81231c698a
When cr0.mp is clear, the guest doesn't expect a #NM in response to a WAIT instruction. Because we always keep cr0.mp set, it will get a #NM, and potentially be confused. Fix by keeping cr0.mp set only when the fpu is inactive, and passing it through when inactive. Reported-by: Lorenzo Martignoni <martignlo@gmail.com> Analyzed-by: Gleb Natapov <gleb@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
4267 lines
109 KiB
C
4267 lines
109 KiB
C
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* This module enables machines with Intel VT-x extensions to run virtual
|
|
* machines without emulation or binary translation.
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@qumranet.com>
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "irq.h"
|
|
#include "mmu.h"
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/ftrace_event.h>
|
|
#include "kvm_cache_regs.h"
|
|
#include "x86.h"
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/vmx.h>
|
|
#include <asm/virtext.h>
|
|
#include <asm/mce.h>
|
|
|
|
#include "trace.h"
|
|
|
|
#define __ex(x) __kvm_handle_fault_on_reboot(x)
|
|
|
|
MODULE_AUTHOR("Qumranet");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static int __read_mostly bypass_guest_pf = 1;
|
|
module_param(bypass_guest_pf, bool, S_IRUGO);
|
|
|
|
static int __read_mostly enable_vpid = 1;
|
|
module_param_named(vpid, enable_vpid, bool, 0444);
|
|
|
|
static int __read_mostly flexpriority_enabled = 1;
|
|
module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
|
|
|
|
static int __read_mostly enable_ept = 1;
|
|
module_param_named(ept, enable_ept, bool, S_IRUGO);
|
|
|
|
static int __read_mostly enable_unrestricted_guest = 1;
|
|
module_param_named(unrestricted_guest,
|
|
enable_unrestricted_guest, bool, S_IRUGO);
|
|
|
|
static int __read_mostly emulate_invalid_guest_state = 0;
|
|
module_param(emulate_invalid_guest_state, bool, S_IRUGO);
|
|
|
|
#define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
|
|
(X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
|
|
#define KVM_GUEST_CR0_MASK \
|
|
(KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
|
|
#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
|
|
(X86_CR0_WP | X86_CR0_NE)
|
|
#define KVM_VM_CR0_ALWAYS_ON \
|
|
(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
|
|
#define KVM_CR4_GUEST_OWNED_BITS \
|
|
(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
|
|
| X86_CR4_OSXMMEXCPT)
|
|
|
|
#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
|
|
#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
|
|
|
|
/*
|
|
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
|
|
* ple_gap: upper bound on the amount of time between two successive
|
|
* executions of PAUSE in a loop. Also indicate if ple enabled.
|
|
* According to test, this time is usually small than 41 cycles.
|
|
* ple_window: upper bound on the amount of time a guest is allowed to execute
|
|
* in a PAUSE loop. Tests indicate that most spinlocks are held for
|
|
* less than 2^12 cycles
|
|
* Time is measured based on a counter that runs at the same rate as the TSC,
|
|
* refer SDM volume 3b section 21.6.13 & 22.1.3.
|
|
*/
|
|
#define KVM_VMX_DEFAULT_PLE_GAP 41
|
|
#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
|
|
static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
|
|
module_param(ple_gap, int, S_IRUGO);
|
|
|
|
static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
|
|
module_param(ple_window, int, S_IRUGO);
|
|
|
|
struct vmcs {
|
|
u32 revision_id;
|
|
u32 abort;
|
|
char data[0];
|
|
};
|
|
|
|
struct shared_msr_entry {
|
|
unsigned index;
|
|
u64 data;
|
|
u64 mask;
|
|
};
|
|
|
|
struct vcpu_vmx {
|
|
struct kvm_vcpu vcpu;
|
|
struct list_head local_vcpus_link;
|
|
unsigned long host_rsp;
|
|
int launched;
|
|
u8 fail;
|
|
u32 idt_vectoring_info;
|
|
struct shared_msr_entry *guest_msrs;
|
|
int nmsrs;
|
|
int save_nmsrs;
|
|
#ifdef CONFIG_X86_64
|
|
u64 msr_host_kernel_gs_base;
|
|
u64 msr_guest_kernel_gs_base;
|
|
#endif
|
|
struct vmcs *vmcs;
|
|
struct {
|
|
int loaded;
|
|
u16 fs_sel, gs_sel, ldt_sel;
|
|
int gs_ldt_reload_needed;
|
|
int fs_reload_needed;
|
|
} host_state;
|
|
struct {
|
|
int vm86_active;
|
|
u8 save_iopl;
|
|
struct kvm_save_segment {
|
|
u16 selector;
|
|
unsigned long base;
|
|
u32 limit;
|
|
u32 ar;
|
|
} tr, es, ds, fs, gs;
|
|
struct {
|
|
bool pending;
|
|
u8 vector;
|
|
unsigned rip;
|
|
} irq;
|
|
} rmode;
|
|
int vpid;
|
|
bool emulation_required;
|
|
|
|
/* Support for vnmi-less CPUs */
|
|
int soft_vnmi_blocked;
|
|
ktime_t entry_time;
|
|
s64 vnmi_blocked_time;
|
|
u32 exit_reason;
|
|
|
|
bool rdtscp_enabled;
|
|
};
|
|
|
|
static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
|
|
{
|
|
return container_of(vcpu, struct vcpu_vmx, vcpu);
|
|
}
|
|
|
|
static int init_rmode(struct kvm *kvm);
|
|
static u64 construct_eptp(unsigned long root_hpa);
|
|
|
|
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
|
|
static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
|
|
static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
|
|
|
|
static unsigned long *vmx_io_bitmap_a;
|
|
static unsigned long *vmx_io_bitmap_b;
|
|
static unsigned long *vmx_msr_bitmap_legacy;
|
|
static unsigned long *vmx_msr_bitmap_longmode;
|
|
|
|
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
|
|
static DEFINE_SPINLOCK(vmx_vpid_lock);
|
|
|
|
static struct vmcs_config {
|
|
int size;
|
|
int order;
|
|
u32 revision_id;
|
|
u32 pin_based_exec_ctrl;
|
|
u32 cpu_based_exec_ctrl;
|
|
u32 cpu_based_2nd_exec_ctrl;
|
|
u32 vmexit_ctrl;
|
|
u32 vmentry_ctrl;
|
|
} vmcs_config;
|
|
|
|
static struct vmx_capability {
|
|
u32 ept;
|
|
u32 vpid;
|
|
} vmx_capability;
|
|
|
|
#define VMX_SEGMENT_FIELD(seg) \
|
|
[VCPU_SREG_##seg] = { \
|
|
.selector = GUEST_##seg##_SELECTOR, \
|
|
.base = GUEST_##seg##_BASE, \
|
|
.limit = GUEST_##seg##_LIMIT, \
|
|
.ar_bytes = GUEST_##seg##_AR_BYTES, \
|
|
}
|
|
|
|
static struct kvm_vmx_segment_field {
|
|
unsigned selector;
|
|
unsigned base;
|
|
unsigned limit;
|
|
unsigned ar_bytes;
|
|
} kvm_vmx_segment_fields[] = {
|
|
VMX_SEGMENT_FIELD(CS),
|
|
VMX_SEGMENT_FIELD(DS),
|
|
VMX_SEGMENT_FIELD(ES),
|
|
VMX_SEGMENT_FIELD(FS),
|
|
VMX_SEGMENT_FIELD(GS),
|
|
VMX_SEGMENT_FIELD(SS),
|
|
VMX_SEGMENT_FIELD(TR),
|
|
VMX_SEGMENT_FIELD(LDTR),
|
|
};
|
|
|
|
static u64 host_efer;
|
|
|
|
static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
|
|
|
|
/*
|
|
* Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
|
|
* away by decrementing the array size.
|
|
*/
|
|
static const u32 vmx_msr_index[] = {
|
|
#ifdef CONFIG_X86_64
|
|
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
|
|
#endif
|
|
MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
|
|
};
|
|
#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
|
|
|
|
static inline int is_page_fault(u32 intr_info)
|
|
{
|
|
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
|
|
INTR_INFO_VALID_MASK)) ==
|
|
(INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
|
|
}
|
|
|
|
static inline int is_no_device(u32 intr_info)
|
|
{
|
|
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
|
|
INTR_INFO_VALID_MASK)) ==
|
|
(INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
|
|
}
|
|
|
|
static inline int is_invalid_opcode(u32 intr_info)
|
|
{
|
|
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
|
|
INTR_INFO_VALID_MASK)) ==
|
|
(INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
|
|
}
|
|
|
|
static inline int is_external_interrupt(u32 intr_info)
|
|
{
|
|
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
|
|
== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
|
|
}
|
|
|
|
static inline int is_machine_check(u32 intr_info)
|
|
{
|
|
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
|
|
INTR_INFO_VALID_MASK)) ==
|
|
(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
|
|
}
|
|
|
|
static inline int cpu_has_vmx_msr_bitmap(void)
|
|
{
|
|
return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
|
|
}
|
|
|
|
static inline int cpu_has_vmx_tpr_shadow(void)
|
|
{
|
|
return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
|
|
}
|
|
|
|
static inline int vm_need_tpr_shadow(struct kvm *kvm)
|
|
{
|
|
return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
|
|
}
|
|
|
|
static inline int cpu_has_secondary_exec_ctrls(void)
|
|
{
|
|
return vmcs_config.cpu_based_exec_ctrl &
|
|
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
|
|
}
|
|
|
|
static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
|
|
{
|
|
return vmcs_config.cpu_based_2nd_exec_ctrl &
|
|
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
|
|
}
|
|
|
|
static inline bool cpu_has_vmx_flexpriority(void)
|
|
{
|
|
return cpu_has_vmx_tpr_shadow() &&
|
|
cpu_has_vmx_virtualize_apic_accesses();
|
|
}
|
|
|
|
static inline bool cpu_has_vmx_ept_execute_only(void)
|
|
{
|
|
return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
|
|
}
|
|
|
|
static inline bool cpu_has_vmx_eptp_uncacheable(void)
|
|
{
|
|
return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
|
|
}
|
|
|
|
static inline bool cpu_has_vmx_eptp_writeback(void)
|
|
{
|
|
return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
|
|
}
|
|
|
|
static inline bool cpu_has_vmx_ept_2m_page(void)
|
|
{
|
|
return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
|
|
}
|
|
|
|
static inline bool cpu_has_vmx_ept_1g_page(void)
|
|
{
|
|
return !!(vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT);
|
|
}
|
|
|
|
static inline int cpu_has_vmx_invept_individual_addr(void)
|
|
{
|
|
return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
|
|
}
|
|
|
|
static inline int cpu_has_vmx_invept_context(void)
|
|
{
|
|
return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
|
|
}
|
|
|
|
static inline int cpu_has_vmx_invept_global(void)
|
|
{
|
|
return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
|
|
}
|
|
|
|
static inline int cpu_has_vmx_ept(void)
|
|
{
|
|
return vmcs_config.cpu_based_2nd_exec_ctrl &
|
|
SECONDARY_EXEC_ENABLE_EPT;
|
|
}
|
|
|
|
static inline int cpu_has_vmx_unrestricted_guest(void)
|
|
{
|
|
return vmcs_config.cpu_based_2nd_exec_ctrl &
|
|
SECONDARY_EXEC_UNRESTRICTED_GUEST;
|
|
}
|
|
|
|
static inline int cpu_has_vmx_ple(void)
|
|
{
|
|
return vmcs_config.cpu_based_2nd_exec_ctrl &
|
|
SECONDARY_EXEC_PAUSE_LOOP_EXITING;
|
|
}
|
|
|
|
static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
|
|
{
|
|
return flexpriority_enabled &&
|
|
(cpu_has_vmx_virtualize_apic_accesses()) &&
|
|
(irqchip_in_kernel(kvm));
|
|
}
|
|
|
|
static inline int cpu_has_vmx_vpid(void)
|
|
{
|
|
return vmcs_config.cpu_based_2nd_exec_ctrl &
|
|
SECONDARY_EXEC_ENABLE_VPID;
|
|
}
|
|
|
|
static inline int cpu_has_vmx_rdtscp(void)
|
|
{
|
|
return vmcs_config.cpu_based_2nd_exec_ctrl &
|
|
SECONDARY_EXEC_RDTSCP;
|
|
}
|
|
|
|
static inline int cpu_has_virtual_nmis(void)
|
|
{
|
|
return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
|
|
}
|
|
|
|
static inline bool report_flexpriority(void)
|
|
{
|
|
return flexpriority_enabled;
|
|
}
|
|
|
|
static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < vmx->nmsrs; ++i)
|
|
if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
|
|
return i;
|
|
return -1;
|
|
}
|
|
|
|
static inline void __invvpid(int ext, u16 vpid, gva_t gva)
|
|
{
|
|
struct {
|
|
u64 vpid : 16;
|
|
u64 rsvd : 48;
|
|
u64 gva;
|
|
} operand = { vpid, 0, gva };
|
|
|
|
asm volatile (__ex(ASM_VMX_INVVPID)
|
|
/* CF==1 or ZF==1 --> rc = -1 */
|
|
"; ja 1f ; ud2 ; 1:"
|
|
: : "a"(&operand), "c"(ext) : "cc", "memory");
|
|
}
|
|
|
|
static inline void __invept(int ext, u64 eptp, gpa_t gpa)
|
|
{
|
|
struct {
|
|
u64 eptp, gpa;
|
|
} operand = {eptp, gpa};
|
|
|
|
asm volatile (__ex(ASM_VMX_INVEPT)
|
|
/* CF==1 or ZF==1 --> rc = -1 */
|
|
"; ja 1f ; ud2 ; 1:\n"
|
|
: : "a" (&operand), "c" (ext) : "cc", "memory");
|
|
}
|
|
|
|
static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
|
|
{
|
|
int i;
|
|
|
|
i = __find_msr_index(vmx, msr);
|
|
if (i >= 0)
|
|
return &vmx->guest_msrs[i];
|
|
return NULL;
|
|
}
|
|
|
|
static void vmcs_clear(struct vmcs *vmcs)
|
|
{
|
|
u64 phys_addr = __pa(vmcs);
|
|
u8 error;
|
|
|
|
asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
|
|
: "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
|
|
: "cc", "memory");
|
|
if (error)
|
|
printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
|
|
vmcs, phys_addr);
|
|
}
|
|
|
|
static void __vcpu_clear(void *arg)
|
|
{
|
|
struct vcpu_vmx *vmx = arg;
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
if (vmx->vcpu.cpu == cpu)
|
|
vmcs_clear(vmx->vmcs);
|
|
if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
|
|
per_cpu(current_vmcs, cpu) = NULL;
|
|
rdtscll(vmx->vcpu.arch.host_tsc);
|
|
list_del(&vmx->local_vcpus_link);
|
|
vmx->vcpu.cpu = -1;
|
|
vmx->launched = 0;
|
|
}
|
|
|
|
static void vcpu_clear(struct vcpu_vmx *vmx)
|
|
{
|
|
if (vmx->vcpu.cpu == -1)
|
|
return;
|
|
smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
|
|
}
|
|
|
|
static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
|
|
{
|
|
if (vmx->vpid == 0)
|
|
return;
|
|
|
|
__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
|
|
}
|
|
|
|
static inline void ept_sync_global(void)
|
|
{
|
|
if (cpu_has_vmx_invept_global())
|
|
__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
|
|
}
|
|
|
|
static inline void ept_sync_context(u64 eptp)
|
|
{
|
|
if (enable_ept) {
|
|
if (cpu_has_vmx_invept_context())
|
|
__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
|
|
else
|
|
ept_sync_global();
|
|
}
|
|
}
|
|
|
|
static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
|
|
{
|
|
if (enable_ept) {
|
|
if (cpu_has_vmx_invept_individual_addr())
|
|
__invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
|
|
eptp, gpa);
|
|
else
|
|
ept_sync_context(eptp);
|
|
}
|
|
}
|
|
|
|
static unsigned long vmcs_readl(unsigned long field)
|
|
{
|
|
unsigned long value;
|
|
|
|
asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
|
|
: "=a"(value) : "d"(field) : "cc");
|
|
return value;
|
|
}
|
|
|
|
static u16 vmcs_read16(unsigned long field)
|
|
{
|
|
return vmcs_readl(field);
|
|
}
|
|
|
|
static u32 vmcs_read32(unsigned long field)
|
|
{
|
|
return vmcs_readl(field);
|
|
}
|
|
|
|
static u64 vmcs_read64(unsigned long field)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
return vmcs_readl(field);
|
|
#else
|
|
return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
|
|
#endif
|
|
}
|
|
|
|
static noinline void vmwrite_error(unsigned long field, unsigned long value)
|
|
{
|
|
printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
|
|
field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
|
|
dump_stack();
|
|
}
|
|
|
|
static void vmcs_writel(unsigned long field, unsigned long value)
|
|
{
|
|
u8 error;
|
|
|
|
asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
|
|
: "=q"(error) : "a"(value), "d"(field) : "cc");
|
|
if (unlikely(error))
|
|
vmwrite_error(field, value);
|
|
}
|
|
|
|
static void vmcs_write16(unsigned long field, u16 value)
|
|
{
|
|
vmcs_writel(field, value);
|
|
}
|
|
|
|
static void vmcs_write32(unsigned long field, u32 value)
|
|
{
|
|
vmcs_writel(field, value);
|
|
}
|
|
|
|
static void vmcs_write64(unsigned long field, u64 value)
|
|
{
|
|
vmcs_writel(field, value);
|
|
#ifndef CONFIG_X86_64
|
|
asm volatile ("");
|
|
vmcs_writel(field+1, value >> 32);
|
|
#endif
|
|
}
|
|
|
|
static void vmcs_clear_bits(unsigned long field, u32 mask)
|
|
{
|
|
vmcs_writel(field, vmcs_readl(field) & ~mask);
|
|
}
|
|
|
|
static void vmcs_set_bits(unsigned long field, u32 mask)
|
|
{
|
|
vmcs_writel(field, vmcs_readl(field) | mask);
|
|
}
|
|
|
|
static void update_exception_bitmap(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 eb;
|
|
|
|
eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
|
|
(1u << NM_VECTOR) | (1u << DB_VECTOR);
|
|
if ((vcpu->guest_debug &
|
|
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
|
|
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
|
|
eb |= 1u << BP_VECTOR;
|
|
if (to_vmx(vcpu)->rmode.vm86_active)
|
|
eb = ~0;
|
|
if (enable_ept)
|
|
eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
|
|
if (vcpu->fpu_active)
|
|
eb &= ~(1u << NM_VECTOR);
|
|
vmcs_write32(EXCEPTION_BITMAP, eb);
|
|
}
|
|
|
|
static void reload_tss(void)
|
|
{
|
|
/*
|
|
* VT restores TR but not its size. Useless.
