kernel-fxtec-pro1x/drivers/cpufreq/cpufreq_conservative.c
Borislav Petkov 6dad2a2964 cpufreq: Unify sysfs attribute definition macros
Multiple modules used to define those which are with identical
functionality and were needlessly replicated among the different cpufreq
drivers. Push them into the header and remove duplication.

Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <1270065406-1814-7-git-send-email-bp@amd64.org>
Reviewed-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-04-09 14:07:56 -07:00

748 lines
20 KiB
C

/*
* drivers/cpufreq/cpufreq_conservative.c
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* Jun Nakajima <jun.nakajima@intel.com>
* (C) 2009 Alexander Clouter <alex@digriz.org.uk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/cpu.h>
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
#include <linux/mutex.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/ktime.h>
#include <linux/sched.h>
/*
* dbs is used in this file as a shortform for demandbased switching
* It helps to keep variable names smaller, simpler
*/
#define DEF_FREQUENCY_UP_THRESHOLD (80)
#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
/*
* The polling frequency of this governor depends on the capability of
* the processor. Default polling frequency is 1000 times the transition
* latency of the processor. The governor will work on any processor with
* transition latency <= 10mS, using appropriate sampling
* rate.
* For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
* this governor will not work.
* All times here are in uS.
*/
#define MIN_SAMPLING_RATE_RATIO (2)
static unsigned int min_sampling_rate;
#define LATENCY_MULTIPLIER (1000)
#define MIN_LATENCY_MULTIPLIER (100)
#define DEF_SAMPLING_DOWN_FACTOR (1)
#define MAX_SAMPLING_DOWN_FACTOR (10)
#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
static void do_dbs_timer(struct work_struct *work);
struct cpu_dbs_info_s {
cputime64_t prev_cpu_idle;
cputime64_t prev_cpu_wall;
cputime64_t prev_cpu_nice;
struct cpufreq_policy *cur_policy;
struct delayed_work work;
unsigned int down_skip;
unsigned int requested_freq;
int cpu;
unsigned int enable:1;
/*
* percpu mutex that serializes governor limit change with
* do_dbs_timer invocation. We do not want do_dbs_timer to run
* when user is changing the governor or limits.
*/
struct mutex timer_mutex;
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
static unsigned int dbs_enable; /* number of CPUs using this policy */
/*
* dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
* different CPUs. It protects dbs_enable in governor start/stop.
*/
static DEFINE_MUTEX(dbs_mutex);
static struct workqueue_struct *kconservative_wq;
static struct dbs_tuners {
unsigned int sampling_rate;
unsigned int sampling_down_factor;
unsigned int up_threshold;
unsigned int down_threshold;
unsigned int ignore_nice;
unsigned int freq_step;
} dbs_tuners_ins = {
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
.ignore_nice = 0,
.freq_step = 5,
};
static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
cputime64_t *wall)
{
cputime64_t idle_time;
cputime64_t cur_wall_time;
cputime64_t busy_time;
cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
kstat_cpu(cpu).cpustat.system);
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
idle_time = cputime64_sub(cur_wall_time, busy_time);
if (wall)
*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
return (cputime64_t)jiffies_to_usecs(idle_time);;
}
static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
{
u64 idle_time = get_cpu_idle_time_us(cpu, wall);
if (idle_time == -1ULL)
return get_cpu_idle_time_jiffy(cpu, wall);
return idle_time;
}
/* keep track of frequency transitions */
static int
dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_freqs *freq = data;
struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
freq->cpu);
struct cpufreq_policy *policy;
if (!this_dbs_info->enable)
return 0;
policy = this_dbs_info->cur_policy;
/*
* we only care if our internally tracked freq moves outside
* the 'valid' ranges of freqency available to us otherwise
* we do not change it
*/
if (this_dbs_info->requested_freq > policy->max
|| this_dbs_info->requested_freq < policy->min)
