|
|
|
static void pgmap_radix_release(struct resource *res)
|
|
{
|
|
unsigned long pgoff, order;
|
|
|
|
mutex_lock(&pgmap_lock);
|
|
foreach_order_pgoff(res, order, pgoff)
|
|
radix_tree_delete(&pgmap_radix, PHYS_PFN(res->start) + pgoff);
|
|
mutex_unlock(&pgmap_lock);
|
|
|
|
synchronize_rcu();
|
|
}
|
|
|
|
static unsigned long pfn_first(struct page_map *page_map)
|
|
{
|
|
struct dev_pagemap *pgmap = &page_map->pgmap;
|
|
const struct resource *res = &page_map->res;
|
|
struct vmem_altmap *altmap = pgmap->altmap;
|
|
unsigned long pfn;
|
|
|
|
pfn = res->start >> PAGE_SHIFT;
|
|
if (altmap)
|
|
pfn += vmem_altmap_offset(altmap);
|
|
return pfn;
|
|
}
|
|
|
|
static unsigned long pfn_end(struct page_map *page_map)
|
|
{
|
|
const struct resource *res = &page_map->res;
|
|
|
|
return (res->start + resource_size(res)) >> PAGE_SHIFT;
|
|
}
|
|
|
|
#define for_each_device_pfn(pfn, map) \
|
|
for (pfn = pfn_first(map); pfn < pfn_end(map); pfn++)
|
|
|
|
static void devm_memremap_pages_release(struct device *dev, void *data)
|
|
{
|
|
struct page_map *page_map = data;
|
|
struct resource *res = &page_map->res;
|
|
resource_size_t align_start, align_size;
|
|
struct dev_pagemap *pgmap = &page_map->pgmap;
|
|
unsigned long pfn;
|
|
|
|
for_each_device_pfn(pfn, page_map)
|
|
put_page(pfn_to_page(pfn));
|
|
|
|
if (percpu_ref_tryget_live(pgmap->ref)) {
|
|
dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
|
|
percpu_ref_put(pgmap->ref);
|
|
}
|
|
|
|
/* pages are dead and unused, undo the arch mapping */
|
|
align_start = res->start & ~(SECTION_SIZE - 1);
|
|
align_size = ALIGN(resource_size(res), SECTION_SIZE);
|
|
|
|
mem_hotplug_begin();
|
|
arch_remove_memory(align_start, align_size);
|
|
mem_hotplug_done();
|
|
|
|
untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
|
|
pgmap_radix_release(res);
|
|
dev_WARN_ONCE(dev, pgmap->altmap && pgmap->altmap->alloc,
|
|
"%s: failed to free all reserved pages\n", __func__);
|
|
}
|
|
|
|
/* assumes rcu_read_lock() held at entry */
|
|
struct dev_pagemap *find_dev_pagemap(resource_size_t phys)
|
|
{
|
|
struct page_map *page_map;
|
|
|
|
WARN_ON_ONCE(!rcu_read_lock_held());
|
|
|
|
page_map = radix_tree_lookup(&pgmap_radix, PHYS_PFN(phys));
|
|
return page_map ? &page_map->pgmap : NULL;
|
|
}
|
|
|
|
/**
|
|
* devm_memremap_pages - remap and provide memmap backing for the given resource
|
|
* @dev: hosting device for @res
|
|
* @res: "host memory" address range
|
|
* @ref: a live per-cpu reference count
|
|
* @altmap: optional descriptor for allocating the memmap from @res
|
|
*
|
|
* Notes:
|
|
* 1/ @ref must be 'live' on entry and 'dead' before devm_memunmap_pages() time
|
|
* (or devm release event). The expected order of events is that @ref has
|
|
* been through percpu_ref_kill() before devm_memremap_pages_release(). The
|
|
* wait for the completion of all references being dropped and
|
|
* percpu_ref_exit() must occur after devm_memremap_pages_release().
|
|
*
|
|
* 2/ @res is expected to be a host memory range that could feasibly be
|
|
* treated as a "System RAM" range, i.e. not a device mmio range, but
|
|
* this is not enforced.