|
|
*/
|
|
struct descriptor_table gdt;
|
|
struct desc_struct *descs;
|
|
|
|
kvm_get_gdt(&gdt);
|
|
descs = (void *)gdt.base;
|
|
descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
|
|
load_TR_desc();
|
|
}
|
|
|
|
static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
|
|
{
|
|
u64 guest_efer;
|
|
u64 ignore_bits;
|
|
|
|
guest_efer = vmx->vcpu.arch.efer;
|
|
|
|
/*
|
|
* NX is emulated; LMA and LME handled by hardware; SCE meaninless
|
|
* outside long mode
|
|
*/
|
|
ignore_bits = EFER_NX | EFER_SCE;
|
|
#ifdef CONFIG_X86_64
|
|
ignore_bits |= EFER_LMA | EFER_LME;
|
|
/* SCE is meaningful only in long mode on Intel */
|
|
if (guest_efer & EFER_LMA)
|
|
ignore_bits &= ~(u64)EFER_SCE;
|
|
#endif
|
|
guest_efer &= ~ignore_bits;
|
|
guest_efer |= host_efer & ignore_bits;
|
|
vmx->guest_msrs[efer_offset].data = guest_efer;
|
|
vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
|
|
return true;
|
|
}
|
|
|
|
static void vmx_save_host_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
int i;
|
|
|
|
if (vmx->host_state.loaded)
|
|
return;
|
|
|
|
vmx->host_state.loaded = 1;
|
|
/*
|
|
* Set host fs and gs selectors. Unfortunately, 22.2.3 does not
|
|
* allow segment selectors with cpl > 0 or ti == 1.
|
|
*/
|
|
vmx->host_state.ldt_sel = kvm_read_ldt();
|
|
vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
|
|
vmx->host_state.fs_sel = kvm_read_fs();
|
|
if (!(vmx->host_state.fs_sel & 7)) {
|
|
vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
|
|
vmx->host_state.fs_reload_needed = 0;
|
|
} else {
|
|
vmcs_write16(HOST_FS_SELECTOR, 0);
|
|
vmx->host_state.fs_reload_needed = 1;
|
|
}
|
|
vmx->host_state.gs_sel = kvm_read_gs();
|
|
if (!(vmx->host_state.gs_sel & 7))
|
|
vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
|
|
else {
|
|
vmcs_write16(HOST_GS_SELECTOR, 0);
|
|
vmx->host_state.gs_ldt_reload_needed = 1;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
|
|
vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
|
|
#else
|
|
vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
|
|
vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (is_long_mode(&vmx->vcpu)) {
|
|
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
|
|
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
|
|
}
|
|
#endif
|
|
for (i = 0; i < vmx->save_nmsrs; ++i)
|
|
kvm_set_shared_msr(vmx->guest_msrs[i].index,
|
|
vmx->guest_msrs[i].data,
|
|
vmx->guest_msrs[i].mask);
|
|
}
|
|
|
|
static void __vmx_load_host_state(struct vcpu_vmx *vmx)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!vmx->host_state.loaded)
|
|
return;
|
|
|
|
++vmx->vcpu.stat.host_state_reload;
|
|
vmx->host_state.loaded = 0;
|
|
if (vmx->host_state.fs_reload_needed)
|
|
kvm_load_fs(vmx->host_state.fs_sel);
|
|
if (vmx->host_state.gs_ldt_reload_needed) {
|
|
kvm_load_ldt(vmx->host_state.ldt_sel);
|
|
/*
|
|
* If we have to reload gs, we must take care to
|
|
* preserve our gs base.
|
|
*/
|
|
local_irq_save(flags);
|
|
kvm_load_gs(vmx->host_state.gs_sel);
|
|
#ifdef CONFIG_X86_64
|
|
wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
|
|
#endif
|
|
local_irq_restore(flags);
|
|
}
|
|
reload_tss();
|
|
#ifdef CONFIG_X86_64
|
|
if (is_long_mode(&vmx->vcpu)) {
|
|
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
|
|
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void vmx_load_host_state(struct vcpu_vmx *vmx)
|
|
{
|
|
preempt_disable();
|
|
__vmx_load_host_state(vmx);
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* Switches to specified vcpu, until a matching vcpu_put(), but assumes
|
|
* vcpu mutex is already taken.
|
|
*/
|
|
static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u64 phys_addr = __pa(vmx->vmcs);
|
|
u64 tsc_this, delta, new_offset;
|
|
|
|
if (vcpu->cpu != cpu) {
|
|
vcpu_clear(vmx);
|
|
kvm_migrate_timers(vcpu);
|
|
set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
|
|
local_irq_disable();
|
|
list_add(&vmx->local_vcpus_link,
|
|
&per_cpu(vcpus_on_cpu, cpu));
|
|
local_irq_enable();
|
|
}
|
|
|
|
if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
|
|
u8 error;
|
|
|
|
per_cpu(current_vmcs, cpu) = vmx->vmcs;
|
|
asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
|
|
: "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
|
|
: "cc");
|
|
if (error)
|
|
printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
|
|
vmx->vmcs, phys_addr);
|
|
}
|
|
|
|
if (vcpu->cpu != cpu) {
|
|
struct descriptor_table dt;
|
|
unsigned long sysenter_esp;
|
|
|
|
vcpu->cpu = cpu;
|
|
/*
|
|
* Linux uses per-cpu TSS and GDT, so set these when switching
|
|
* processors.
|
|
*/
|
|
vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
|
|
kvm_get_gdt(&dt);
|
|
vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
|
|
|
|
rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
|
|
vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
|
|
|
|
/*
|
|
* Make sure the time stamp counter is monotonous.
|
|
*/
|
|
rdtscll(tsc_this);
|
|
if (tsc_this < vcpu->arch.host_tsc) {
|
|
delta = vcpu->arch.host_tsc - tsc_this;
|
|
new_offset = vmcs_read64(TSC_OFFSET) + delta;
|
|
vmcs_write64(TSC_OFFSET, new_offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
__vmx_load_host_state(to_vmx(vcpu));
|
|
}
|
|
|
|
static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
|
|
{
|
|
ulong cr0;
|
|
|
|
if (vcpu->fpu_active)
|
|
return;
|
|
vcpu->fpu_active = 1;
|
|
cr0 = vmcs_readl(GUEST_CR0);
|
|
cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
|
|
cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
|
|
vmcs_writel(GUEST_CR0, cr0);
|
|
update_exception_bitmap(vcpu);
|
|
vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
|
|
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
|
|
}
|
|
|
|
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
|
|
|
|
static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
|
|
{
|
|
vmx_decache_cr0_guest_bits(vcpu);
|
|
vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
|
|
update_exception_bitmap(vcpu);
|
|
vcpu->arch.cr0_guest_owned_bits = 0;
|
|
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
|
|
vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
|
|
}
|
|
|
|
static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long rflags;
|
|
|
|
rflags = vmcs_readl(GUEST_RFLAGS);
|
|
if (to_vmx(vcpu)->rmode.vm86_active)
|
|
rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
|
|
return rflags;
|
|
}
|
|
|
|
static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
|
|
{
|
|
if (to_vmx(vcpu)->rmode.vm86_active)
|
|
rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
|
|
vmcs_writel(GUEST_RFLAGS, rflags);
|
|
}
|
|
|
|
static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
|
|
{
|
|
u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
|
|
int ret = 0;
|
|
|
|
if (interruptibility & GUEST_INTR_STATE_STI)
|
|
ret |= X86_SHADOW_INT_STI;
|
|
if (interruptibility & GUEST_INTR_STATE_MOV_SS)
|
|
ret |= X86_SHADOW_INT_MOV_SS;
|
|
|
|
return ret & mask;
|
|
}
|
|
|
|
static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
|
|
{
|
|
u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
|
|
u32 interruptibility = interruptibility_old;
|
|
|
|
interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
|
|
|
|
if (mask & X86_SHADOW_INT_MOV_SS)
|
|
interruptibility |= GUEST_INTR_STATE_MOV_SS;
|
|
if (mask & X86_SHADOW_INT_STI)
|
|
interruptibility |= GUEST_INTR_STATE_STI;
|
|
|
|
if ((interruptibility != interruptibility_old))
|
|
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
|
|
}
|
|
|
|
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long rip;
|
|
|
|
rip = kvm_rip_read(vcpu);
|
|
rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
|
|
kvm_rip_write(vcpu, rip);
|
|
|
|
/* skipping an emulated instruction also counts */
|
|
vmx_set_interrupt_shadow(vcpu, 0);
|
|
}
|
|
|
|
static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
|
|
bool has_error_code, u32 error_code)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 intr_info = nr | INTR_INFO_VALID_MASK;
|
|
|
|
if (has_error_code) {
|
|
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
|
|
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
|
|
}
|
|
|
|
if (vmx->rmode.vm86_active) {
|
|
vmx->rmode.irq.pending = true;
|
|
vmx->rmode.irq.vector = nr;
|
|
vmx->rmode.irq.rip = kvm_rip_read(vcpu);
|
|
if (kvm_exception_is_soft(nr))
|
|
vmx->rmode.irq.rip +=
|
|
vmx->vcpu.arch.event_exit_inst_len;
|
|
intr_info |= INTR_TYPE_SOFT_INTR;
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
|
|
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
|
|
kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
|
|
return;
|
|
}
|
|
|
|
if (kvm_exception_is_soft(nr)) {
|
|
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
|
|
vmx->vcpu.arch.event_exit_inst_len);
|
|
intr_info |= INTR_TYPE_SOFT_EXCEPTION;
|
|
} else
|
|
intr_info |= INTR_TYPE_HARD_EXCEPTION;
|
|
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
|
|
}
|
|
|
|
static bool vmx_rdtscp_supported(void)
|
|
{
|
|
return cpu_has_vmx_rdtscp();
|
|
}
|
|
|
|
/*
|
|
* Swap MSR entry in host/guest MSR entry array.
|
|
*/
|
|
static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
|
|
{
|
|
struct shared_msr_entry tmp;
|
|
|
|
tmp = vmx->guest_msrs[to];
|
|
vmx->guest_msrs[to] = vmx->guest_msrs[from];
|
|
vmx->guest_msrs[from] = tmp;
|
|
}
|
|
|
|
/*
|
|
* Set up the vmcs to automatically save and restore system
|
|
* msrs. Don't touch the 64-bit msrs if the guest is in legacy
|
|
* mode, as fiddling with msrs is very expensive.
|
|
*/
|
|
static void setup_msrs(struct vcpu_vmx *vmx)
|
|
{
|
|
int save_nmsrs, index;
|
|
unsigned long *msr_bitmap;
|
|
|
|
vmx_load_host_state(vmx);
|
|
save_nmsrs = 0;
|
|
#ifdef CONFIG_X86_64
|
|
if (is_long_mode(&vmx->vcpu)) {
|
|
index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
|
|
if (index >= 0)
|
|
move_msr_up(vmx, index, save_nmsrs++);
|
|
index = __find_msr_index(vmx, MSR_LSTAR);
|
|
if (index >= 0)
|
|
move_msr_up(vmx, index, save_nmsrs++);
|
|
index = __find_msr_index(vmx, MSR_CSTAR);
|
|
if (index >= 0)
|
|
move_msr_up(vmx, index, save_nmsrs++);
|
|
index = __find_msr_index(vmx, MSR_TSC_AUX);
|
|
if (index >= 0 && vmx->rdtscp_enabled)
|
|
move_msr_up(vmx, index, save_nmsrs++);
|
|
/*
|
|
* MSR_K6_STAR is only needed on long mode guests, and only
|
|
* if efer.sce is enabled.
|
|
*/
|
|
index = __find_msr_index(vmx, MSR_K6_STAR);
|
|
if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
|
|
move_msr_up(vmx, index, save_nmsrs++);
|
|
}
|
|
#endif
|
|
index = __find_msr_index(vmx, MSR_EFER);
|
|
if (index >= 0 && update_transition_efer(vmx, index))
|
|
move_msr_up(vmx, index, save_nmsrs++);
|
|
|
|
vmx->save_nmsrs = save_nmsrs;
|
|
|
|
if (cpu_has_vmx_msr_bitmap()) {
|
|
if (is_long_mode(&vmx->vcpu))
|
|
msr_bitmap = vmx_msr_bitmap_longmode;
|
|
else
|
|
msr_bitmap = vmx_msr_bitmap_legacy;
|
|
|
|
vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* reads and returns guest's timestamp counter "register"
|
|
* guest_tsc = host_tsc + tsc_offset -- 21.3
|
|
*/
|
|
static u64 guest_read_tsc(void)
|
|
{
|
|
u64 host_tsc, tsc_offset;
|
|
|
|
rdtscll(host_tsc);
|
|
tsc_offset = vmcs_read64(TSC_OFFSET);
|
|
return host_tsc + tsc_offset;
|
|
}
|
|
|
|
/*
|
|
* writes 'guest_tsc' into guest's timestamp counter "register"
|
|
* guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
|
|
*/
|
|
static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
|
|
{
|
|
vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
|
|
}
|
|
|
|
/*
|
|
* Reads an msr value (of 'msr_index') into 'pdata'.
|
|
* Returns 0 on success, non-0 otherwise.
|
|
* Assumes vcpu_load() was already called.