this_dbs_info->requested_freq = freq->new;
return 0;
}
static struct notifier_block dbs_cpufreq_notifier_block = {
.notifier_call = dbs_cpufreq_notifier
};
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_max(struct kobject *kobj,
struct attribute *attr, char *buf)
{
printk_once(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
"sysfs file is deprecated - used by: %s\n", current->comm);
return sprintf(buf, "%u\n", -1U);
}
static ssize_t show_sampling_rate_min(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", min_sampling_rate);
}
define_one_global_ro(sampling_rate_max);
define_one_global_ro(sampling_rate_min);
/* cpufreq_conservative Governor Tunables */
#define show_one(file_name, object) \
static ssize_t show_##file_name \
(struct kobject *kobj, struct attribute *attr, char *buf) \
{ \
return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
}
show_one(sampling_rate, sampling_rate);
show_one(sampling_down_factor, sampling_down_factor);
show_one(up_threshold, up_threshold);
show_one(down_threshold, down_threshold);
show_one(ignore_nice_load, ignore_nice);
show_one(freq_step, freq_step);
/*** delete after deprecation time ***/
#define DEPRECATION_MSG(file_name) \
printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
"interface is deprecated - " #file_name "\n");
#define show_one_old(file_name) \
static ssize_t show_##file_name##_old \
(struct cpufreq_policy *unused, char *buf) \
{ \
printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
"interface is deprecated - " #file_name "\n"); \
return show_##file_name(NULL, NULL, buf); \
}
show_one_old(sampling_rate);
show_one_old(sampling_down_factor);
show_one_old(up_threshold);
show_one_old(down_threshold);
show_one_old(ignore_nice_load);
show_one_old(freq_step);
show_one_old(sampling_rate_min);
show_one_old(sampling_rate_max);
cpufreq_freq_attr_ro_old(sampling_rate_min);
cpufreq_freq_attr_ro_old(sampling_rate_max);
/*** delete after deprecation time ***/
static ssize_t store_sampling_down_factor(struct kobject *a,
struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
return -EINVAL;
mutex_lock(&dbs_mutex);
dbs_tuners_ins.sampling_down_factor = input;
mutex_unlock(&dbs_mutex);
return count;
}
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
mutex_lock(&dbs_mutex);
dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
mutex_unlock(&dbs_mutex);
return count;
}
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
mutex_lock(&dbs_mutex);
if (ret != 1 || input > 100 ||
input <= dbs_tuners_ins.down_threshold) {
mutex_unlock(&dbs_mutex);
return -EINVAL;
}
dbs_tuners_ins.up_threshold = input;
mutex_unlock(&dbs_mutex);
return count;
}
static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
mutex_lock(&dbs_mutex);
/* cannot be lower than 11 otherwise freq will not fall */
if (ret != 1 || input < 11 || input > 100 ||
input >= dbs_tuners_ins.up_threshold) {
mutex_unlock(&dbs_mutex);
return -EINVAL;
}
dbs_tuners_ins.down_threshold = input;
mutex_unlock(&dbs_mutex);
return count;
}
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
unsigned int j;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1)
input = 1;
mutex_lock(&dbs_mutex);
if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
mutex_unlock(&dbs_mutex);
return count;
}
dbs_tuners_ins.ignore_nice = input;
/* we need to re-evaluate prev_cpu_idle */
for_each_online_cpu(j) {
struct cpu_dbs_info_s *dbs_info;
dbs_info = &per_cpu(cs_cpu_dbs_info, j);
dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
&dbs_info->prev_cpu_wall);
if (dbs_tuners_ins.ignore_nice)
dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
}
mutex_unlock(&dbs_mutex);
return count;
}
static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 100)
input = 100;
/* no need to test here if freq_step is zero as the user might actually
* want this, they would be crazy though :) */
mutex_lock(&dbs_mutex);
dbs_tuners_ins.freq_step = input;
mutex_unlock(&dbs_mutex);
return count;
}
define_one_global_rw(sampling_rate);
define_one_global_rw(sampling_down_factor);
define_one_global_rw(up_threshold);
define_one_global_rw(down_threshold);
define_one_global_rw(ignore_nice_load);
define_one_global_rw(freq_step);
