kernel-fxtec-pro1x/drivers/net/bmac.c
Jeff Mahoney 5e6557722e [PATCH] openfirmware: generate device table for userspace
This converts the usage of struct of_match to struct of_device_id,
similar to pci_device_id.  This allows a device table to be generated,
which can be parsed by depmod(8) to generate a map file for module
loading.

In order for hotplug to work with macio devices, patches to
module-init-tools and hotplug must be applied.  Those patches are
available at:

 ftp://ftp.suse.com/pub/people/jeffm/linux/macio-hotplug/

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-06 12:55:20 -07:00

1703 lines
42 KiB
C

/*
* Network device driver for the BMAC ethernet controller on
* Apple Powermacs. Assumes it's under a DBDMA controller.
*
* Copyright (C) 1998 Randy Gobbel.
*
* May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
* dynamic procfs inode.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/crc32.h>
#include <asm/prom.h>
#include <asm/dbdma.h>
#include <asm/io.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#include <asm/macio.h>
#include <asm/irq.h>
#include "bmac.h"
#define trunc_page(x) ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
#define round_page(x) trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
/*
* CRC polynomial - used in working out multicast filter bits.
*/
#define ENET_CRCPOLY 0x04c11db7
/* switch to use multicast code lifted from sunhme driver */
#define SUNHME_MULTICAST
#define N_RX_RING 64
#define N_TX_RING 32
#define MAX_TX_ACTIVE 1
#define ETHERCRC 4
#define ETHERMINPACKET 64
#define ETHERMTU 1500
#define RX_BUFLEN (ETHERMTU + 14 + ETHERCRC + 2)
#define TX_TIMEOUT HZ /* 1 second */
/* Bits in transmit DMA status */
#define TX_DMA_ERR 0x80
#define XXDEBUG(args)
struct bmac_data {
/* volatile struct bmac *bmac; */
struct sk_buff_head *queue;
volatile struct dbdma_regs __iomem *tx_dma;
int tx_dma_intr;
volatile struct dbdma_regs __iomem *rx_dma;
int rx_dma_intr;
volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
struct macio_dev *mdev;
int is_bmac_plus;
struct sk_buff *rx_bufs[N_RX_RING];
int rx_fill;
int rx_empty;
struct sk_buff *tx_bufs[N_TX_RING];
int tx_fill;
int tx_empty;
unsigned char tx_fullup;
struct net_device_stats stats;
struct timer_list tx_timeout;
int timeout_active;
int sleeping;
int opened;
unsigned short hash_use_count[64];
unsigned short hash_table_mask[4];
spinlock_t lock;
};
#if 0 /* Move that to ethtool */
typedef struct bmac_reg_entry {
char *name;
unsigned short reg_offset;
} bmac_reg_entry_t;
#define N_REG_ENTRIES 31
static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
{"MEMADD", MEMADD},
{"MEMDATAHI", MEMDATAHI},
{"MEMDATALO", MEMDATALO},
{"TXPNTR", TXPNTR},
{"RXPNTR", RXPNTR},
{"IPG1", IPG1},
{"IPG2", IPG2},
{"ALIMIT", ALIMIT},
{"SLOT", SLOT},
{"PALEN", PALEN},
{"PAPAT", PAPAT},
{"TXSFD", TXSFD},
{"JAM", JAM},
{"TXCFG", TXCFG},
{"TXMAX", TXMAX},
{"TXMIN", TXMIN},
{"PAREG", PAREG},
{"DCNT", DCNT},
{"NCCNT", NCCNT},
{"NTCNT", NTCNT},
{"EXCNT", EXCNT},
{"LTCNT", LTCNT},
{"TXSM", TXSM},
{"RXCFG", RXCFG},
{"RXMAX", RXMAX},
{"RXMIN", RXMIN},
{"FRCNT", FRCNT},
{"AECNT", AECNT},
{"FECNT", FECNT},
{"RXSM", RXSM},
{"RXCV", RXCV}
};
#endif
static unsigned char *bmac_emergency_rxbuf;
/*
* Number of bytes of private data per BMAC: allow enough for
* the rx and tx dma commands plus a branch dma command each,
* and another 16 bytes to allow us to align the dma command
* buffers on a 16 byte boundary.