|
|
*/
|
|
static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
|
|
{
|
|
u64 data;
|
|
struct shared_msr_entry *msr;
|
|
|
|
if (!pdata) {
|
|
printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (msr_index) {
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_FS_BASE:
|
|
data = vmcs_readl(GUEST_FS_BASE);
|
|
break;
|
|
case MSR_GS_BASE:
|
|
data = vmcs_readl(GUEST_GS_BASE);
|
|
break;
|
|
case MSR_KERNEL_GS_BASE:
|
|
vmx_load_host_state(to_vmx(vcpu));
|
|
data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
|
|
break;
|
|
#endif
|
|
case MSR_EFER:
|
|
return kvm_get_msr_common(vcpu, msr_index, pdata);
|
|
case MSR_IA32_TSC:
|
|
data = guest_read_tsc();
|
|
break;
|
|
case MSR_IA32_SYSENTER_CS:
|
|
data = vmcs_read32(GUEST_SYSENTER_CS);
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
data = vmcs_readl(GUEST_SYSENTER_EIP);
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
data = vmcs_readl(GUEST_SYSENTER_ESP);
|
|
break;
|
|
case MSR_TSC_AUX:
|
|
if (!to_vmx(vcpu)->rdtscp_enabled)
|
|
return 1;
|
|
/* Otherwise falls through */
|
|
default:
|
|
vmx_load_host_state(to_vmx(vcpu));
|
|
msr = find_msr_entry(to_vmx(vcpu), msr_index);
|
|
if (msr) {
|
|
vmx_load_host_state(to_vmx(vcpu));
|
|
data = msr->data;
|
|
break;
|
|
}
|
|
return kvm_get_msr_common(vcpu, msr_index, pdata);
|
|
}
|
|
|
|
*pdata = data;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Writes msr value into into the appropriate "register".
|
|
* Returns 0 on success, non-0 otherwise.
|
|
* Assumes vcpu_load() was already called.
|
|
*/
|
|
static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct shared_msr_entry *msr;
|
|
u64 host_tsc;
|
|
int ret = 0;
|
|
|
|
switch (msr_index) {
|
|
case MSR_EFER:
|
|
vmx_load_host_state(vmx);
|
|
ret = kvm_set_msr_common(vcpu, msr_index, data);
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_FS_BASE:
|
|
vmcs_writel(GUEST_FS_BASE, data);
|
|
break;
|
|
case MSR_GS_BASE:
|
|
vmcs_writel(GUEST_GS_BASE, data);
|
|
break;
|
|
case MSR_KERNEL_GS_BASE:
|
|
vmx_load_host_state(vmx);
|
|
vmx->msr_guest_kernel_gs_base = data;
|
|
break;
|
|
#endif
|
|
case MSR_IA32_SYSENTER_CS:
|
|
vmcs_write32(GUEST_SYSENTER_CS, data);
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
vmcs_writel(GUEST_SYSENTER_EIP, data);
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
vmcs_writel(GUEST_SYSENTER_ESP, data);
|
|
break;
|
|
case MSR_IA32_TSC:
|
|
rdtscll(host_tsc);
|
|
guest_write_tsc(data, host_tsc);
|
|
break;
|
|
case MSR_IA32_CR_PAT:
|
|
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
|
|
vmcs_write64(GUEST_IA32_PAT, data);
|
|
vcpu->arch.pat = data;
|
|
break;
|
|
}
|
|
ret = kvm_set_msr_common(vcpu, msr_index, data);
|
|
break;
|
|
case MSR_TSC_AUX:
|
|
if (!vmx->rdtscp_enabled)
|
|
return 1;
|
|
/* Check reserved bit, higher 32 bits should be zero */
|
|
if ((data >> 32) != 0)
|
|
return 1;
|
|
/* Otherwise falls through */
|
|
default:
|
|
msr = find_msr_entry(vmx, msr_index);
|
|
if (msr) {
|
|
vmx_load_host_state(vmx);
|
|
msr->data = data;
|
|
break;
|
|
}
|
|
ret = kvm_set_msr_common(vcpu, msr_index, data);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
|
|
{
|
|
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
|
|
switch (reg) {
|
|
case VCPU_REGS_RSP:
|
|
vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
|
|
break;
|
|
case VCPU_REGS_RIP:
|
|
vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
|
|
break;
|
|
case VCPU_EXREG_PDPTR:
|
|
if (enable_ept)
|
|
ept_save_pdptrs(vcpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
|
|
{
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
|
|
vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
|
|
else
|
|
vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
|
|
|
|
update_exception_bitmap(vcpu);
|
|
}
|
|
|
|
static __init int cpu_has_kvm_support(void)
|
|
{
|
|
return cpu_has_vmx();
|
|
}
|
|
|
|
static __init int vmx_disabled_by_bios(void)
|
|
{
|
|
u64 msr;
|
|
|
|
rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
|
|
return (msr & (FEATURE_CONTROL_LOCKED |
|
|
FEATURE_CONTROL_VMXON_ENABLED))
|
|
== FEATURE_CONTROL_LOCKED;
|
|
/* locked but not enabled */
|
|
}
|
|
|
|
static int hardware_enable(void *garbage)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
|
|
u64 old;
|
|
|
|
if (read_cr4() & X86_CR4_VMXE)
|
|
return -EBUSY;
|
|
|
|
INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
|
|
rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
|
|
if ((old & (FEATURE_CONTROL_LOCKED |
|
|
FEATURE_CONTROL_VMXON_ENABLED))
|
|
!= (FEATURE_CONTROL_LOCKED |
|
|
FEATURE_CONTROL_VMXON_ENABLED))
|
|
/* enable and lock */
|
|
wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
|
|
FEATURE_CONTROL_LOCKED |
|
|
FEATURE_CONTROL_VMXON_ENABLED);
|
|
write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
|
|
asm volatile (ASM_VMX_VMXON_RAX
|
|
: : "a"(&phys_addr), "m"(phys_addr)
|
|
: "memory", "cc");
|
|
|
|
ept_sync_global();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vmclear_local_vcpus(void)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
struct vcpu_vmx *vmx, *n;
|
|
|
|
list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
|
|
local_vcpus_link)
|
|
__vcpu_clear(vmx);
|
|
}
|
|
|
|
|
|
/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
|
|
* tricks.
|
|
*/
|
|
static void kvm_cpu_vmxoff(void)
|
|
{
|
|
asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
|
|
write_cr4(read_cr4() & ~X86_CR4_VMXE);
|
|
}
|
|
|
|
static void hardware_disable(void *garbage)
|
|
{
|
|
vmclear_local_vcpus();
|
|
kvm_cpu_vmxoff();
|
|
}
|
|
|
|
static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
|
|
u32 msr, u32 *result)
|
|
{
|
|
u32 vmx_msr_low, vmx_msr_high;
|
|
u32 ctl = ctl_min | ctl_opt;
|
|
|
|
rdmsr(msr, vmx_msr_low, vmx_msr_high);
|
|
|
|
ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
|
|
ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
|
|
|
|
/* Ensure minimum (required) set of control bits are supported. */
|
|
if (ctl_min & ~ctl)
|
|
return -EIO;
|
|
|
|
*result = ctl;
|
|
return 0;
|
|
}
|
|
|
|
static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
|
|
{
|
|
u32 vmx_msr_low, vmx_msr_high;
|
|
u32 min, opt, min2, opt2;
|
|
u32 _pin_based_exec_control = 0;
|
|
u32 _cpu_based_exec_control = 0;
|
|
u32 _cpu_based_2nd_exec_control = 0;
|
|
u32 _vmexit_control = 0;
|
|
u32 _vmentry_control = 0;
|
|
|
|
min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
|
|
opt = PIN_BASED_VIRTUAL_NMIS;
|
|
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
|
|
&_pin_based_exec_control) < 0)
|
|
return -EIO;
|
|
|
|
min = CPU_BASED_HLT_EXITING |
|
|
#ifdef CONFIG_X86_64
|
|
CPU_BASED_CR8_LOAD_EXITING |
|
|
CPU_BASED_CR8_STORE_EXITING |
|
|
#endif
|
|
CPU_BASED_CR3_LOAD_EXITING |
|
|
CPU_BASED_CR3_STORE_EXITING |
|
|
CPU_BASED_USE_IO_BITMAPS |
|
|
CPU_BASED_MOV_DR_EXITING |
|
|
CPU_BASED_USE_TSC_OFFSETING |
|
|
CPU_BASED_MWAIT_EXITING |
|
|
CPU_BASED_MONITOR_EXITING |
|
|
CPU_BASED_INVLPG_EXITING;
|
|
opt = CPU_BASED_TPR_SHADOW |
|
|
CPU_BASED_USE_MSR_BITMAPS |
|
|
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
|
|
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
|
|
&_cpu_based_exec_control) < 0)
|
|
return -EIO;
|
|
#ifdef CONFIG_X86_64
|
|
if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
|
|
_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
|
|
~CPU_BASED_CR8_STORE_EXITING;
|
|
#endif
|
|
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
|
|
min2 = 0;
|
|
opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
|
|
SECONDARY_EXEC_WBINVD_EXITING |
|
|
SECONDARY_EXEC_ENABLE_VPID |
|
|
SECONDARY_EXEC_ENABLE_EPT |
|
|
SECONDARY_EXEC_UNRESTRICTED_GUEST |
|
|
SECONDARY_EXEC_PAUSE_LOOP_EXITING |
|
|
SECONDARY_EXEC_RDTSCP;
|
|
if (adjust_vmx_controls(min2, opt2,
|
|
MSR_IA32_VMX_PROCBASED_CTLS2,
|
|
&_cpu_based_2nd_exec_control) < 0)
|
|
return -EIO;
|
|
}
|
|
#ifndef CONFIG_X86_64
|
|
if (!(_cpu_based_2nd_exec_control &
|
|
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
|
|
_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
|
|
#endif
|
|
if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
|
|
/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
|
|
enabled */
|
|
_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
|
|
CPU_BASED_CR3_STORE_EXITING |
|
|
CPU_BASED_INVLPG_EXITING);
|
|
rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
|
|
vmx_capability.ept, vmx_capability.vpid);
|
|
}
|
|
|
|
min = 0;
|
|
#ifdef CONFIG_X86_64
|
|
min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
|
|
#endif
|
|
opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
|
|
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
|
|
&_vmexit_control) < 0)
|
|
return -EIO;
|
|
|
|
min = 0;
|
|
opt = VM_ENTRY_LOAD_IA32_PAT;
|
|
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
|
|
&_vmentry_control) < 0)
|
|
return -EIO;
|
|
|
|
rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
|
|
|
|
/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
|
|
if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
|
|
return -EIO;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
|
|
if (vmx_msr_high & (1u<<16))
|
|
return -EIO;
|
|
#endif
|
|
|
|
/* Require Write-Back (WB) memory type for VMCS accesses. */
|
|
if (((vmx_msr_high >> 18) & 15) != 6)
|
|
return -EIO;
|
|
|
|
vmcs_conf->size = vmx_msr_high & 0x1fff;
|
|
vmcs_conf->order = get_order(vmcs_config.size);
|
|
vmcs_conf->revision_id = vmx_msr_low;
|
|
|
|
vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
|
|
vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
|
|
vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
|
|
vmcs_conf->vmexit_ctrl = _vmexit_control;
|
|
vmcs_conf->vmentry_ctrl = _vmentry_control;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct vmcs *alloc_vmcs_cpu(int cpu)
|
|
{
|
|
int node = cpu_to_node(cpu);
|
|
struct page *pages;
|
|
struct vmcs *vmcs;
|
|
|
|
pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
|
|
if (!pages)
|
|
return NULL;
|
|
vmcs = page_address(pages);
|
|
memset(vmcs, 0, vmcs_config.size);
|
|
vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
|
|
return vmcs;
|
|
}
|
|
|
|
static struct vmcs *alloc_vmcs(void)
|
|
{
|
|
return alloc_vmcs_cpu(raw_smp_processor_id());
|
|
}
|
|
|
|
static void free_vmcs(struct vmcs *vmcs)
|
|
{
|
|
free_pages((unsigned long)vmcs, vmcs_config.order);
|
|
}
|
|
|
|
static void free_kvm_area(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
free_vmcs(per_cpu(vmxarea, cpu));
|
|
per_cpu(vmxarea, cpu) = NULL;
|
|
}
|
|
}
|
|
|
|
static __init int alloc_kvm_area(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct vmcs *vmcs;
|
|
|
|
vmcs = alloc_vmcs_cpu(cpu);
|
|
if (!vmcs) {
|
|
free_kvm_area();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
per_cpu(vmxarea, cpu) = vmcs;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static __init int hardware_setup(void)
|
|
{
|
|
if (setup_vmcs_config(&vmcs_config) < 0)
|
|
return -EIO;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_NX))
|
|
kvm_enable_efer_bits(EFER_NX);
|
|
|
|
if (!cpu_has_vmx_vpid())
|
|
enable_vpid = 0;
|
|
|
|
if (!cpu_has_vmx_ept()) {
|
|
enable_ept = 0;
|
|
enable_unrestricted_guest = 0;
|
|
}
|
|
|
|
if (!cpu_has_vmx_unrestricted_guest())
|
|
enable_unrestricted_guest = 0;
|
|
|
|
if (!cpu_has_vmx_flexpriority())
|
|
flexpriority_enabled = 0;
|
|
|
|
if (!cpu_has_vmx_tpr_shadow())
|
|
kvm_x86_ops->update_cr8_intercept = NULL;
|
|
|
|
if (enable_ept && !cpu_has_vmx_ept_2m_page())
|
|
kvm_disable_largepages();
|
|
|
|
if (!cpu_has_vmx_ple())
|
|
ple_gap = 0;
|
|
|
|
return alloc_kvm_area();
|
|
}
|
|
|
|
static __exit void hardware_unsetup(void)
|
|
{
|
|
free_kvm_area();
|
|
}
|
|
|
|
static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
|
|
{
|
|
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
|
|
|
|
if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
|
|
vmcs_write16(sf->selector, save->selector);
|
|
vmcs_writel(sf->base, save->base);
|
|
vmcs_write32(sf->limit, save->limit);
|
|
vmcs_write32(sf->ar_bytes, save->ar);
|
|
} else {
|
|
u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
|
|
<< AR_DPL_SHIFT;
|
|
vmcs_write32(sf->ar_bytes, 0x93 | dpl);
|
|
}
|
|
}
|
|
|
|
static void enter_pmode(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long flags;
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
vmx->emulation_required = 1;
|
|
vmx->rmode.vm86_active = 0;
|
|
|
|
vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
|
|
vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
|
|
vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
|
|
|
|
flags = vmcs_readl(GUEST_RFLAGS);
|
|
flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
|
|
flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
|
|
vmcs_writel(GUEST_RFLAGS, flags);
|
|
|
|
vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
|
|
(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
|
|
|
|
update_exception_bitmap(vcpu);
|
|
|
|
if (emulate_invalid_guest_state)
|
|
return;
|
|
|
|
fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
|
|
fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
|
|
fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
|
|
fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
|
|
|
|
vmcs_write16(GUEST_SS_SELECTOR, 0);
|
|
vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
|
|
|
|
vmcs_write16(GUEST_CS_SELECTOR,
|
|
vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
|
|
vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
|
|
}
|
|
|
|
static gva_t rmode_tss_base(struct kvm *kvm)
|
|
{
|
|
if (!kvm->arch.tss_addr) {
|
|
struct kvm_memslots *slots;
|
|
gfn_t base_gfn;
|
|
|
|
slots = rcu_dereference(kvm->memslots);
|
|
base_gfn = kvm->memslots->memslots[0].base_gfn +
|
|
kvm->memslots->memslots[0].npages - 3;
|
|
return base_gfn << PAGE_SHIFT;
|
|
}
|
|
return kvm->arch.tss_addr;
|
|
}
|
|
|
|
static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
|
|
{
|
|
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
|
|
|
|
save->selector = vmcs_read16(sf->selector);
|
|
save->base = vmcs_readl(sf->base);
|
|
save->limit = vmcs_read32(sf->limit);
|
|
save->ar = vmcs_read32(sf->ar_bytes);
|
|
vmcs_write16(sf->selector, save->base >> 4);
|
|
vmcs_write32(sf->base, save->base & 0xfffff);
|
|
vmcs_write32(sf->limit, 0xffff);
|
|
vmcs_write32(sf->ar_bytes, 0xf3);
|
|
}
|
|
|
|
static void enter_rmode(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long flags;
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (enable_unrestricted_guest)
|
|
return;
|
|
|
|
vmx->emulation_required = 1;
|
|
vmx->rmode.vm86_active = 1;
|
|
|
|
vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
|
|
vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
|
|
|
|
vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
|
|
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
|
|
|
|
vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
|
|
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
|
|
|
|
flags = vmcs_readl(GUEST_RFLAGS);
|
|
vmx->rmode.save_iopl
|
|
= (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
|
|
|
|
flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
|
|
|
|
vmcs_writel(GUEST_RFLAGS, flags);
|
|
vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
|
|
update_exception_bitmap(vcpu);
|
|
|
|
if (emulate_invalid_guest_state)
|
|
goto continue_rmode;
|
|
|
|
vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
|
|
vmcs_write32(GUEST_SS_LIMIT, 0xffff);
|
|
vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
|
|
|
|
vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
|
|
vmcs_write32(GUEST_CS_LIMIT, 0xffff);
|
|
if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
|
|
vmcs_writel(GUEST_CS_BASE, 0xf0000);
|
|
vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
|
|
|
|
fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
|
|
fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
|
|
fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
|
|
fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
|
|
|
|
continue_rmode:
|
|
kvm_mmu_reset_context(vcpu);
|
|
init_rmode(vcpu->kvm);
|
|
}
|
|
|
|
static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
|
|
|
|
if (!msr)
|
|
return;
|
|
|
|
/*
|
|
* Force kernel_gs_base reloading before EFER changes, as control
|
|
* of this msr depends on is_long_mode().