static struct attribute *dbs_attributes[] = {
&sampling_rate_max.attr,
&sampling_rate_min.attr,
&sampling_rate.attr,
&sampling_down_factor.attr,
&up_threshold.attr,
&down_threshold.attr,
&ignore_nice_load.attr,
&freq_step.attr,
NULL
};
static struct attribute_group dbs_attr_group = {
.attrs = dbs_attributes,
.name = "conservative",
};
/*** delete after deprecation time ***/
#define write_one_old(file_name) \
static ssize_t store_##file_name##_old \
(struct cpufreq_policy *unused, const char *buf, size_t count) \
{ \
printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
"interface is deprecated - " #file_name "\n"); \
return store_##file_name(NULL, NULL, buf, count); \
}
write_one_old(sampling_rate);
write_one_old(sampling_down_factor);
write_one_old(up_threshold);
write_one_old(down_threshold);
write_one_old(ignore_nice_load);
write_one_old(freq_step);
cpufreq_freq_attr_rw_old(sampling_rate);
cpufreq_freq_attr_rw_old(sampling_down_factor);
cpufreq_freq_attr_rw_old(up_threshold);
cpufreq_freq_attr_rw_old(down_threshold);
cpufreq_freq_attr_rw_old(ignore_nice_load);
cpufreq_freq_attr_rw_old(freq_step);
static struct attribute *dbs_attributes_old[] = {
&sampling_rate_max_old.attr,
&sampling_rate_min_old.attr,
&sampling_rate_old.attr,
&sampling_down_factor_old.attr,
&up_threshold_old.attr,
&down_threshold_old.attr,
&ignore_nice_load_old.attr,
&freq_step_old.attr,
NULL
};
static struct attribute_group dbs_attr_group_old = {
.attrs = dbs_attributes_old,
.name = "conservative",
};
/*** delete after deprecation time ***/
/************************** sysfs end ************************/
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
{
unsigned int load = 0;
unsigned int freq_target;
struct cpufreq_policy *policy;
unsigned int j;
policy = this_dbs_info->cur_policy;
/*
* Every sampling_rate, we check, if current idle time is less
* than 20% (default), then we try to increase frequency
* Every sampling_rate*sampling_down_factor, we check, if current
* idle time is more than 80%, then we try to decrease frequency
*
* Any frequency increase takes it to the maximum frequency.
* Frequency reduction happens at minimum steps of
* 5% (default) of maximum frequency
*/
/* Get Absolute Load */
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info_s *j_dbs_info;
cputime64_t cur_wall_time, cur_idle_time;
unsigned int idle_time, wall_time;
j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
wall_time = (unsigned int) cputime64_sub(cur_wall_time,
j_dbs_info->prev_cpu_wall);
j_dbs_info->prev_cpu_wall = cur_wall_time;
idle_time = (unsigned int) cputime64_sub(cur_idle_time,
j_dbs_info->prev_cpu_idle);
j_dbs_info->prev_cpu_idle = cur_idle_time;
if (dbs_tuners_ins.ignore_nice) {
cputime64_t cur_nice;
unsigned long cur_nice_jiffies;
cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
j_dbs_info->prev_cpu_nice);
/*
* Assumption: nice time between sampling periods will
* be less than 2^32 jiffies for 32 bit sys
*/
cur_nice_jiffies = (unsigned long)
cputime64_to_jiffies64(cur_nice);
j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
idle_time += jiffies_to_usecs(cur_nice_jiffies);
}
if (unlikely(!wall_time || wall_time < idle_time))
continue;
load = 100 * (wall_time - idle_time) / wall_time;
}
/*
* break out if we 'cannot' reduce the speed as the user might
* want freq_step to be zero
*/
if (dbs_tuners_ins.freq_step == 0)
return;
/* Check for frequency increase */
if (load > dbs_tuners_ins.up_threshold) {
this_dbs_info->down_skip = 0;
/* if we are already at full speed then break out early */
if (this_dbs_info->requested_freq == policy->max)
return;
freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
/* max freq cannot be less than 100. But who knows.... */
if (unlikely(freq_target == 0))
freq_target = 5;
this_dbs_info->requested_freq += freq_target;
if (this_dbs_info->requested_freq > policy->max)
this_dbs_info->requested_freq = policy->max;
__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
CPUFREQ_RELATION_H);
return;
}
/*
* The optimal frequency is the frequency that is the lowest that
* can support the current CPU usage without triggering the up
* policy. To be safe, we focus 10 points under the threshold.