*/
#define PRIV_BYTES (sizeof(struct bmac_data) \
+ (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
+ sizeof(struct sk_buff_head))
static unsigned char bitrev(unsigned char b);
static int bmac_open(struct net_device *dev);
static int bmac_close(struct net_device *dev);
static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
static struct net_device_stats *bmac_stats(struct net_device *dev);
static void bmac_set_multicast(struct net_device *dev);
static void bmac_reset_and_enable(struct net_device *dev);
static void bmac_start_chip(struct net_device *dev);
static void bmac_init_chip(struct net_device *dev);
static void bmac_init_registers(struct net_device *dev);
static void bmac_enable_and_reset_chip(struct net_device *dev);
static int bmac_set_address(struct net_device *dev, void *addr);
static irqreturn_t bmac_misc_intr(int irq, void *dev_id, struct pt_regs *regs);
static irqreturn_t bmac_txdma_intr(int irq, void *dev_id, struct pt_regs *regs);
static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id, struct pt_regs *regs);
static void bmac_set_timeout(struct net_device *dev);
static void bmac_tx_timeout(unsigned long data);
static int bmac_output(struct sk_buff *skb, struct net_device *dev);
static void bmac_start(struct net_device *dev);
#define DBDMA_SET(x) ( ((x) | (x) << 16) )
#define DBDMA_CLEAR(x) ( (x) << 16)
static inline void
dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
{
__asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
return;
}
static inline unsigned long
dbdma_ld32(volatile __u32 __iomem *a)
{
__u32 swap;
__asm__ volatile ("lwbrx %0,0,%1" : "=r" (swap) : "r" (a));
return swap;
}
static void
dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
{
dbdma_st32(&dmap->control,
DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
eieio();
}
static void
dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
{
dbdma_st32(&dmap->control,
DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
eieio();
while (dbdma_ld32(&dmap->status) & RUN)
eieio();
}
static void
dbdma_setcmd(volatile struct dbdma_cmd *cp,
unsigned short cmd, unsigned count, unsigned long addr,
unsigned long cmd_dep)
{
out_le16(&cp->command, cmd);
out_le16(&cp->req_count, count);
out_le32(&cp->phy_addr, addr);
out_le32(&cp->cmd_dep, cmd_dep);
out_le16(&cp->xfer_status, 0);
out_le16(&cp->res_count, 0);
}
static inline
void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
{
out_le16((void __iomem *)dev->base_addr + reg_offset, data);
}
static inline
volatile unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
{
return in_le16((void __iomem *)dev->base_addr + reg_offset);
}
static void
bmac_enable_and_reset_chip(struct net_device *dev)
{
struct bmac_data *bp = netdev_priv(dev);
volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
volatile struct dbdma_regs __iomem *td = bp->tx_dma;
if (rd)
dbdma_reset(rd);
if (td)
dbdma_reset(td);
pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
}
#define MIFDELAY udelay(10)
static unsigned int
bmac_mif_readbits(struct net_device *dev, int nb)
{
unsigned int val = 0;
while (--nb >= 0) {
bmwrite(dev, MIFCSR, 0);
MIFDELAY;
if (bmread(dev, MIFCSR) & 8)
val |= 1 << nb;
bmwrite(dev, MIFCSR, 1);
MIFDELAY;
}
bmwrite(dev, MIFCSR, 0);
MIFDELAY;
bmwrite(dev, MIFCSR, 1);
MIFDELAY;
return val;
}
static void
bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
{
int b;
while (--nb >= 0) {
b = (val & (1 << nb))? 6: 4;
bmwrite(dev, MIFCSR, b);
MIFDELAY;
bmwrite(dev, MIFCSR, b|1);
MIFDELAY;
}
}
static unsigned int
bmac_mif_read(struct net_device *dev, unsigned int addr)