|
|
*/
|
|
vmx_load_host_state(to_vmx(vcpu));
|
|
vcpu->arch.efer = efer;
|
|
if (!msr)
|
|
return;
|
|
if (efer & EFER_LMA) {
|
|
vmcs_write32(VM_ENTRY_CONTROLS,
|
|
vmcs_read32(VM_ENTRY_CONTROLS) |
|
|
VM_ENTRY_IA32E_MODE);
|
|
msr->data = efer;
|
|
} else {
|
|
vmcs_write32(VM_ENTRY_CONTROLS,
|
|
vmcs_read32(VM_ENTRY_CONTROLS) &
|
|
~VM_ENTRY_IA32E_MODE);
|
|
|
|
msr->data = efer & ~EFER_LME;
|
|
}
|
|
setup_msrs(vmx);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
static void enter_lmode(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 guest_tr_ar;
|
|
|
|
guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
|
|
if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
|
|
printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
|
|
__func__);
|
|
vmcs_write32(GUEST_TR_AR_BYTES,
|
|
(guest_tr_ar & ~AR_TYPE_MASK)
|
|
| AR_TYPE_BUSY_64_TSS);
|
|
}
|
|
vcpu->arch.efer |= EFER_LMA;
|
|
vmx_set_efer(vcpu, vcpu->arch.efer);
|
|
}
|
|
|
|
static void exit_lmode(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.efer &= ~EFER_LMA;
|
|
|
|
vmcs_write32(VM_ENTRY_CONTROLS,
|
|
vmcs_read32(VM_ENTRY_CONTROLS)
|
|
& ~VM_ENTRY_IA32E_MODE);
|
|
}
|
|
|
|
#endif
|
|
|
|
static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
|
|
{
|
|
vpid_sync_vcpu_all(to_vmx(vcpu));
|
|
if (enable_ept)
|
|
ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
|
|
}
|
|
|
|
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
|
|
{
|
|
ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
|
|
|
|
vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
|
|
vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
|
|
}
|
|
|
|
static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
|
|
{
|
|
ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
|
|
|
|
vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
|
|
vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
|
|
}
|
|
|
|
static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!test_bit(VCPU_EXREG_PDPTR,
|
|
(unsigned long *)&vcpu->arch.regs_dirty))
|
|
return;
|
|
|
|
if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
|
|
vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
|
|
vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
|
|
vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
|
|
vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
|
|
}
|
|
}
|
|
|
|
static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
|
|
vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
|
|
vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
|
|
vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
|
|
vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
|
|
}
|
|
|
|
__set_bit(VCPU_EXREG_PDPTR,
|
|
(unsigned long *)&vcpu->arch.regs_avail);
|
|
__set_bit(VCPU_EXREG_PDPTR,
|
|
(unsigned long *)&vcpu->arch.regs_dirty);
|
|
}
|
|
|
|
static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
|
|
|
|
static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
|
|
unsigned long cr0,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!(cr0 & X86_CR0_PG)) {
|
|
/* From paging/starting to nonpaging */
|
|
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
|
|
vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
|
|
(CPU_BASED_CR3_LOAD_EXITING |
|
|
CPU_BASED_CR3_STORE_EXITING));
|
|
vcpu->arch.cr0 = cr0;
|
|
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
|
|
} else if (!is_paging(vcpu)) {
|
|
/* From nonpaging to paging */
|
|
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
|
|
vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
|
|
~(CPU_BASED_CR3_LOAD_EXITING |
|
|
CPU_BASED_CR3_STORE_EXITING));
|
|
vcpu->arch.cr0 = cr0;
|
|
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
|
|
}
|
|
|
|
if (!(cr0 & X86_CR0_WP))
|
|
*hw_cr0 &= ~X86_CR0_WP;
|
|
}
|
|
|
|
static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned long hw_cr0;
|
|
|
|
if (enable_unrestricted_guest)
|
|
hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
|
|
| KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
|
|
else
|
|
hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
|
|
|
|
if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
|
|
enter_pmode(vcpu);
|
|
|
|
if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
|
|
enter_rmode(vcpu);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (vcpu->arch.efer & EFER_LME) {
|
|
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
|
|
enter_lmode(vcpu);
|
|
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
|
|
exit_lmode(vcpu);
|
|
}
|
|
#endif
|
|
|
|
if (enable_ept)
|
|
ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
|
|
|
|
if (!vcpu->fpu_active)
|
|
hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
|
|
|
|
vmcs_writel(CR0_READ_SHADOW, cr0);
|
|
vmcs_writel(GUEST_CR0, hw_cr0);
|
|
vcpu->arch.cr0 = cr0;
|
|
}
|
|
|
|
static u64 construct_eptp(unsigned long root_hpa)
|
|
{
|
|
u64 eptp;
|
|
|
|
/* TODO write the value reading from MSR */
|
|
eptp = VMX_EPT_DEFAULT_MT |
|
|
VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
|
|
eptp |= (root_hpa & PAGE_MASK);
|
|
|
|
return eptp;
|
|
}
|
|
|
|
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
|
|
{
|
|
unsigned long guest_cr3;
|
|
u64 eptp;
|
|
|
|
guest_cr3 = cr3;
|
|
if (enable_ept) {
|
|
eptp = construct_eptp(cr3);
|
|
vmcs_write64(EPT_POINTER, eptp);
|
|
guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
|
|
vcpu->kvm->arch.ept_identity_map_addr;
|
|
ept_load_pdptrs(vcpu);
|
|
}
|
|
|
|
vmx_flush_tlb(vcpu);
|
|
vmcs_writel(GUEST_CR3, guest_cr3);
|
|
}
|
|
|
|
static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
|
|
{
|
|
unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
|
|
KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
|
|
|
|
vcpu->arch.cr4 = cr4;
|
|
if (enable_ept) {
|
|
if (!is_paging(vcpu)) {
|
|
hw_cr4 &= ~X86_CR4_PAE;
|
|
hw_cr4 |= X86_CR4_PSE;
|
|
} else if (!(cr4 & X86_CR4_PAE)) {
|
|
hw_cr4 &= ~X86_CR4_PAE;
|
|
}
|
|
}
|
|
|
|
vmcs_writel(CR4_READ_SHADOW, cr4);
|
|
vmcs_writel(GUEST_CR4, hw_cr4);
|
|
}
|
|
|
|
static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
|
|
|
|
return vmcs_readl(sf->base);
|
|
}
|
|
|
|
static void vmx_get_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
|
|
u32 ar;
|
|
|
|
var->base = vmcs_readl(sf->base);
|
|
var->limit = vmcs_read32(sf->limit);
|
|
var->selector = vmcs_read16(sf->selector);
|
|
ar = vmcs_read32(sf->ar_bytes);
|
|
if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
|
|
ar = 0;
|
|
var->type = ar & 15;
|
|
var->s = (ar >> 4) & 1;
|
|
var->dpl = (ar >> 5) & 3;
|
|
var->present = (ar >> 7) & 1;
|
|
var->avl = (ar >> 12) & 1;
|
|
var->l = (ar >> 13) & 1;
|
|
var->db = (ar >> 14) & 1;
|
|
var->g = (ar >> 15) & 1;
|
|
var->unusable = (ar >> 16) & 1;
|
|
}
|
|
|
|
static int vmx_get_cpl(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!is_protmode(vcpu))
|
|
return 0;
|
|
|
|
if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
|
|
return 3;
|
|
|
|
return vmcs_read16(GUEST_CS_SELECTOR) & 3;
|
|
}
|
|
|
|
static u32 vmx_segment_access_rights(struct kvm_segment *var)
|
|
{
|
|
u32 ar;
|
|
|
|
if (var->unusable)
|
|
ar = 1 << 16;
|
|
else {
|
|
ar = var->type & 15;
|
|
ar |= (var->s & 1) << 4;
|
|
ar |= (var->dpl & 3) << 5;
|
|
ar |= (var->present & 1) << 7;
|
|
ar |= (var->avl & 1) << 12;
|
|
ar |= (var->l & 1) << 13;
|
|
ar |= (var->db & 1) << 14;
|
|
ar |= (var->g & 1) << 15;
|
|
}
|
|
if (ar == 0) /* a 0 value means unusable */
|
|
ar = AR_UNUSABLE_MASK;
|
|
|
|
return ar;
|
|
}
|
|
|
|
static void vmx_set_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
|
|
u32 ar;
|
|
|
|
if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
|
|
vmx->rmode.tr.selector = var->selector;
|
|
vmx->rmode.tr.base = var->base;
|
|
vmx->rmode.tr.limit = var->limit;
|
|
vmx->rmode.tr.ar = vmx_segment_access_rights(var);
|
|
return;
|
|
}
|
|
vmcs_writel(sf->base, var->base);
|
|
vmcs_write32(sf->limit, var->limit);
|
|
vmcs_write16(sf->selector, var->selector);
|
|
if (vmx->rmode.vm86_active && var->s) {
|
|
/*
|
|
* Hack real-mode segments into vm86 compatibility.
|
|
*/
|
|
if (var->base == 0xffff0000 && var->selector == 0xf000)
|
|
vmcs_writel(sf->base, 0xf0000);
|
|
ar = 0xf3;
|
|
} else
|
|
ar = vmx_segment_access_rights(var);
|
|
|
|
/*
|
|
* Fix the "Accessed" bit in AR field of segment registers for older
|
|
* qemu binaries.
|
|
* IA32 arch specifies that at the time of processor reset the
|
|
* "Accessed" bit in the AR field of segment registers is 1. And qemu
|
|
* is setting it to 0 in the usedland code. This causes invalid guest
|
|
* state vmexit when "unrestricted guest" mode is turned on.
|
|
* Fix for this setup issue in cpu_reset is being pushed in the qemu
|
|
* tree. Newer qemu binaries with that qemu fix would not need this
|
|
* kvm hack.
|
|
*/
|
|
if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
|
|
ar |= 0x1; /* Accessed */
|
|
|
|
vmcs_write32(sf->ar_bytes, ar);
|
|
}
|
|
|
|
static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
|
|
{
|
|
u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
|
|
|
|
*db = (ar >> 14) & 1;
|
|
*l = (ar >> 13) & 1;
|
|
}
|
|
|
|
static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
|
|
{
|
|
dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
|
|
dt->base = vmcs_readl(GUEST_IDTR_BASE);
|
|
}
|
|
|
|
static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
|
|
{
|
|
vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
|
|
vmcs_writel(GUEST_IDTR_BASE, dt->base);
|
|
}
|
|
|
|
static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
|
|
{
|
|
dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
|
|
dt->base = vmcs_readl(GUEST_GDTR_BASE);
|
|
}
|
|
|
|
static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
|
|
{
|
|
vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
|
|
vmcs_writel(GUEST_GDTR_BASE, dt->base);
|
|
}
|
|
|
|
static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct kvm_segment var;
|
|
u32 ar;
|
|
|
|
vmx_get_segment(vcpu, &var, seg);
|
|
ar = vmx_segment_access_rights(&var);
|
|
|
|
if (var.base != (var.selector << 4))
|
|
return false;
|
|
if (var.limit != 0xffff)
|
|
return false;
|
|
if (ar != 0xf3)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool code_segment_valid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_segment cs;
|
|
unsigned int cs_rpl;
|
|
|
|
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
|
|
cs_rpl = cs.selector & SELECTOR_RPL_MASK;
|
|
|
|
if (cs.unusable)
|
|
return false;
|
|
if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
|
|
return false;
|
|
if (!cs.s)
|
|
return false;
|
|
if (cs.type & AR_TYPE_WRITEABLE_MASK) {
|
|
if (cs.dpl > cs_rpl)
|
|
return false;
|
|
} else {
|
|
if (cs.dpl != cs_rpl)
|
|
return false;
|
|
}
|
|
if (!cs.present)
|
|
return false;
|
|
|
|
/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
|
|
return true;
|
|
}
|
|
|
|
static bool stack_segment_valid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_segment ss;
|
|
unsigned int ss_rpl;
|
|
|
|
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
|
|
ss_rpl = ss.selector & SELECTOR_RPL_MASK;
|
|
|
|
if (ss.unusable)
|
|
return true;
|
|
if (ss.type != 3 && ss.type != 7)
|
|
return false;
|
|
if (!ss.s)
|
|
return false;
|
|
if (ss.dpl != ss_rpl) /* DPL != RPL */
|
|
return false;
|
|
if (!ss.present)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct kvm_segment var;
|
|
unsigned int rpl;
|
|
|
|
vmx_get_segment(vcpu, &var, seg);
|
|
rpl = var.selector & SELECTOR_RPL_MASK;
|
|
|
|
if (var.unusable)
|
|
return true;
|
|
if (!var.s)
|
|
return false;
|
|
if (!var.present)
|
|
return false;
|
|
if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
|
|
if (var.dpl < rpl) /* DPL < RPL */
|
|
return false;
|
|
}
|
|
|
|
/* TODO: Add other members to kvm_segment_field to allow checking for other access
|
|
* rights flags
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
static bool tr_valid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_segment tr;
|
|
|
|
vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
|
|
|
|
if (tr.unusable)
|
|
return false;
|
|
if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
|
|
return false;
|
|
if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
|
|
return false;
|
|
if (!tr.present)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ldtr_valid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_segment ldtr;
|
|
|
|
vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
|
|
|
|
if (ldtr.unusable)
|
|
return true;
|
|
if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
|
|
return false;
|
|
if (ldtr.type != 2)
|
|
return false;
|
|
if (!ldtr.present)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_segment cs, ss;
|
|
|
|
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
|
|
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
|
|
|
|
return ((cs.selector & SELECTOR_RPL_MASK) ==
|
|
(ss.selector & SELECTOR_RPL_MASK));
|
|
}
|
|
|
|
/*
|
|
* Check if guest state is valid. Returns true if valid, false if
|
|
* not.