*/
if (load < (dbs_tuners_ins.down_threshold - 10)) {
freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
this_dbs_info->requested_freq -= freq_target;
if (this_dbs_info->requested_freq < policy->min)
this_dbs_info->requested_freq = policy->min;
/*
* if we cannot reduce the frequency anymore, break out early
*/
if (policy->cur == policy->min)
return;
__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
CPUFREQ_RELATION_H);
return;
}
}
static void do_dbs_timer(struct work_struct *work)
{
struct cpu_dbs_info_s *dbs_info =
container_of(work, struct cpu_dbs_info_s, work.work);
unsigned int cpu = dbs_info->cpu;
/* We want all CPUs to do sampling nearly on same jiffy */
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
delay -= jiffies % delay;
mutex_lock(&dbs_info->timer_mutex);
dbs_check_cpu(dbs_info);
queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
mutex_unlock(&dbs_info->timer_mutex);
}
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
{
/* We want all CPUs to do sampling nearly on same jiffy */
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
delay -= jiffies % delay;
dbs_info->enable = 1;
INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
delay);
}
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
{
dbs_info->enable = 0;
cancel_delayed_work_sync(&dbs_info->work);
}
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event)
{
unsigned int cpu = policy->cpu;
struct cpu_dbs_info_s *this_dbs_info;
unsigned int j;
int rc;
this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
switch (event) {
case CPUFREQ_GOV_START:
if ((!cpu_online(cpu)) || (!policy->cur))
return -EINVAL;
mutex_lock(&dbs_mutex);
rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
if (rc) {
mutex_unlock(&dbs_mutex);
return rc;
}
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info_s *j_dbs_info;
j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
j_dbs_info->cur_policy = policy;
j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
&j_dbs_info->prev_cpu_wall);
if (dbs_tuners_ins.ignore_nice) {
j_dbs_info->prev_cpu_nice =
kstat_cpu(j).cpustat.nice;
}
}
this_dbs_info->down_skip = 0;
this_dbs_info->requested_freq = policy->cur;
mutex_init(&this_dbs_info->timer_mutex);
dbs_enable++;
/*
* Start the timerschedule work, when this governor
* is used for first time
*/
if (dbs_enable == 1) {
unsigned int latency;
/* policy latency is in nS. Convert it to uS first */
latency = policy->cpuinfo.transition_latency / 1000;
if (latency == 0)
latency = 1;
rc = sysfs_create_group(cpufreq_global_kobject,
&dbs_attr_group);
if (rc) {
mutex_unlock(&dbs_mutex);
return rc;
}
/*
* conservative does not implement micro like ondemand
* governor, thus we are bound to jiffes/HZ
*/
min_sampling_rate =
MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
/* Bring kernel and HW constraints together */
min_sampling_rate = max(min_sampling_rate,
MIN_LATENCY_MULTIPLIER * latency);
dbs_tuners_ins.sampling_rate =
max(min_sampling_rate,
latency * LATENCY_MULTIPLIER);
cpufreq_register_notifier(
&dbs_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
}
mutex_unlock(&dbs_mutex);
dbs_timer_init(this_dbs_info);
break;
case CPUFREQ_GOV_STOP:
dbs_timer_exit(this_dbs_info);
mutex_lock(&dbs_mutex);
sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
dbs_enable--;
mutex_destroy(&this_dbs_info->timer_mutex);
/*
* Stop the timerschedule work, when this governor
* is used for first time
*/
if (dbs_enable == 0)
cpufreq_unregister_notifier(
&dbs_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
mutex_unlock(&dbs_mutex);
if (!dbs_enable)
sysfs_remove_group(cpufreq_global_kobject,
&dbs_attr_group);
break;
case CPUFREQ_GOV_LIMITS:
mutex_lock(&this_dbs_info->timer_mutex);
if (policy->max < this_dbs_info->cur_policy->cur)
__cpufreq_driver_target(
this_dbs_info->cur_policy,
policy->max, CPUFREQ_RELATION_H);
else if (policy->min > this_dbs_info->cur_policy->cur)
__cpufreq_driver_target(
this_dbs_info->cur_policy,
policy->min, CPUFREQ_RELATION_L);
mutex_unlock(&this_dbs_info->timer_mutex);
break;
}
return 0;
}
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
static
#endif
struct cpufreq_governor cpufreq_gov_conservative = {
.name = "conservative",
.governor = cpufreq_governor_dbs,
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
.owner = THIS_MODULE,
};
static int __init cpufreq_gov_dbs_init(void)
{
int err;
kconservative_wq = create_workqueue("kconservative");
if (!kconservative_wq) {
printk(KERN_ERR "Creation of kconservative failed\n");
return -EFAULT;
}
err = cpufreq_register_governor(&cpufreq_gov_conservative);
if (err)
destroy_workqueue(kconservative_wq);
return err;
}
static void __exit cpufreq_gov_dbs_exit(void)
{
cpufreq_unregister_governor(&cpufreq_gov_conservative);
destroy_workqueue(kconservative_wq);
}
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
"Low Latency Frequency Transition capable processors "
"optimised for use in a battery environment");
MODULE_LICENSE("GPL");
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);