{
unsigned int val;
bmwrite(dev, MIFCSR, 4);
MIFDELAY;
bmac_mif_writebits(dev, ~0U, 32);
bmac_mif_writebits(dev, 6, 4);
bmac_mif_writebits(dev, addr, 10);
bmwrite(dev, MIFCSR, 2);
MIFDELAY;
bmwrite(dev, MIFCSR, 1);
MIFDELAY;
val = bmac_mif_readbits(dev, 17);
bmwrite(dev, MIFCSR, 4);
MIFDELAY;
return val;
}
static void
bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
{
bmwrite(dev, MIFCSR, 4);
MIFDELAY;
bmac_mif_writebits(dev, ~0U, 32);
bmac_mif_writebits(dev, 5, 4);
bmac_mif_writebits(dev, addr, 10);
bmac_mif_writebits(dev, 2, 2);
bmac_mif_writebits(dev, val, 16);
bmac_mif_writebits(dev, 3, 2);
}
static void
bmac_init_registers(struct net_device *dev)
{
struct bmac_data *bp = netdev_priv(dev);
volatile unsigned short regValue;
unsigned short *pWord16;
int i;
/* XXDEBUG(("bmac: enter init_registers\n")); */
bmwrite(dev, RXRST, RxResetValue);
bmwrite(dev, TXRST, TxResetBit);
i = 100;
do {
--i;
udelay(10000);
regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
} while ((regValue & TxResetBit) && i > 0);
if (!bp->is_bmac_plus) {
regValue = bmread(dev, XCVRIF);
regValue |= ClkBit | SerialMode | COLActiveLow;
bmwrite(dev, XCVRIF, regValue);
udelay(10000);
}
bmwrite(dev, RSEED, (unsigned short)0x1968);
regValue = bmread(dev, XIFC);
regValue |= TxOutputEnable;
bmwrite(dev, XIFC, regValue);
bmread(dev, PAREG);
/* set collision counters to 0 */
bmwrite(dev, NCCNT, 0);
bmwrite(dev, NTCNT, 0);
bmwrite(dev, EXCNT, 0);
bmwrite(dev, LTCNT, 0);
/* set rx counters to 0 */
bmwrite(dev, FRCNT, 0);
bmwrite(dev, LECNT, 0);
bmwrite(dev, AECNT, 0);
bmwrite(dev, FECNT, 0);
bmwrite(dev, RXCV, 0);
/* set tx fifo information */
bmwrite(dev, TXTH, 4); /* 4 octets before tx starts */
bmwrite(dev, TXFIFOCSR, 0); /* first disable txFIFO */
bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
/* set rx fifo information */
bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
//bmwrite(dev, TXCFG, TxMACEnable); /* TxNeverGiveUp maybe later */
bmread(dev, STATUS); /* read it just to clear it */
/* zero out the chip Hash Filter registers */
for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
pWord16 = (unsigned short *)dev->dev_addr;
bmwrite(dev, MADD0, *pWord16++);
bmwrite(dev, MADD1, *pWord16++);
bmwrite(dev, MADD2, *pWord16);
bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
bmwrite(dev, INTDISABLE, EnableNormal);
return;
}
#if 0
static void
bmac_disable_interrupts(struct net_device *dev)
{
bmwrite(dev, INTDISABLE, DisableAll);
}
static void
bmac_enable_interrupts(struct net_device *dev)
{
bmwrite(dev, INTDISABLE, EnableNormal);
}
#endif
static void
bmac_start_chip(struct net_device *dev)
{
struct bmac_data *bp = netdev_priv(dev);
volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
unsigned short oldConfig;
/* enable rx dma channel */
dbdma_continue(rd);
oldConfig = bmread(dev, TXCFG);
bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
/* turn on rx plus any other bits already on (promiscuous possibly) */
oldConfig = bmread(dev, RXCFG);
bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
udelay(20000);
}
static void
bmac_init_phy(struct net_device *dev)
{
unsigned int addr;
struct bmac_data *bp = netdev_priv(dev);
printk(KERN_DEBUG "phy registers:");
for (addr = 0; addr < 32; ++addr) {
if ((addr & 7) == 0)
printk("\n" KERN_DEBUG);
printk(" %.4x", bmac_mif_read(dev, addr));
}
printk("\n");
if (bp->is_bmac_plus) {
unsigned int capable, ctrl;
ctrl = bmac_mif_read(dev, 0);
capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
if (bmac_mif_read(dev, 4) != capable
|| (ctrl & 0x1000) == 0) {
bmac_mif_write(dev, 4, capable);