|
|
* We assume that registers are always usable
|
|
*/
|
|
static bool guest_state_valid(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* real mode guest state checks */
|
|
if (!is_protmode(vcpu)) {
|
|
if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
|
|
return false;
|
|
if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
|
|
return false;
|
|
if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
|
|
return false;
|
|
if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
|
|
return false;
|
|
if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
|
|
return false;
|
|
if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
|
|
return false;
|
|
} else {
|
|
/* protected mode guest state checks */
|
|
if (!cs_ss_rpl_check(vcpu))
|
|
return false;
|
|
if (!code_segment_valid(vcpu))
|
|
return false;
|
|
if (!stack_segment_valid(vcpu))
|
|
return false;
|
|
if (!data_segment_valid(vcpu, VCPU_SREG_DS))
|
|
return false;
|
|
if (!data_segment_valid(vcpu, VCPU_SREG_ES))
|
|
return false;
|
|
if (!data_segment_valid(vcpu, VCPU_SREG_FS))
|
|
return false;
|
|
if (!data_segment_valid(vcpu, VCPU_SREG_GS))
|
|
return false;
|
|
if (!tr_valid(vcpu))
|
|
return false;
|
|
if (!ldtr_valid(vcpu))
|
|
return false;
|
|
}
|
|
/* TODO:
|
|
* - Add checks on RIP
|
|
* - Add checks on RFLAGS
|
|
*/
|
|
|
|
return true;
|
|
}
|
|
|
|
static int init_rmode_tss(struct kvm *kvm)
|
|
{
|
|
gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
|
|
u16 data = 0;
|
|
int ret = 0;
|
|
int r;
|
|
|
|
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
|
|
if (r < 0)
|
|
goto out;
|
|
data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
|
|
r = kvm_write_guest_page(kvm, fn++, &data,
|
|
TSS_IOPB_BASE_OFFSET, sizeof(u16));
|
|
if (r < 0)
|
|
goto out;
|
|
r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
|
|
if (r < 0)
|
|
goto out;
|
|
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
|
|
if (r < 0)
|
|
goto out;
|
|
data = ~0;
|
|
r = kvm_write_guest_page(kvm, fn, &data,
|
|
RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
|
|
sizeof(u8));
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
ret = 1;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int init_rmode_identity_map(struct kvm *kvm)
|
|
{
|
|
int i, r, ret;
|
|
pfn_t identity_map_pfn;
|
|
u32 tmp;
|
|
|
|
if (!enable_ept)
|
|
return 1;
|
|
if (unlikely(!kvm->arch.ept_identity_pagetable)) {
|
|
printk(KERN_ERR "EPT: identity-mapping pagetable "
|
|
"haven't been allocated!\n");
|
|
return 0;
|
|
}
|
|
if (likely(kvm->arch.ept_identity_pagetable_done))
|
|
return 1;
|
|
ret = 0;
|
|
identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
|
|
r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
|
|
if (r < 0)
|
|
goto out;
|
|
/* Set up identity-mapping pagetable for EPT in real mode */
|
|
for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
|
|
tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
|
|
_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
|
|
r = kvm_write_guest_page(kvm, identity_map_pfn,
|
|
&tmp, i * sizeof(tmp), sizeof(tmp));
|
|
if (r < 0)
|
|
goto out;
|
|
}
|
|
kvm->arch.ept_identity_pagetable_done = true;
|
|
ret = 1;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void seg_setup(int seg)
|
|
{
|
|
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
|
|
unsigned int ar;
|
|
|
|
vmcs_write16(sf->selector, 0);
|
|
vmcs_writel(sf->base, 0);
|
|
vmcs_write32(sf->limit, 0xffff);
|
|
if (enable_unrestricted_guest) {
|
|
ar = 0x93;
|
|
if (seg == VCPU_SREG_CS)
|
|
ar |= 0x08; /* code segment */
|
|
} else
|
|
ar = 0xf3;
|
|
|
|
vmcs_write32(sf->ar_bytes, ar);
|
|
}
|
|
|
|
static int alloc_apic_access_page(struct kvm *kvm)
|
|
{
|
|
struct kvm_userspace_memory_region kvm_userspace_mem;
|
|
int r = 0;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
if (kvm->arch.apic_access_page)
|
|
goto out;
|
|
kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
|
|
kvm_userspace_mem.flags = 0;
|
|
kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
|
|
kvm_userspace_mem.memory_size = PAGE_SIZE;
|
|
r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
|
|
if (r)
|
|
goto out;
|
|
|
|
kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
|
|
out:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
static int alloc_identity_pagetable(struct kvm *kvm)
|
|
{
|
|
struct kvm_userspace_memory_region kvm_userspace_mem;
|
|
int r = 0;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
if (kvm->arch.ept_identity_pagetable)
|
|
goto out;
|
|
kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
|
|
kvm_userspace_mem.flags = 0;
|
|
kvm_userspace_mem.guest_phys_addr =
|
|
kvm->arch.ept_identity_map_addr;
|
|
kvm_userspace_mem.memory_size = PAGE_SIZE;
|
|
r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
|
|
if (r)
|
|
goto out;
|
|
|
|
kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
|
|
kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
|
|
out:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
static void allocate_vpid(struct vcpu_vmx *vmx)
|
|
{
|
|
int vpid;
|
|
|
|
vmx->vpid = 0;
|
|
if (!enable_vpid)
|
|
return;
|
|
spin_lock(&vmx_vpid_lock);
|
|
vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
|
|
if (vpid < VMX_NR_VPIDS) {
|
|
vmx->vpid = vpid;
|
|
__set_bit(vpid, vmx_vpid_bitmap);
|
|
}
|
|
spin_unlock(&vmx_vpid_lock);
|
|
}
|
|
|
|
static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
|
|
{
|
|
int f = sizeof(unsigned long);
|
|
|
|
if (!cpu_has_vmx_msr_bitmap())
|
|
return;
|
|
|
|
/*
|
|
* See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
|
|
* have the write-low and read-high bitmap offsets the wrong way round.
|
|
* We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
|
|
*/
|
|
if (msr <= 0x1fff) {
|
|
__clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
|
|
__clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
|
|
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
|
|
msr &= 0x1fff;
|
|
__clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
|
|
__clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
|
|
}
|
|
}
|
|
|
|
static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
|
|
{
|
|
if (!longmode_only)
|
|
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
|
|
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
|
|
}
|
|
|
|
/*
|
|
* Sets up the vmcs for emulated real mode.
|
|
*/
|
|
static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
|
|
{
|
|
u32 host_sysenter_cs, msr_low, msr_high;
|
|
u32 junk;
|
|
u64 host_pat, tsc_this, tsc_base;
|
|
unsigned long a;
|
|
struct descriptor_table dt;
|
|
int i;
|
|
unsigned long kvm_vmx_return;
|
|
u32 exec_control;
|
|
|
|
/* I/O */
|
|
vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
|
|
vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
|
|
|
|
if (cpu_has_vmx_msr_bitmap())
|
|
vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
|
|
|
|
vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
|
|
|
|
/* Control */
|
|
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
|
|
vmcs_config.pin_based_exec_ctrl);
|
|
|
|
exec_control = vmcs_config.cpu_based_exec_ctrl;
|
|
if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
|
|
exec_control &= ~CPU_BASED_TPR_SHADOW;
|
|
#ifdef CONFIG_X86_64
|
|
exec_control |= CPU_BASED_CR8_STORE_EXITING |
|
|
CPU_BASED_CR8_LOAD_EXITING;
|
|
#endif
|
|
}
|
|
if (!enable_ept)
|
|
exec_control |= CPU_BASED_CR3_STORE_EXITING |
|
|
CPU_BASED_CR3_LOAD_EXITING |
|
|
CPU_BASED_INVLPG_EXITING;
|
|
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
|
|
|
|
if (cpu_has_secondary_exec_ctrls()) {
|
|
exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
|
|
if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
|
|
exec_control &=
|
|
~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
|
|
if (vmx->vpid == 0)
|
|
exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
|
|
if (!enable_ept) {
|
|
exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
|
|
enable_unrestricted_guest = 0;
|
|
}
|
|
if (!enable_unrestricted_guest)
|
|
exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
|
|
if (!ple_gap)
|
|
exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
|
|
vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
|
|
}
|
|
|
|
if (ple_gap) {
|
|
vmcs_write32(PLE_GAP, ple_gap);
|
|
vmcs_write32(PLE_WINDOW, ple_window);
|
|
}
|
|
|
|
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
|
|
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
|
|
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
|
|
|
|
vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
|
|
vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
|
|
vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
|
|
|
|
vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
|
|
vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
|
|
vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
|
|
vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
|
|
vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
|
|
vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
|
|
#ifdef CONFIG_X86_64
|
|
rdmsrl(MSR_FS_BASE, a);
|
|
vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
|
|
rdmsrl(MSR_GS_BASE, a);
|
|
vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
|
|
#else
|
|
vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
|
|
vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
|
|
#endif
|
|
|
|
vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
|
|
|
|
kvm_get_idt(&dt);
|
|
vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
|
|
|
|
asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
|
|
vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
|
|
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
|
|
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
|
|
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
|
|
|
|
rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
|
|
vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
|
|
rdmsrl(MSR_IA32_SYSENTER_ESP, a);
|
|
vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
|
|
rdmsrl(MSR_IA32_SYSENTER_EIP, a);
|
|
vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
|
|
|
|
if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
|
|
rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
|
|
host_pat = msr_low | ((u64) msr_high << 32);
|
|
vmcs_write64(HOST_IA32_PAT, host_pat);
|
|
}
|
|
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
|
|
rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
|
|
host_pat = msr_low | ((u64) msr_high << 32);
|
|
/* Write the default value follow host pat */
|
|
vmcs_write64(GUEST_IA32_PAT, host_pat);
|
|
/* Keep arch.pat sync with GUEST_IA32_PAT */
|
|
vmx->vcpu.arch.pat = host_pat;
|
|
}
|
|
|
|
for (i = 0; i < NR_VMX_MSR; ++i) {
|
|
u32 index = vmx_msr_index[i];
|
|
u32 data_low, data_high;
|
|
int j = vmx->nmsrs;
|
|
|
|
if (rdmsr_safe(index, &data_low, &data_high) < 0)
|
|
continue;
|
|
if (wrmsr_safe(index, data_low, data_high) < 0)
|
|
continue;
|
|
vmx->guest_msrs[j].index = i;
|
|
vmx->guest_msrs[j].data = 0;
|
|
vmx->guest_msrs[j].mask = -1ull;
|
|
++vmx->nmsrs;
|
|
}
|
|
|
|
vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
|
|
|
|
/* 22.2.1, 20.8.1 */
|
|
vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
|
|
|
|
vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
|
|
vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
|
|
if (enable_ept)
|
|
vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
|
|
vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
|
|
|
|
tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
|
|
rdtscll(tsc_this);
|
|
if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
|
|
tsc_base = tsc_this;
|
|
|
|
guest_write_tsc(0, tsc_base);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_rmode(struct kvm *kvm)
|
|
{
|
|
if (!init_rmode_tss(kvm))
|
|
return 0;
|
|
if (!init_rmode_identity_map(kvm))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u64 msr;
|
|
int ret, idx;
|
|
|
|
vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
if (!init_rmode(vmx->vcpu.kvm)) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
vmx->rmode.vm86_active = 0;
|
|
|
|
vmx->soft_vnmi_blocked = 0;
|
|
|
|
vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
|
|
kvm_set_cr8(&vmx->vcpu, 0);
|
|
msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
|
|
if (kvm_vcpu_is_bsp(&vmx->vcpu))
|
|
msr |= MSR_IA32_APICBASE_BSP;
|
|
kvm_set_apic_base(&vmx->vcpu, msr);
|
|
|
|
fx_init(&vmx->vcpu);
|
|
|
|
seg_setup(VCPU_SREG_CS);
|
|
/*
|
|
* GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
|
|
* insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
|
|
*/
|
|
if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
|
|
vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
|
|
vmcs_writel(GUEST_CS_BASE, 0x000f0000);
|
|
} else {
|
|
vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
|
|
vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
|
|
}
|
|
|
|
seg_setup(VCPU_SREG_DS);
|
|
seg_setup(VCPU_SREG_ES);
|
|
seg_setup(VCPU_SREG_FS);
|
|
seg_setup(VCPU_SREG_GS);
|
|
seg_setup(VCPU_SREG_SS);
|
|
|
|
vmcs_write16(GUEST_TR_SELECTOR, 0);
|
|
vmcs_writel(GUEST_TR_BASE, 0);
|
|
vmcs_write32(GUEST_TR_LIMIT, 0xffff);
|
|
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
|
|
|
|
vmcs_write16(GUEST_LDTR_SELECTOR, 0);
|
|
vmcs_writel(GUEST_LDTR_BASE, 0);
|
|
vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
|
|
vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
|
|
|
|
vmcs_write32(GUEST_SYSENTER_CS, 0);
|
|
vmcs_writel(GUEST_SYSENTER_ESP, 0);
|
|
vmcs_writel(GUEST_SYSENTER_EIP, 0);
|
|
|
|
vmcs_writel(GUEST_RFLAGS, 0x02);
|
|
if (kvm_vcpu_is_bsp(&vmx->vcpu))
|
|
kvm_rip_write(vcpu, 0xfff0);
|
|
else
|
|
kvm_rip_write(vcpu, 0);
|
|
kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
|
|
|
|
vmcs_writel(GUEST_DR7, 0x400);
|
|
|
|
vmcs_writel(GUEST_GDTR_BASE, 0);
|
|
vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
|
|
|
|
vmcs_writel(GUEST_IDTR_BASE, 0);
|
|
vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
|
|
|
|
vmcs_write32(GUEST_ACTIVITY_STATE, 0);
|
|
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
|
|
vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
|
|
|
|
/* Special registers */
|
|
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
|
|
|
|
setup_msrs(vmx);
|
|
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
|
|
|
|
if (cpu_has_vmx_tpr_shadow()) {
|
|
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
|
|
if (vm_need_tpr_shadow(vmx->vcpu.kvm))
|
|
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
|
|
page_to_phys(vmx->vcpu.arch.apic->regs_page));
|
|
vmcs_write32(TPR_THRESHOLD, 0);
|
|
}
|
|
|
|
if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
|
|
vmcs_write64(APIC_ACCESS_ADDR,
|
|
page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
|
|
|
|
if (vmx->vpid != 0)
|
|
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
|
|
|
|
vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
|
|
vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
|
|
vmx_set_cr4(&vmx->vcpu, 0);
|
|
vmx_set_efer(&vmx->vcpu, 0);
|
|
vmx_fpu_activate(&vmx->vcpu);
|
|
update_exception_bitmap(&vmx->vcpu);
|
|
|
|
vpid_sync_vcpu_all(vmx);
|
|
|
|
ret = 0;
|
|
|
|
/* HACK: Don't enable emulation on guest boot/reset */
|
|
vmx->emulation_required = 0;
|
|
|
|
out:
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
return ret;
|
|
}
|
|
|
|
static void enable_irq_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 cpu_based_vm_exec_control;
|
|
|
|
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
|
|
cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
|
|
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
|
|
}
|
|
|
|
static void enable_nmi_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 cpu_based_vm_exec_control;
|
|
|
|
if (!cpu_has_virtual_nmis()) {
|
|
enable_irq_window(vcpu);
|
|
return;
|
|
}
|
|
|
|
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
|
|
cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
|
|
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
|
|
}
|
|
|
|
static void vmx_inject_irq(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
uint32_t intr;
|
|
int irq = vcpu->arch.interrupt.nr;
|
|
|
|
trace_kvm_inj_virq(irq);
|
|
|
|
++vcpu->stat.irq_injections;
|
|
if (vmx->rmode.vm86_active) {
|
|
vmx->rmode.irq.pending = true;
|
|
vmx->rmode.irq.vector = irq;
|
|
vmx->rmode.irq.rip = kvm_rip_read(vcpu);
|
|
if (vcpu->arch.interrupt.soft)
|
|
vmx->rmode.irq.rip +=
|
|
vmx->vcpu.arch.event_exit_inst_len;
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
|
|
irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
|
|
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
|
|
kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
|
|
return;
|
|
}
|
|
intr = irq | INTR_INFO_VALID_MASK;
|
|
if (vcpu->arch.interrupt.soft) {
|
|
intr |= INTR_TYPE_SOFT_INTR;
|
|
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
|
|
vmx->vcpu.arch.event_exit_inst_len);
|
|
} else
|
|
intr |= INTR_TYPE_EXT_INTR;
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
|
|
}
|
|
|
|
static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (!cpu_has_virtual_nmis()) {
|
|
/*
|
|
* Tracking the NMI-blocked state in software is built upon
|
|
* finding the next open IRQ window. This, in turn, depends on
|
|
* well-behaving guests: They have to keep IRQs disabled at
|
|
* least as long as the NMI handler runs. Otherwise we may
|
|
* cause NMI nesting, maybe breaking the guest. But as this is
|
|
* highly unlikely, we can live with the residual risk.