|
|
*/
|
|
void *devm_memremap_pages(struct device *dev, struct resource *res,
|
|
struct percpu_ref *ref, struct vmem_altmap *altmap)
|
|
{
|
|
resource_size_t align_start, align_size, align_end;
|
|
unsigned long pfn, pgoff, order;
|
|
pgprot_t pgprot = PAGE_KERNEL;
|
|
struct dev_pagemap *pgmap;
|
|
struct page_map *page_map;
|
|
int error, nid, is_ram;
|
|
|
|
align_start = res->start & ~(SECTION_SIZE - 1);
|
|
align_size = ALIGN(res->start + resource_size(res), SECTION_SIZE)
|
|
- align_start;
|
|
is_ram = region_intersects(align_start, align_size,
|
|
IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE);
|
|
|
|
if (is_ram == REGION_MIXED) {
|
|
WARN_ONCE(1, "%s attempted on mixed region %pr\n",
|
|
__func__, res);
|
|
return ERR_PTR(-ENXIO);
|
|
}
|
|
|
|
if (is_ram == REGION_INTERSECTS)
|
|
return __va(res->start);
|
|
|
|
if (!ref)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
page_map = devres_alloc_node(devm_memremap_pages_release,
|
|
sizeof(*page_map), GFP_KERNEL, dev_to_node(dev));
|
|
if (!page_map)
|
|
return ERR_PTR(-ENOMEM);
|
|
pgmap = &page_map->pgmap;
|
|
|
|
memcpy(&page_map->res, res, sizeof(*res));
|
|
|
|
pgmap->dev = dev;
|
|
if (altmap) {
|
|
memcpy(&page_map->altmap, altmap, sizeof(*altmap));
|
|
pgmap->altmap = &page_map->altmap;
|
|
}
|
|
pgmap->ref = ref;
|
|
pgmap->res = &page_map->res;
|
|
pgmap->type = MEMORY_DEVICE_HOST;
|
|
pgmap->page_fault = NULL;
|
|
pgmap->page_free = NULL;
|
|
pgmap->data = NULL;
|
|
|
|
mutex_lock(&pgmap_lock);
|
|
error = 0;
|
|
align_end = align_start + align_size - 1;
|
|
|
|
foreach_order_pgoff(res, order, pgoff) {
|
|
struct dev_pagemap *dup;
|
|
|
|
rcu_read_lock();
|
|
dup = find_dev_pagemap(res->start + PFN_PHYS(pgoff));
|
|
rcu_read_unlock();
|
|
if (dup) {
|
|
dev_err(dev, "%s: %pr collides with mapping for %s\n",
|
|
__func__, res, dev_name(dup->dev));
|
|
error = -EBUSY;
|
|
break;
|
|
}
|
|
error = __radix_tree_insert(&pgmap_radix,
|
|
PHYS_PFN(res->start) + pgoff, order, page_map);
|
|
if (error) {
|
|
dev_err(dev, "%s: failed: %d\n", __func__, error);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&pgmap_lock);
|
|
if (error)
|
|
goto err_radix;
|
|
|
|
nid = dev_to_node(dev);
|
|
if (nid < 0)
|
|
nid = numa_mem_id();
|
|
|
|
error = track_pfn_remap(NULL, &pgprot, PHYS_PFN(align_start), 0,
|
|
align_size);
|
|
if (error)
|
|
goto err_pfn_remap;
|
|
|
|
mem_hotplug_begin();
|
|
error = arch_add_memory(nid, align_start, align_size, false);
|
|
if (!error)
|
|
move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
|
|
align_start >> PAGE_SHIFT,
|
|
align_size >> PAGE_SHIFT);
|
|
mem_hotplug_done();
|
|
if (error)
|
|
goto err_add_memory;
|
|
|
|
for_each_device_pfn(pfn, page_map) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
/*
|
|
* ZONE_DEVICE pages union ->lru with a ->pgmap back
|
|
* pointer. It is a bug if a ZONE_DEVICE page is ever
|
|
* freed or placed on a driver-private list. Seed the
|
|
* storage with LIST_POISON* values.
|
|
*/
|
|
list_del(&page->lru);
|
|
page->pgmap = pgmap;
|
|
percpu_ref_get(ref);
|
|
}
|
|
devres_add(dev, page_map);
|
|
return __va(res->start);
|
|
|
|
err_add_memory:
|
|
untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
|
|
err_pfn_remap:
|
|
err_radix:
|
|
pgmap_radix_release(res);
|
|
devres_free(page_map);
|
|
return ERR_PTR(error);
|
|
}
|
|
EXPORT_SYMBOL(devm_memremap_pages);
|
|
|
|
unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
|
|
{
|
|
/* number of pfns from base where pfn_to_page() is valid */
|
|
return altmap->reserve + altmap->free;
|
|
}
|
|
|
|
void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns)
|
|
{
|
|
altmap->alloc -= nr_pfns;
|
|
}
|
|
|
|
struct vmem_altmap *to_vmem_altmap(unsigned long memmap_start)
|
|
{
|
|
/*
|
|
* 'memmap_start' is the virtual address for the first "struct
|
|
* page" in this range of the vmemmap array. In the case of
|
|
* CONFIG_SPARSEMEM_VMEMMAP a page_to_pfn conversion is simple
|
|
* pointer arithmetic, so we can perform this to_vmem_altmap()
|
|
* conversion without concern for the initialization state of
|
|
* the struct page fields.
|
|
*/
|
|
struct page *page = (struct page *) memmap_start;
|
|
struct dev_pagemap *pgmap;
|
|
|
|
/*
|
|
* Unconditionally retrieve a dev_pagemap associated with the
|
|
* given physical address, this is only for use in the
|
|
* arch_{add|remove}_memory() for setting up and tearing down
|
|
* the memmap.
|
|
*/
|
|
rcu_read_lock();
|
|
pgmap = find_dev_pagemap(__pfn_to_phys(page_to_pfn(page)));
|
|
rcu_read_unlock();
|
|
|
|
return pgmap ? pgmap->altmap : NULL;
|
|
}
|
|
#endif /* CONFIG_ZONE_DEVICE */
|
|
|
|
|
|
#if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
|
|
void put_zone_device_private_or_public_page(struct page *page)
|
|
{
|
|
int count = page_ref_dec_return(page);
|
|
|
|
/*
|
|
* If refcount is 1 then page is freed and refcount is stable as nobody
|
|
* holds a reference on the page.
|
|
*/
|
|
if (count == 1) {
|
|
/* Clear Active bit in case of parallel mark_page_accessed */
|
|
__ClearPageActive(page);
|
|
__ClearPageWaiters(page);
|
|
|
|
page->mapping = NULL;
|
|
mem_cgroup_uncharge(page);
|
|
|
|
page->pgmap->page_free(page, page->pgmap->data);
|
|
} else if (!count)
|
|
__put_page(page);
|
|
}
|
|
EXPORT_SYMBOL(put_zone_device_private_or_public_page);
|
|
#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
|