bmac_mif_write(dev, 0, 0x1200);
} else
bmac_mif_write(dev, 0, 0x1000);
}
}
static void bmac_init_chip(struct net_device *dev)
{
bmac_init_phy(dev);
bmac_init_registers(dev);
}
#ifdef CONFIG_PM
static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
{
struct net_device* dev = macio_get_drvdata(mdev);
struct bmac_data *bp = netdev_priv(dev);
unsigned long flags;
unsigned short config;
int i;
netif_device_detach(dev);
/* prolly should wait for dma to finish & turn off the chip */
spin_lock_irqsave(&bp->lock, flags);
if (bp->timeout_active) {
del_timer(&bp->tx_timeout);
bp->timeout_active = 0;
}
disable_irq(dev->irq);
disable_irq(bp->tx_dma_intr);
disable_irq(bp->rx_dma_intr);
bp->sleeping = 1;
spin_unlock_irqrestore(&bp->lock, flags);
if (bp->opened) {
volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
volatile struct dbdma_regs __iomem *td = bp->tx_dma;
config = bmread(dev, RXCFG);
bmwrite(dev, RXCFG, (config & ~RxMACEnable));
config = bmread(dev, TXCFG);
bmwrite(dev, TXCFG, (config & ~TxMACEnable));
bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
/* disable rx and tx dma */
st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
/* free some skb's */
for (i=0; i<N_RX_RING; i++) {
if (bp->rx_bufs[i] != NULL) {
dev_kfree_skb(bp->rx_bufs[i]);
bp->rx_bufs[i] = NULL;
}
}
for (i = 0; i<N_TX_RING; i++) {
if (bp->tx_bufs[i] != NULL) {
dev_kfree_skb(bp->tx_bufs[i]);
bp->tx_bufs[i] = NULL;
}
}
}
pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
return 0;
}
static int bmac_resume(struct macio_dev *mdev)
{
struct net_device* dev = macio_get_drvdata(mdev);
struct bmac_data *bp = netdev_priv(dev);
/* see if this is enough */
if (bp->opened)
bmac_reset_and_enable(dev);
enable_irq(dev->irq);
enable_irq(bp->tx_dma_intr);
enable_irq(bp->rx_dma_intr);
netif_device_attach(dev);
return 0;
}
#endif /* CONFIG_PM */
static int bmac_set_address(struct net_device *dev, void *addr)
{
struct bmac_data *bp = netdev_priv(dev);
unsigned char *p = addr;
unsigned short *pWord16;
unsigned long flags;
int i;
XXDEBUG(("bmac: enter set_address\n"));
spin_lock_irqsave(&bp->lock, flags);
for (i = 0; i < 6; ++i) {
dev->dev_addr[i] = p[i];
}
/* load up the hardware address */
pWord16 = (unsigned short *)dev->dev_addr;
bmwrite(dev, MADD0, *pWord16++);
bmwrite(dev, MADD1, *pWord16++);
bmwrite(dev, MADD2, *pWord16);
spin_unlock_irqrestore(&bp->lock, flags);
XXDEBUG(("bmac: exit set_address\n"));
return 0;
}
static inline void bmac_set_timeout(struct net_device *dev)
{
struct bmac_data *bp = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&bp->lock, flags);
if (bp->timeout_active)
del_timer(&bp->tx_timeout);
bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
bp->tx_timeout.function = bmac_tx_timeout;
bp->tx_timeout.data = (unsigned long) dev;
add_timer(&bp->tx_timeout);
bp->timeout_active = 1;
spin_unlock_irqrestore(&bp->lock, flags);
}
static void
bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
{
void *vaddr;
unsigned long baddr;
unsigned long len;
len = skb->len;
vaddr = skb->data;
baddr = virt_to_bus(vaddr);
dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
}
static void
bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
{
unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
virt_to_bus(addr), 0);
}
/* Bit-reverse one byte of an ethernet hardware address. */
static unsigned char
bitrev(unsigned char b)
{
int d = 0, i;
for (i = 0; i < 8; ++i, b >>= 1)
d = (d << 1) | (b & 1);
return d;
}
static void
bmac_init_tx_ring(struct bmac_data *bp)
{
volatile struct dbdma_regs __iomem *td = bp->tx_dma;
memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
bp->tx_empty = 0;
bp->tx_fill = 0;
bp->tx_fullup = 0;
/* put a branch at the end of the tx command list */
dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
(DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
/* reset tx dma */
dbdma_reset(td);
out_le32(&td->wait_sel, 0x00200020);
out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
}
static int
bmac_init_rx_ring(struct bmac_data *bp)
{
volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
int i;
struct sk_buff *skb;
/* initialize list of sk_buffs for receiving and set up recv dma */
memset((char *)bp->rx_cmds, 0,
(N_RX_RING + 1) * sizeof(struct dbdma_cmd));
for (i = 0; i < N_RX_RING; i++) {
if ((skb = bp->rx_bufs[i]) == NULL) {
bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
if (skb != NULL)
skb_reserve(skb, 2);
}
bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
}
bp->rx_empty = 0;
bp->rx_fill = i;
/* Put a branch back to the beginning of the receive command list */
dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
(DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
/* start rx dma */
dbdma_reset(rd);
out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
return 1;
}
static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
{
struct bmac_data *bp = netdev_priv(dev);
volatile struct dbdma_regs __iomem *td = bp->tx_dma;
int i;
/* see if there's a free slot in the tx ring */
/* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
/* bp->tx_empty, bp->tx_fill)); */
i = bp->tx_fill + 1;
if (i >= N_TX_RING)
i = 0;
if (i == bp->tx_empty) {
netif_stop_queue(dev);
bp->tx_fullup = 1;
XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
return -1; /* can't take it at the moment */
}
dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
bp->tx_bufs[bp->tx_fill] = skb;
bp->tx_fill = i;
bp->stats.tx_bytes += skb->len;
dbdma_continue(td);
return 0;
}
static int rxintcount;
static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
struct bmac_data *bp = netdev_priv(dev);
volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
volatile struct dbdma_cmd *cp;
int i, nb, stat;
struct sk_buff *skb;
unsigned int residual;
int last;
unsigned long flags;
spin_lock_irqsave(&bp->lock, flags);
if (++rxintcount < 10) {
XXDEBUG(("bmac_rxdma_intr\n"));
}
last = -1;
i = bp->rx_empty;
while (1) {
cp = &bp->rx_cmds[i];
stat = ld_le16(&cp->xfer_status);
residual = ld_le16(&cp->res_count);
if ((stat & ACTIVE) == 0)
break;
nb = RX_BUFLEN - residual - 2;
if (nb < (ETHERMINPACKET - ETHERCRC)) {
skb = NULL;
bp->stats.rx_length_errors++;
bp->stats.rx_errors++;
} else {
skb = bp->rx_bufs[i];
bp->rx_bufs[i] = NULL;
}
if (skb != NULL) {
nb -= ETHERCRC;
skb_put(skb, nb);
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->last_rx = jiffies;
++bp->stats.rx_packets;
bp->stats.rx_bytes += nb;
} else {
++bp->stats.rx_dropped;
}
dev->last_rx = jiffies;
if ((skb = bp->rx_bufs[i]) == NULL) {
bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
if (skb != NULL)
skb_reserve(bp->rx_bufs[i], 2);
}
bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
st_le16(&cp->res_count, 0);
st_le16(&cp->xfer_status, 0);
last = i;
if (++i >= N_RX_RING) i = 0;
}
if (last != -1) {
bp->rx_fill = last;
bp->rx_empty = i;
}
dbdma_continue(rd);
spin_unlock_irqrestore(&bp->lock, flags);
if (rxintcount < 10) {
XXDEBUG(("bmac_rxdma_intr done\n"));
}
return IRQ_HANDLED;
}
static int txintcount;
static irqreturn_t bmac_txdma_intr(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
struct bmac_data *bp = netdev_priv(dev);