|
|
*/
|
|
vmx->soft_vnmi_blocked = 1;
|
|
vmx->vnmi_blocked_time = 0;
|
|
}
|
|
|
|
++vcpu->stat.nmi_injections;
|
|
if (vmx->rmode.vm86_active) {
|
|
vmx->rmode.irq.pending = true;
|
|
vmx->rmode.irq.vector = NMI_VECTOR;
|
|
vmx->rmode.irq.rip = kvm_rip_read(vcpu);
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
|
|
NMI_VECTOR | INTR_TYPE_SOFT_INTR |
|
|
INTR_INFO_VALID_MASK);
|
|
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
|
|
kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
|
|
return;
|
|
}
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
|
|
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
|
|
}
|
|
|
|
static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
|
|
return 0;
|
|
|
|
return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
|
|
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
|
|
GUEST_INTR_STATE_NMI));
|
|
}
|
|
|
|
static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!cpu_has_virtual_nmis())
|
|
return to_vmx(vcpu)->soft_vnmi_blocked;
|
|
else
|
|
return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
|
|
GUEST_INTR_STATE_NMI);
|
|
}
|
|
|
|
static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (!cpu_has_virtual_nmis()) {
|
|
if (vmx->soft_vnmi_blocked != masked) {
|
|
vmx->soft_vnmi_blocked = masked;
|
|
vmx->vnmi_blocked_time = 0;
|
|
}
|
|
} else {
|
|
if (masked)
|
|
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
|
|
GUEST_INTR_STATE_NMI);
|
|
else
|
|
vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
|
|
GUEST_INTR_STATE_NMI);
|
|
}
|
|
}
|
|
|
|
static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
|
|
{
|
|
return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
|
|
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
|
|
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
|
|
}
|
|
|
|
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
|
|
{
|
|
int ret;
|
|
struct kvm_userspace_memory_region tss_mem = {
|
|
.slot = TSS_PRIVATE_MEMSLOT,
|
|
.guest_phys_addr = addr,
|
|
.memory_size = PAGE_SIZE * 3,
|
|
.flags = 0,
|
|
};
|
|
|
|
ret = kvm_set_memory_region(kvm, &tss_mem, 0);
|
|
if (ret)
|
|
return ret;
|
|
kvm->arch.tss_addr = addr;
|
|
return 0;
|
|
}
|
|
|
|
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
|
|
int vec, u32 err_code)
|
|
{
|
|
/*
|
|
* Instruction with address size override prefix opcode 0x67
|
|
* Cause the #SS fault with 0 error code in VM86 mode.
|
|
*/
|
|
if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
|
|
if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
|
|
return 1;
|
|
/*
|
|
* Forward all other exceptions that are valid in real mode.
|
|
* FIXME: Breaks guest debugging in real mode, needs to be fixed with
|
|
* the required debugging infrastructure rework.
|
|
*/
|
|
switch (vec) {
|
|
case DB_VECTOR:
|
|
if (vcpu->guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
|
|
return 0;
|
|
kvm_queue_exception(vcpu, vec);
|
|
return 1;
|
|
case BP_VECTOR:
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
|
|
return 0;
|
|
/* fall through */
|
|
case DE_VECTOR:
|
|
case OF_VECTOR:
|
|
case BR_VECTOR:
|
|
case UD_VECTOR:
|
|
case DF_VECTOR:
|
|
case SS_VECTOR:
|
|
case GP_VECTOR:
|
|
case MF_VECTOR:
|
|
kvm_queue_exception(vcpu, vec);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Trigger machine check on the host. We assume all the MSRs are already set up
|
|
* by the CPU and that we still run on the same CPU as the MCE occurred on.
|
|
* We pass a fake environment to the machine check handler because we want
|
|
* the guest to be always treated like user space, no matter what context
|
|
* it used internally.
|
|
*/
|
|
static void kvm_machine_check(void)
|
|
{
|
|
#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
|
|
struct pt_regs regs = {
|
|
.cs = 3, /* Fake ring 3 no matter what the guest ran on */
|
|
.flags = X86_EFLAGS_IF,
|
|
};
|
|
|
|
do_machine_check(®s, 0);
|
|
#endif
|
|
}
|
|
|
|
static int handle_machine_check(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* already handled by vcpu_run */
|
|
return 1;
|
|
}
|
|
|
|
static int handle_exception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
u32 intr_info, ex_no, error_code;
|
|
unsigned long cr2, rip, dr6;
|
|
u32 vect_info;
|
|
enum emulation_result er;
|
|
|
|
vect_info = vmx->idt_vectoring_info;
|
|
intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
|
|
|
|
if (is_machine_check(intr_info))
|
|
return handle_machine_check(vcpu);
|
|
|
|
if ((vect_info & VECTORING_INFO_VALID_MASK) &&
|
|
!is_page_fault(intr_info)) {
|
|
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
|
|
vcpu->run->internal.ndata = 2;
|
|
vcpu->run->internal.data[0] = vect_info;
|
|
vcpu->run->internal.data[1] = intr_info;
|
|
return 0;
|
|
}
|
|
|
|
if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
|
|
return 1; /* already handled by vmx_vcpu_run() */
|
|
|
|
if (is_no_device(intr_info)) {
|
|
vmx_fpu_activate(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
if (is_invalid_opcode(intr_info)) {
|
|
er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
|
|
if (er != EMULATE_DONE)
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
error_code = 0;
|
|
rip = kvm_rip_read(vcpu);
|
|
if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
|
|
error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
|
|
if (is_page_fault(intr_info)) {
|
|
/* EPT won't cause page fault directly */
|
|
if (enable_ept)
|
|
BUG();
|
|
cr2 = vmcs_readl(EXIT_QUALIFICATION);
|
|
trace_kvm_page_fault(cr2, error_code);
|
|
|
|
if (kvm_event_needs_reinjection(vcpu))
|
|
kvm_mmu_unprotect_page_virt(vcpu, cr2);
|
|
return kvm_mmu_page_fault(vcpu, cr2, error_code);
|
|
}
|
|
|
|
if (vmx->rmode.vm86_active &&
|
|
handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
|
|
error_code)) {
|
|
if (vcpu->arch.halt_request) {
|
|
vcpu->arch.halt_request = 0;
|
|
return kvm_emulate_halt(vcpu);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
ex_no = intr_info & INTR_INFO_VECTOR_MASK;
|
|
switch (ex_no) {
|
|
case DB_VECTOR:
|
|
dr6 = vmcs_readl(EXIT_QUALIFICATION);
|
|
if (!(vcpu->guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
|
|
vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
|
|
kvm_queue_exception(vcpu, DB_VECTOR);
|
|
return 1;
|
|
}
|
|
kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
|
|
kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
|
|
/* fall through */
|
|
case BP_VECTOR:
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
|
|
kvm_run->debug.arch.exception = ex_no;
|
|
break;
|
|
default:
|
|
kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
|
|
kvm_run->ex.exception = ex_no;
|
|
kvm_run->ex.error_code = error_code;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int handle_external_interrupt(struct kvm_vcpu *vcpu)
|
|
{
|
|
++vcpu->stat.irq_exits;
|
|
return 1;
|
|
}
|
|
|
|
static int handle_triple_fault(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
|
|
return 0;
|
|
}
|
|
|
|
static int handle_io(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qualification;
|
|
int size, in, string;
|
|
unsigned port;
|
|
|
|
++vcpu->stat.io_exits;
|
|
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
|
|
string = (exit_qualification & 16) != 0;
|
|
|
|
if (string) {
|
|
if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
size = (exit_qualification & 7) + 1;
|
|
in = (exit_qualification & 8) != 0;
|
|
port = exit_qualification >> 16;
|
|
|
|
skip_emulated_instruction(vcpu);
|
|
return kvm_emulate_pio(vcpu, in, size, port);
|
|
}
|
|
|
|
static void
|
|
vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
|
|
{
|
|
/*
|
|
* Patch in the VMCALL instruction:
|
|
*/
|
|
hypercall[0] = 0x0f;
|
|
hypercall[1] = 0x01;
|
|
hypercall[2] = 0xc1;
|
|
}
|
|
|
|
static int handle_cr(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qualification, val;
|
|
int cr;
|
|
int reg;
|
|
|
|
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
|
|
cr = exit_qualification & 15;
|
|
reg = (exit_qualification >> 8) & 15;
|
|
switch ((exit_qualification >> 4) & 3) {
|
|
case 0: /* mov to cr */
|
|
val = kvm_register_read(vcpu, reg);
|
|
trace_kvm_cr_write(cr, val);
|
|
switch (cr) {
|
|
case 0:
|
|
kvm_set_cr0(vcpu, val);
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
case 3:
|
|
kvm_set_cr3(vcpu, val);
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
case 4:
|
|
kvm_set_cr4(vcpu, val);
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
case 8: {
|
|
u8 cr8_prev = kvm_get_cr8(vcpu);
|
|
u8 cr8 = kvm_register_read(vcpu, reg);
|
|
kvm_set_cr8(vcpu, cr8);
|
|
skip_emulated_instruction(vcpu);
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
return 1;
|
|
if (cr8_prev <= cr8)
|
|
return 1;
|
|
vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
|
|
return 0;
|
|
}
|
|
};
|
|
break;
|
|
case 2: /* clts */
|
|
vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
|
|
trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
|
|
skip_emulated_instruction(vcpu);
|
|
vmx_fpu_activate(vcpu);
|
|
return 1;
|
|
case 1: /*mov from cr*/
|
|
switch (cr) {
|
|
case 3:
|
|
kvm_register_write(vcpu, reg, vcpu->arch.cr3);
|
|
trace_kvm_cr_read(cr, vcpu->arch.cr3);
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
case 8:
|
|
val = kvm_get_cr8(vcpu);
|
|
kvm_register_write(vcpu, reg, val);
|
|
trace_kvm_cr_read(cr, val);
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
}
|
|
break;
|
|
case 3: /* lmsw */
|
|
val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
|
|
trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
|
|
kvm_lmsw(vcpu, val);
|
|
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
default:
|
|
break;
|
|
}
|
|
vcpu->run->exit_reason = 0;
|
|
pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
|
|
(int)(exit_qualification >> 4) & 3, cr);
|
|
return 0;
|
|
}
|
|
|
|
static int check_dr_alias(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int handle_dr(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qualification;
|
|
unsigned long val;
|
|
int dr, reg;
|
|
|
|
/* Do not handle if the CPL > 0, will trigger GP on re-entry */
|
|
if (!kvm_require_cpl(vcpu, 0))
|
|
return 1;
|
|
dr = vmcs_readl(GUEST_DR7);
|
|
if (dr & DR7_GD) {
|
|
/*
|
|
* As the vm-exit takes precedence over the debug trap, we
|
|
* need to emulate the latter, either for the host or the
|
|
* guest debugging itself.
|
|
*/
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
|
|
vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
|
|
vcpu->run->debug.arch.dr7 = dr;
|
|
vcpu->run->debug.arch.pc =
|
|
vmcs_readl(GUEST_CS_BASE) +
|
|
vmcs_readl(GUEST_RIP);
|
|
vcpu->run->debug.arch.exception = DB_VECTOR;
|
|
vcpu->run->exit_reason = KVM_EXIT_DEBUG;
|
|
return 0;
|
|
} else {
|
|
vcpu->arch.dr7 &= ~DR7_GD;
|
|
vcpu->arch.dr6 |= DR6_BD;
|
|
vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
|
|
kvm_queue_exception(vcpu, DB_VECTOR);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
|
|
dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
|
|
reg = DEBUG_REG_ACCESS_REG(exit_qualification);
|
|
if (exit_qualification & TYPE_MOV_FROM_DR) {
|
|
switch (dr) {
|
|
case 0 ... 3:
|
|
val = vcpu->arch.db[dr];
|
|
break;
|
|
case 4:
|
|
if (check_dr_alias(vcpu) < 0)
|
|
return 1;
|
|
/* fall through */
|
|
case 6:
|
|
val = vcpu->arch.dr6;
|
|
break;
|
|
case 5:
|
|
if (check_dr_alias(vcpu) < 0)
|
|
return 1;
|
|
/* fall through */
|
|
default: /* 7 */
|
|
val = vcpu->arch.dr7;
|
|
break;
|
|
}
|
|
kvm_register_write(vcpu, reg, val);
|
|
} else {
|
|
val = vcpu->arch.regs[reg];
|
|
switch (dr) {
|
|
case 0 ... 3:
|
|
vcpu->arch.db[dr] = val;
|
|
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
|
|
vcpu->arch.eff_db[dr] = val;
|
|
break;
|
|
case 4:
|
|
if (check_dr_alias(vcpu) < 0)
|
|
return 1;
|
|
/* fall through */
|
|
case 6:
|
|
if (val & 0xffffffff00000000ULL) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
|
|
break;
|
|
case 5:
|
|
if (check_dr_alias(vcpu) < 0)
|
|
return 1;
|
|
/* fall through */
|
|
default: /* 7 */
|
|
if (val & 0xffffffff00000000ULL) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
|
|
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
|
|
vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
|
|
vcpu->arch.switch_db_regs =
|
|
(val & DR7_BP_EN_MASK);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_emulate_cpuid(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_rdmsr(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
|
|
u64 data;
|
|
|
|
if (vmx_get_msr(vcpu, ecx, &data)) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
trace_kvm_msr_read(ecx, data);
|
|
|
|
/* FIXME: handling of bits 32:63 of rax, rdx */
|
|
vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
|
|
vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_wrmsr(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
|
|
u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
|
|
| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
|
|
|
|
trace_kvm_msr_write(ecx, data);
|
|
|
|
if (vmx_set_msr(vcpu, ecx, data) != 0) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int handle_interrupt_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 cpu_based_vm_exec_control;
|
|
|
|
/* clear pending irq */
|
|
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
|
|
cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
|
|
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
|
|
|
|
++vcpu->stat.irq_window_exits;
|
|
|
|
/*
|
|
* If the user space waits to inject interrupts, exit as soon as
|
|
* possible
|
|
*/
|
|
if (!irqchip_in_kernel(vcpu->kvm) &&
|
|
vcpu->run->request_interrupt_window &&
|
|
!kvm_cpu_has_interrupt(vcpu)) {
|
|
vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int handle_halt(struct kvm_vcpu *vcpu)
|
|
{
|
|
skip_emulated_instruction(vcpu);
|
|
return kvm_emulate_halt(vcpu);
|
|
}
|
|
|
|
static int handle_vmcall(struct kvm_vcpu *vcpu)
|
|
{
|
|
skip_emulated_instruction(vcpu);
|
|
kvm_emulate_hypercall(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_vmx_insn(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_invlpg(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
|
|
|
|
kvm_mmu_invlpg(vcpu, exit_qualification);
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_wbinvd(struct kvm_vcpu *vcpu)
|
|
{
|
|
skip_emulated_instruction(vcpu);
|
|
/* TODO: Add support for VT-d/pass-through device */
|
|
return 1;
|
|
}
|
|
|
|
static int handle_apic_access(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qualification;
|
|
enum emulation_result er;
|
|
unsigned long offset;
|
|
|
|
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
|
|
offset = exit_qualification & 0xffful;
|
|
|
|
er = emulate_instruction(vcpu, 0, 0, 0);
|
|
|
|
if (er != EMULATE_DONE) {
|
|
printk(KERN_ERR
|
|
"Fail to handle apic access vmexit! Offset is 0x%lx\n",
|
|
offset);
|
|
return -ENOEXEC;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int handle_task_switch(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
unsigned long exit_qualification;
|
|
u16 tss_selector;
|
|
int reason, type, idt_v;
|
|
|
|
idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
|
|
type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
|
|
|
|
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
|
|
|
|
reason = (u32)exit_qualification >> 30;
|
|
if (reason == TASK_SWITCH_GATE && idt_v) {
|
|
switch (type) {
|
|
case INTR_TYPE_NMI_INTR:
|
|
vcpu->arch.nmi_injected = false;
|
|
if (cpu_has_virtual_nmis())
|
|
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
|
|
GUEST_INTR_STATE_NMI);
|
|
break;
|
|
case INTR_TYPE_EXT_INTR:
|
|
case INTR_TYPE_SOFT_INTR:
|
|
kvm_clear_interrupt_queue(vcpu);
|
|
break;
|
|
case INTR_TYPE_HARD_EXCEPTION:
|
|
case INTR_TYPE_SOFT_EXCEPTION:
|
|
kvm_clear_exception_queue(vcpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
tss_selector = exit_qualification;
|
|
|
|
if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
|
|
type != INTR_TYPE_EXT_INTR &&
|
|
type != INTR_TYPE_NMI_INTR))
|
|
skip_emulated_instruction(vcpu);
|
|
|
|
if (!kvm_task_switch(vcpu, tss_selector, reason))
|
|
return 0;
|
|
|
|
/* clear all local breakpoint enable flags */
|
|
vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
|
|
|
|
/*
|
|
* TODO: What about debug traps on tss switch?
|
|
* Are we supposed to inject them and update dr6?
|
|
*/
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int handle_ept_violation(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qualification;
|
|
gpa_t gpa;
|
|
int gla_validity;
|
|
|
|
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
|
|
|
|
if (exit_qualification & (1 << 6)) {
|
|
printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
gla_validity = (exit_qualification >> 7) & 0x3;
|
|
if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
|
|
printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
|
|
printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
|
|
(long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
|
|
vmcs_readl(GUEST_LINEAR_ADDRESS));
|
|
printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
|
|
(long unsigned int)exit_qualification);
|
|
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
|
|
return 0;
|
|
}
|
|
|
|
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
|
|
trace_kvm_page_fault(gpa, exit_qualification);
|
|
return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
|
|
}
|
|
|
|
static u64 ept_rsvd_mask(u64 spte, int level)
|
|
{
|
|
int i;
|
|
u64 mask = 0;
|
|
|
|
for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
|
|
mask |= (1ULL << i);
|
|
|
|
if (level > 2)
|
|
/* bits 7:3 reserved */
|
|
mask |= 0xf8;
|
|
else if (level == 2) {
|
|
if (spte & (1ULL << 7))
|
|
/* 2MB ref, bits 20:12 reserved */
|
|
mask |= 0x1ff000;
|
|
else
|
|
/* bits 6:3 reserved */
|
|
mask |= 0x78;
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
|
|
int level)
|
|
{
|
|
printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
|
|
|
|
/* 010b (write-only) */
|
|
WARN_ON((spte & 0x7) == 0x2);
|
|
|
|
/* 110b (write/execute) */
|
|
WARN_ON((spte & 0x7) == 0x6);
|
|
|
|
/* 100b (execute-only) and value not supported by logical processor */
|
|
if (!cpu_has_vmx_ept_execute_only())
|
|
WARN_ON((spte & 0x7) == 0x4);
|
|
|
|
/* not 000b */
|
|
if ((spte & 0x7)) {
|
|
u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
|
|
|
|
if (rsvd_bits != 0) {
|
|
printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
|
|
__func__, rsvd_bits);
|
|
WARN_ON(1);
|
|
}
|
|
|
|
if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
|
|
u64 ept_mem_type = (spte & 0x38) >> 3;
|
|
|
|
if (ept_mem_type == 2 || ept_mem_type == 3 ||
|
|
ept_mem_type == 7) {
|
|
printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
|
|
__func__, ept_mem_type);
|
|
WARN_ON(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 sptes[4];
|
|
int nr_sptes, i;
|
|
gpa_t gpa;
|
|
|
|
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
|
|
|
|
printk(KERN_ERR "EPT: Misconfiguration.\n");
|
|
printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
|
|
|
|
nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
|
|
|
|
for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
|
|
ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
|
|
|
|
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int handle_nmi_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 cpu_based_vm_exec_control;
|
|
|
|
/* clear pending NMI */
|
|
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
|
|
cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
|
|
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
|
|
++vcpu->stat.nmi_window_exits;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
enum emulation_result err = EMULATE_DONE;
|
|
int ret = 1;
|
|
|
|
while (!guest_state_valid(vcpu)) {
|
|
err = emulate_instruction(vcpu, 0, 0, 0);
|
|
|
|
if (err == EMULATE_DO_MMIO) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (err != EMULATE_DONE) {
|
|
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
|
|
vcpu->run->internal.ndata = 0;
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (signal_pending(current))
|
|
goto out;
|
|
if (need_resched())
|
|
schedule();
|
|
}
|
|
|
|
vmx->emulation_required = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
|
|
* exiting, so only get here on cpu with PAUSE-Loop-Exiting.
|
|
*/
|
|
static int handle_pause(struct kvm_vcpu *vcpu)
|
|
{
|
|
skip_emulated_instruction(vcpu);
|
|
kvm_vcpu_on_spin(vcpu);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int handle_invalid_op(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* The exit handlers return 1 if the exit was handled fully and guest execution
|
|
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
|
|
* to be done to userspace and return 0.
|
|
*/
|
|
static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
|
|
[EXIT_REASON_EXCEPTION_NMI] = handle_exception,
|
|
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
|
|
[EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
|
|
[EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
|
|
[EXIT_REASON_IO_INSTRUCTION] = handle_io,
|
|
[EXIT_REASON_CR_ACCESS] = handle_cr,
|
|
[EXIT_REASON_DR_ACCESS] = handle_dr,
|
|
[EXIT_REASON_CPUID] = handle_cpuid,
|
|
[EXIT_REASON_MSR_READ] = handle_rdmsr,
|
|
[EXIT_REASON_MSR_WRITE] = handle_wrmsr,
|
|
[EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
|
|
[EXIT_REASON_HLT] = handle_halt,
|
|
[EXIT_REASON_INVLPG] = handle_invlpg,
|
|
[EXIT_REASON_VMCALL] = handle_vmcall,
|
|
[EXIT_REASON_VMCLEAR] = handle_vmx_insn,
|
|
[EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
|
|
[EXIT_REASON_VMPTRLD] = handle_vmx_insn,
|
|
[EXIT_REASON_VMPTRST] = handle_vmx_insn,
|
|
[EXIT_REASON_VMREAD] = handle_vmx_insn,
|
|
[EXIT_REASON_VMRESUME] = handle_vmx_insn,
|
|
[EXIT_REASON_VMWRITE] = handle_vmx_insn,
|
|
[EXIT_REASON_VMOFF] = handle_vmx_insn,
|
|
[EXIT_REASON_VMON] = handle_vmx_insn,
|
|
[EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
|
|
[EXIT_REASON_APIC_ACCESS] = handle_apic_access,
|
|
[EXIT_REASON_WBINVD] = handle_wbinvd,
|
|
[EXIT_REASON_TASK_SWITCH] = handle_task_switch,
|
|
[EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
|
|
[EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
|
|
[EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
|
|
[EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
|
|
[EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
|
|
[EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
|
|
};
|
|
|
|
static const int kvm_vmx_max_exit_handlers =
|
|
ARRAY_SIZE(kvm_vmx_exit_handlers);
|
|
|
|
/*
|
|
* The guest has exited. See if we can fix it or if we need userspace
|
|
* assistance.
|
|
*/
|
|
static int vmx_handle_exit(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 exit_reason = vmx->exit_reason;
|
|
u32 vectoring_info = vmx->idt_vectoring_info;
|
|
|
|
trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
|
|
|
|
/* If guest state is invalid, start emulating */
|
|
if (vmx->emulation_required && emulate_invalid_guest_state)
|
|
return handle_invalid_guest_state(vcpu);
|
|
|
|
/* Access CR3 don't cause VMExit in paging mode, so we need
|
|
* to sync with guest real CR3. */
|
|
if (enable_ept && is_paging(vcpu))
|
|
vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
|
|
|
|
if (unlikely(vmx->fail)) {
|
|
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
vcpu->run->fail_entry.hardware_entry_failure_reason
|
|
= vmcs_read32(VM_INSTRUCTION_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
|
|
(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
|
|
exit_reason != EXIT_REASON_EPT_VIOLATION &&
|
|
exit_reason != EXIT_REASON_TASK_SWITCH))
|
|
printk(KERN_WARNING "%s: unexpected, valid vectoring info "
|
|
"(0x%x) and exit reason is 0x%x\n",
|
|
__func__, vectoring_info, exit_reason);
|
|
|
|
if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
|
|
if (vmx_interrupt_allowed(vcpu)) {
|
|
vmx->soft_vnmi_blocked = 0;
|
|
} else if (vmx->vnmi_blocked_time > 1000000000LL &&
|
|
vcpu->arch.nmi_pending) {
|
|
/*
|
|
* This CPU don't support us in finding the end of an
|
|
* NMI-blocked window if the guest runs with IRQs
|
|
* disabled. So we pull the trigger after 1 s of
|
|
* futile waiting, but inform the user about this.
|
|
*/
|
|
printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
|
|
"state on VCPU %d after 1 s timeout\n",
|
|
__func__, vcpu->vcpu_id);
|
|
vmx->soft_vnmi_blocked = 0;
|
|
}
|
|
}
|
|
|
|
if (exit_reason < kvm_vmx_max_exit_handlers
|
|
&& kvm_vmx_exit_handlers[exit_reason])
|
|
return kvm_vmx_exit_handlers[exit_reason](vcpu);
|
|
else {
|
|
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
vcpu->run->hw.hardware_exit_reason = exit_reason;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
|
|
{
|
|
if (irr == -1 || tpr < irr) {
|
|
vmcs_write32(TPR_THRESHOLD, 0);
|
|
return;
|
|
}
|
|
|
|
vmcs_write32(TPR_THRESHOLD, irr);
|
|
}
|
|
|
|
static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
|
|
{
|
|
u32 exit_intr_info;
|
|
u32 idt_vectoring_info = vmx->idt_vectoring_info;
|
|
bool unblock_nmi;
|
|
u8 vector;
|
|
int type;
|
|
bool idtv_info_valid;
|
|
|
|
exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
|
|
|
|
vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
|
|
|
|
/* Handle machine checks before interrupts are enabled */
|
|
if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
|
|
|| (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
|
|
&& is_machine_check(exit_intr_info)))
|
|
kvm_machine_check();
|
|
|
|
/* We need to handle NMIs before interrupts are enabled */
|
|
if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
|
|
(exit_intr_info & INTR_INFO_VALID_MASK))
|
|
asm("int $2");
|
|
|
|
idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
|
|
|
|
if (cpu_has_virtual_nmis()) {
|
|
unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
|
|
vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
|
|
/*
|
|
* SDM 3: 27.7.1.2 (September 2008)
|
|
* Re-set bit "block by NMI" before VM entry if vmexit caused by
|
|
* a guest IRET fault.
|
|
* SDM 3: 23.2.2 (September 2008)
|
|
* Bit 12 is undefined in any of the following cases:
|
|
* If the VM exit sets the valid bit in the IDT-vectoring
|
|
* information field.
|
|
* If the VM exit is due to a double fault.
|
|
*/
|
|
if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
|
|
vector != DF_VECTOR && !idtv_info_valid)
|
|
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
|
|
GUEST_INTR_STATE_NMI);
|
|
} else if (unlikely(vmx->soft_vnmi_blocked))
|
|
vmx->vnmi_blocked_time +=
|
|
ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
|
|
|
|
vmx->vcpu.arch.nmi_injected = false;
|
|
kvm_clear_exception_queue(&vmx->vcpu);
|
|
kvm_clear_interrupt_queue(&vmx->vcpu);
|
|
|
|
if (!idtv_info_valid)
|
|
return;
|
|
|
|
vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
|
|
type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
|
|
|
|
switch (type) {
|
|
case INTR_TYPE_NMI_INTR:
|
|
vmx->vcpu.arch.nmi_injected = true;
|
|
/*
|
|
* SDM 3: 27.7.1.2 (September 2008)
|
|
* Clear bit "block by NMI" before VM entry if a NMI
|
|
* delivery faulted.
|
|
*/
|
|
vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
|
|
GUEST_INTR_STATE_NMI);
|
|
break;
|
|
case INTR_TYPE_SOFT_EXCEPTION:
|
|
vmx->vcpu.arch.event_exit_inst_len =
|
|
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
|
|
/* fall through */
|
|
case INTR_TYPE_HARD_EXCEPTION:
|
|
if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
|
|
u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
|
|
kvm_queue_exception_e(&vmx->vcpu, vector, err);
|
|
} else
|
|
kvm_queue_exception(&vmx->vcpu, vector);
|
|
break;
|
|
case INTR_TYPE_SOFT_INTR:
|
|
vmx->vcpu.arch.event_exit_inst_len =
|
|
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
|
|
/* fall through */
|
|
case INTR_TYPE_EXT_INTR:
|
|
kvm_queue_interrupt(&vmx->vcpu, vector,
|
|
type == INTR_TYPE_SOFT_INTR);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Failure to inject an interrupt should give us the information
|
|
* in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
|
|
* when fetching the interrupt redirection bitmap in the real-mode
|
|
* tss, this doesn't happen. So we do it ourselves.
|
|
*/
|
|
static void fixup_rmode_irq(struct vcpu_vmx *vmx)
|
|
{
|
|
vmx->rmode.irq.pending = 0;
|
|
if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
|
|
return;
|
|
kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
|
|
if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
|
|
vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
|
|
vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
|
|
return;
|
|
}
|
|
vmx->idt_vectoring_info =
|
|
VECTORING_INFO_VALID_MASK
|
|
| INTR_TYPE_EXT_INTR
|
|
| vmx->rmode.irq.vector;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
#define R "r"
|
|
#define Q "q"
|
|
#else
|
|
#define R "e"
|
|
#define Q "l"
|
|
#endif
|
|
|
|
static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
/* Record the guest's net vcpu time for enforced NMI injections. */
|
|
if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
|
|
vmx->entry_time = ktime_get();
|
|
|
|
/* Don't enter VMX if guest state is invalid, let the exit handler
|
|
start emulation until we arrive back to a valid state */
|
|
if (vmx->emulation_required && emulate_invalid_guest_state)
|
|
return;
|
|
|
|
if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
|
|
vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
|
|
if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
|
|
vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
|
|
|
|
/* When single-stepping over STI and MOV SS, we must clear the
|
|
* corresponding interruptibility bits in the guest state. Otherwise
|
|
* vmentry fails as it then expects bit 14 (BS) in pending debug
|
|
* exceptions being set, but that's not correct for the guest debugging
|
|
* case. */
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
|
|
vmx_set_interrupt_shadow(vcpu, 0);
|
|
|
|
/*
|
|
* Loading guest fpu may have cleared host cr0.ts
|
|
*/
|
|
vmcs_writel(HOST_CR0, read_cr0());
|
|
|
|
asm(
|
|
/* Store host registers */
|
|
"push %%"R"dx; push %%"R"bp;"
|
|
"push %%"R"cx \n\t"
|
|
"cmp %%"R"sp, %c[host_rsp](%0) \n\t"
|
|
"je 1f \n\t"
|
|
"mov %%"R"sp, %c[host_rsp](%0) \n\t"
|
|
__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
|
|
"1: \n\t"
|
|
/* Reload cr2 if changed */
|
|
"mov %c[cr2](%0), %%"R"ax \n\t"
|
|
"mov %%cr2, %%"R"dx \n\t"
|
|
"cmp %%"R"ax, %%"R"dx \n\t"
|
|
"je 2f \n\t"
|
|
"mov %%"R"ax, %%cr2 \n\t"
|
|
"2: \n\t"
|
|
/* Check if vmlaunch of vmresume is needed */
|
|
"cmpl $0, %c[launched](%0) \n\t"
|
|
/* Load guest registers. Don't clobber flags. */
|
|
"mov %c[rax](%0), %%"R"ax \n\t"
|
|
"mov %c[rbx](%0), %%"R"bx \n\t"
|
|
"mov %c[rdx](%0), %%"R"dx \n\t"
|
|
"mov %c[rsi](%0), %%"R"si \n\t"
|
|
"mov %c[rdi](%0), %%"R"di \n\t"
|
|
"mov %c[rbp](%0), %%"R"bp \n\t"
|
|
#ifdef CONFIG_X86_64
|
|
"mov %c[r8](%0), %%r8 \n\t"
|
|
"mov %c[r9](%0), %%r9 \n\t"
|
|
"mov %c[r10](%0), %%r10 \n\t"
|
|
"mov %c[r11](%0), %%r11 \n\t"
|
|
"mov %c[r12](%0), %%r12 \n\t"
|
|
"mov %c[r13](%0), %%r13 \n\t"
|
|
"mov %c[r14](%0), %%r14 \n\t"
|
|
"mov %c[r15](%0), %%r15 \n\t"
|
|
#endif
|
|
"mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
|
|
|
|
/* Enter guest mode */
|
|
"jne .Llaunched \n\t"
|
|
__ex(ASM_VMX_VMLAUNCH) "\n\t"
|
|
"jmp .Lkvm_vmx_return \n\t"
|
|
".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
|
|
".Lkvm_vmx_return: "
|
|
/* Save guest registers, load host registers, keep flags */
|
|
"xchg %0, (%%"R"sp) \n\t"
|
|
"mov %%"R"ax, %c[rax](%0) \n\t"
|
|
"mov %%"R"bx, %c[rbx](%0) \n\t"
|
|
"push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
|
|
"mov %%"R"dx, %c[rdx](%0) \n\t"
|
|
"mov %%"R"si, %c[rsi](%0) \n\t"
|
|
"mov %%"R"di, %c[rdi](%0) \n\t"
|
|
"mov %%"R"bp, %c[rbp](%0) \n\t"
|
|
#ifdef CONFIG_X86_64
|
|
"mov %%r8, %c[r8](%0) \n\t"
|
|
"mov %%r9, %c[r9](%0) \n\t"
|
|
"mov %%r10, %c[r10](%0) \n\t"
|
|
"mov %%r11, %c[r11](%0) \n\t"
|
|
"mov %%r12, %c[r12](%0) \n\t"
|
|
"mov %%r13, %c[r13](%0) \n\t"
|
|
"mov %%r14, %c[r14](%0) \n\t"
|
|
"mov %%r15, %c[r15](%0) \n\t"
|
|
#endif
|
|
"mov %%cr2, %%"R"ax \n\t"
|
|
"mov %%"R"ax, %c[cr2](%0) \n\t"
|
|
|
|
"pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
|
|
"setbe %c[fail](%0) \n\t"
|
|
: : "c"(vmx), "d"((unsigned long)HOST_RSP),
|
|
[launched]"i"(offsetof(struct vcpu_vmx, launched)),
|
|
[fail]"i"(offsetof(struct vcpu_vmx, fail)),
|
|
[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
|
|
[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
|
|
[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
|
|
[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
|
|
[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
|
|
[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
|
|
[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
|
|
[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
|
|
#ifdef CONFIG_X86_64
|
|
[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
|
|
[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
|
|
[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
|
|
[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
|
|
[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
|
|
[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
|
|
[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
|
|
[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
|
|
#endif
|
|
[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
|
|
: "cc", "memory"
|
|
, R"bx", R"di", R"si"
|
|
#ifdef CONFIG_X86_64
|
|
, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
|
|
#endif
|
|
);
|
|
|
|
vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
|
|
| (1 << VCPU_EXREG_PDPTR));
|
|
vcpu->arch.regs_dirty = 0;
|
|
|
|
vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
|
|
if (vmx->rmode.irq.pending)
|
|
fixup_rmode_irq(vmx);
|
|
|
|
asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
|
|
vmx->launched = 1;
|
|
|
|
vmx_complete_interrupts(vmx);
|
|
}
|
|
|
|
#undef R
|
|
#undef Q
|
|
|
|
static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (vmx->vmcs) {
|
|
vcpu_clear(vmx);
|
|
free_vmcs(vmx->vmcs);
|
|
vmx->vmcs = NULL;
|
|
}
|
|
}
|
|
|
|
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
spin_lock(&vmx_vpid_lock);
|
|
if (vmx->vpid != 0)
|
|
__clear_bit(vmx->vpid, vmx_vpid_bitmap);
|
|
spin_unlock(&vmx_vpid_lock);
|
|
vmx_free_vmcs(vcpu);
|
|
kfree(vmx->guest_msrs);
|
|
kvm_vcpu_uninit(vcpu);
|
|
kmem_cache_free(kvm_vcpu_cache, vmx);
|
|
}
|
|
|
|
static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
|
|
{
|
|
int err;
|
|
struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
|
|
int cpu;
|
|
|
|
if (!vmx)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
allocate_vpid(vmx);
|
|
|
|
err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
|
|
if (err)
|
|
goto free_vcpu;
|
|
|
|
vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!vmx->guest_msrs) {
|
|
err = -ENOMEM;
|
|
goto uninit_vcpu;
|
|
}
|
|
|
|
vmx->vmcs = alloc_vmcs();
|
|
if (!vmx->vmcs)
|
|
goto free_msrs;
|
|
|
|
vmcs_clear(vmx->vmcs);
|
|
|
|
cpu = get_cpu();
|
|
vmx_vcpu_load(&vmx->vcpu, cpu);
|
|
err = vmx_vcpu_setup(vmx);
|
|
vmx_vcpu_put(&vmx->vcpu);
|
|
put_cpu();
|
|
if (err)
|
|
goto free_vmcs;
|
|
if (vm_need_virtualize_apic_accesses(kvm))
|
|
if (alloc_apic_access_page(kvm) != 0)
|
|
goto free_vmcs;
|
|
|
|
if (enable_ept) {
|
|
if (!kvm->arch.ept_identity_map_addr)
|
|
kvm->arch.ept_identity_map_addr =
|
|
VMX_EPT_IDENTITY_PAGETABLE_ADDR;
|
|
if (alloc_identity_pagetable(kvm) != 0)
|
|
goto free_vmcs;
|
|
}
|
|
|
|
return &vmx->vcpu;
|
|
|
|
free_vmcs:
|
|
free_vmcs(vmx->vmcs);
|
|
free_msrs:
|
|
kfree(vmx->guest_msrs);
|
|
uninit_vcpu:
|
|
kvm_vcpu_uninit(&vmx->vcpu);
|
|
free_vcpu:
|
|
kmem_cache_free(kvm_vcpu_cache, vmx);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void __init vmx_check_processor_compat(void *rtn)
|
|
{
|
|
struct vmcs_config vmcs_conf;
|
|
|
|
*(int *)rtn = 0;
|
|
if (setup_vmcs_config(&vmcs_conf) < 0)
|
|
*(int *)rtn = -EIO;
|
|
if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
|
|
printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
|
|
smp_processor_id());
|
|
*(int *)rtn = -EIO;
|
|
}
|
|
}
|
|
|
|
static int get_ept_level(void)
|
|
{
|
|
return VMX_EPT_DEFAULT_GAW + 1;
|
|
}
|
|
|
|
static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
|
|
{
|
|
u64 ret;
|
|
|
|
/* For VT-d and EPT combination
|
|
* 1. MMIO: always map as UC
|
|
* 2. EPT with VT-d:
|
|
* a. VT-d without snooping control feature: can't guarantee the
|
|
* result, try to trust guest.
|
|
* b. VT-d with snooping control feature: snooping control feature of
|
|
* VT-d engine can guarantee the cache correctness. Just set it
|
|
* to WB to keep consistent with host. So the same as item 3.
|
|
* 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
|
|
* consistent with host MTRR
|
|
*/
|
|
if (is_mmio)
|
|
ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
|
|
else if (vcpu->kvm->arch.iommu_domain &&
|
|
!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
|
|
ret = kvm_get_guest_memory_type(vcpu, gfn) <<
|
|
VMX_EPT_MT_EPTE_SHIFT;
|
|
else
|
|
ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
|
|
| VMX_EPT_IGMT_BIT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define _ER(x) { EXIT_REASON_##x, #x }
|
|
|
|
static const struct trace_print_flags vmx_exit_reasons_str[] = {
|
|
_ER(EXCEPTION_NMI),
|
|
_ER(EXTERNAL_INTERRUPT),
|
|
_ER(TRIPLE_FAULT),
|
|
_ER(PENDING_INTERRUPT),
|
|
_ER(NMI_WINDOW),
|
|
_ER(TASK_SWITCH),
|
|
_ER(CPUID),
|
|
_ER(HLT),
|
|
_ER(INVLPG),
|
|
_ER(RDPMC),
|
|
_ER(RDTSC),
|
|
_ER(VMCALL),
|
|
_ER(VMCLEAR),
|
|
_ER(VMLAUNCH),
|
|
_ER(VMPTRLD),
|
|
_ER(VMPTRST),
|
|
_ER(VMREAD),
|
|
_ER(VMRESUME),
|
|
_ER(VMWRITE),
|
|
_ER(VMOFF),
|
|
_ER(VMON),
|
|
_ER(CR_ACCESS),
|
|
_ER(DR_ACCESS),
|
|
_ER(IO_INSTRUCTION),
|
|
_ER(MSR_READ),
|
|
_ER(MSR_WRITE),
|
|
_ER(MWAIT_INSTRUCTION),
|
|
_ER(MONITOR_INSTRUCTION),
|
|
_ER(PAUSE_INSTRUCTION),
|
|
_ER(MCE_DURING_VMENTRY),
|
|
_ER(TPR_BELOW_THRESHOLD),
|
|
_ER(APIC_ACCESS),
|
|
_ER(EPT_VIOLATION),
|
|
_ER(EPT_MISCONFIG),
|
|
_ER(WBINVD),
|
|
{ -1, NULL }
|
|
};
|
|
|
|
#undef _ER
|
|
|
|
static int vmx_get_lpage_level(void)
|
|
{
|
|
if (enable_ept && !cpu_has_vmx_ept_1g_page())
|
|
return PT_DIRECTORY_LEVEL;
|
|
else
|
|
/* For shadow and EPT supported 1GB page */
|
|
return PT_PDPE_LEVEL;
|
|
}
|
|
|
|
static inline u32 bit(int bitno)
|
|
{
|
|
return 1 << (bitno & 31);
|
|
}
|
|
|
|
static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 exec_control;
|
|
|
|
vmx->rdtscp_enabled = false;
|
|
if (vmx_rdtscp_supported()) {
|
|
exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
|
|
if (exec_control & SECONDARY_EXEC_RDTSCP) {
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
|
|
if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
|
|
vmx->rdtscp_enabled = true;
|
|
else {
|
|
exec_control &= ~SECONDARY_EXEC_RDTSCP;
|
|
vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
|
|
exec_control);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct kvm_x86_ops vmx_x86_ops = {
|
|
.cpu_has_kvm_support = cpu_has_kvm_support,
|
|
.disabled_by_bios = vmx_disabled_by_bios,
|
|
.hardware_setup = hardware_setup,
|
|
.hardware_unsetup = hardware_unsetup,
|
|
.check_processor_compatibility = vmx_check_processor_compat,
|
|
.hardware_enable = hardware_enable,
|
|
.hardware_disable = hardware_disable,
|
|
.cpu_has_accelerated_tpr = report_flexpriority,
|
|
|
|
.vcpu_create = vmx_create_vcpu,
|
|
.vcpu_free = vmx_free_vcpu,
|
|
.vcpu_reset = vmx_vcpu_reset,
|
|
|
|
.prepare_guest_switch = vmx_save_host_state,
|
|
.vcpu_load = vmx_vcpu_load,
|
|
.vcpu_put = vmx_vcpu_put,
|
|
|
|
.set_guest_debug = set_guest_debug,
|
|
.get_msr = vmx_get_msr,
|
|
.set_msr = vmx_set_msr,
|
|
.get_segment_base = vmx_get_segment_base,
|
|
.get_segment = vmx_get_segment,
|
|
.set_segment = vmx_set_segment,
|
|
.get_cpl = vmx_get_cpl,
|
|
.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
|
|
.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
|
|
.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
|
|
.set_cr0 = vmx_set_cr0,
|
|
.set_cr3 = vmx_set_cr3,
|
|
.set_cr4 = vmx_set_cr4,
|
|
.set_efer = vmx_set_efer,
|
|
.get_idt = vmx_get_idt,
|
|
.set_idt = vmx_set_idt,
|
|
.get_gdt = vmx_get_gdt,
|
|
.set_gdt = vmx_set_gdt,
|
|
.cache_reg = vmx_cache_reg,
|
|
.get_rflags = vmx_get_rflags,
|
|
.set_rflags = vmx_set_rflags,
|
|
.fpu_deactivate = vmx_fpu_deactivate,
|
|
|
|
.tlb_flush = vmx_flush_tlb,
|
|
|
|
.run = vmx_vcpu_run,
|
|
.handle_exit = vmx_handle_exit,
|
|
.skip_emulated_instruction = skip_emulated_instruction,
|
|
.set_interrupt_shadow = vmx_set_interrupt_shadow,
|
|
.get_interrupt_shadow = vmx_get_interrupt_shadow,
|
|
.patch_hypercall = vmx_patch_hypercall,
|
|
.set_irq = vmx_inject_irq,
|
|
.set_nmi = vmx_inject_nmi,
|
|
.queue_exception = vmx_queue_exception,
|
|
.interrupt_allowed = vmx_interrupt_allowed,
|
|
.nmi_allowed = vmx_nmi_allowed,
|
|
.get_nmi_mask = vmx_get_nmi_mask,
|
|
.set_nmi_mask = vmx_set_nmi_mask,
|
|
.enable_nmi_window = enable_nmi_window,
|
|
.enable_irq_window = enable_irq_window,
|
|
.update_cr8_intercept = update_cr8_intercept,
|
|
|
|
.set_tss_addr = vmx_set_tss_addr,
|
|
.get_tdp_level = get_ept_level,
|
|
.get_mt_mask = vmx_get_mt_mask,
|
|
|
|
.exit_reasons_str = vmx_exit_reasons_str,
|
|
.get_lpage_level = vmx_get_lpage_level,
|
|
|
|
.cpuid_update = vmx_cpuid_update,
|
|
|
|
.rdtscp_supported = vmx_rdtscp_supported,
|
|
};
|
|
|
|
static int __init vmx_init(void)
|
|
{
|
|
int r, i;
|
|
|
|
rdmsrl_safe(MSR_EFER, &host_efer);
|
|
|
|
for (i = 0; i < NR_VMX_MSR; ++i)
|
|
kvm_define_shared_msr(i, vmx_msr_index[i]);
|
|
|
|
vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
|
|
if (!vmx_io_bitmap_a)
|
|
return -ENOMEM;
|
|
|
|
vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
|
|
if (!vmx_io_bitmap_b) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
|
|
if (!vmx_msr_bitmap_legacy) {
|
|
r = -ENOMEM;
|
|
goto out1;
|
|
}
|
|
|
|
vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
|
|
if (!vmx_msr_bitmap_longmode) {
|
|
r = -ENOMEM;
|
|
goto out2;
|
|
}
|
|
|
|
/*
|
|
* Allow direct access to the PC debug port (it is often used for I/O
|
|
* delays, but the vmexits simply slow things down).
|
|
*/
|
|
memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
|
|
clear_bit(0x80, vmx_io_bitmap_a);
|
|
|
|
memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
|
|
|
|
memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
|
|
memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
|
|
|
|
set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
|
|
|
|
r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
|
|
if (r)
|
|
goto out3;
|
|
|
|
vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
|
|
vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
|
|
vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
|
|
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
|
|
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
|
|
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
|
|
|
|
if (enable_ept) {
|
|
bypass_guest_pf = 0;
|
|
kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
|
|
VMX_EPT_WRITABLE_MASK);
|
|
kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
|
|
VMX_EPT_EXECUTABLE_MASK);
|
|
kvm_enable_tdp();
|
|
} else
|
|
kvm_disable_tdp();
|
|
|
|
if (bypass_guest_pf)
|
|
kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
|
|
|
|
return 0;
|
|
|
|
out3:
|
|
free_page((unsigned long)vmx_msr_bitmap_longmode);
|
|
out2:
|
|
free_page((unsigned long)vmx_msr_bitmap_legacy);
|
|
out1:
|
|
free_page((unsigned long)vmx_io_bitmap_b);
|
|
out:
|
|
free_page((unsigned long)vmx_io_bitmap_a);
|
|
return r;
|
|
}
|
|
|
|
static void __exit vmx_exit(void)
|
|
{
|
|
free_page((unsigned long)vmx_msr_bitmap_legacy);
|
|
free_page((unsigned long)vmx_msr_bitmap_longmode);
|
|
free_page((unsigned long)vmx_io_bitmap_b);
|
|
free_page((unsigned long)vmx_io_bitmap_a);
|
|
|
|
kvm_exit();
|
|
}
|
|
|
|
module_init(vmx_init)
|
|
module_exit(vmx_exit)
|