volatile struct dbdma_cmd *cp;
int stat;
unsigned long flags;
spin_lock_irqsave(&bp->lock, flags);
if (txintcount++ < 10) {
XXDEBUG(("bmac_txdma_intr\n"));
}
/* del_timer(&bp->tx_timeout); */
/* bp->timeout_active = 0; */
while (1) {
cp = &bp->tx_cmds[bp->tx_empty];
stat = ld_le16(&cp->xfer_status);
if (txintcount < 10) {
XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
}
if (!(stat & ACTIVE)) {
/*
* status field might not have been filled by DBDMA
*/
if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
break;
}
if (bp->tx_bufs[bp->tx_empty]) {
++bp->stats.tx_packets;
dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]);
}
bp->tx_bufs[bp->tx_empty] = NULL;
bp->tx_fullup = 0;
netif_wake_queue(dev);
if (++bp->tx_empty >= N_TX_RING)
bp->tx_empty = 0;
if (bp->tx_empty == bp->tx_fill)
break;
}
spin_unlock_irqrestore(&bp->lock, flags);
if (txintcount < 10) {
XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
}
bmac_start(dev);
return IRQ_HANDLED;
}
static struct net_device_stats *bmac_stats(struct net_device *dev)
{
struct bmac_data *p = netdev_priv(dev);
return &p->stats;
}
#ifndef SUNHME_MULTICAST
/* Real fast bit-reversal algorithm, 6-bit values */
static int reverse6[64] = {
0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
};
static unsigned int
crc416(unsigned int curval, unsigned short nxtval)
{
register unsigned int counter, cur = curval, next = nxtval;
register int high_crc_set, low_data_set;
/* Swap bytes */
next = ((next & 0x00FF) << 8) | (next >> 8);
/* Compute bit-by-bit */
for (counter = 0; counter < 16; ++counter) {
/* is high CRC bit set? */
if ((cur & 0x80000000) == 0) high_crc_set = 0;
else high_crc_set = 1;
cur = cur << 1;
if ((next & 0x0001) == 0) low_data_set = 0;
else low_data_set = 1;
next = next >> 1;
/* do the XOR */
if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
}
return cur;
}
static unsigned int
bmac_crc(unsigned short *address)
{
unsigned int newcrc;
XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
newcrc = crc416(0xffffffff, *address); /* address bits 47 - 32 */
newcrc = crc416(newcrc, address[1]); /* address bits 31 - 16 */
newcrc = crc416(newcrc, address[2]); /* address bits 15 - 0 */
return(newcrc);
}
/*
* Add requested mcast addr to BMac's hash table filter.
*
*/
static void
bmac_addhash(struct bmac_data *bp, unsigned char *addr)
{
unsigned int crc;
unsigned short mask;
if (!(*addr)) return;
crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
if (bp->hash_use_count[crc]++) return; /* This bit is already set */
mask = crc % 16;
mask = (unsigned char)1 << mask;
bp->hash_use_count[crc/16] |= mask;
}
static void
bmac_removehash(struct bmac_data *bp, unsigned char *addr)
{
unsigned int crc;
unsigned char mask;
/* Now, delete the address from the filter copy, as indicated */
crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
mask = crc % 16;
mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
bp->hash_table_mask[crc/16] &= mask;
}
/*
* Sync the adapter with the software copy of the multicast mask
* (logical address filter).
*/
static void
bmac_rx_off(struct net_device *dev)
{
unsigned short rx_cfg;
rx_cfg = bmread(dev, RXCFG);
rx_cfg &= ~RxMACEnable;
bmwrite(dev, RXCFG, rx_cfg);
do {
rx_cfg = bmread(dev, RXCFG);
} while (rx_cfg & RxMACEnable);
}
unsigned short
bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
{
unsigned short rx_cfg;
rx_cfg = bmread(dev, RXCFG);
rx_cfg |= RxMACEnable;
if (hash_enable) rx_cfg |= RxHashFilterEnable;
else rx_cfg &= ~RxHashFilterEnable;
if (promisc_enable) rx_cfg |= RxPromiscEnable;
else rx_cfg &= ~RxPromiscEnable;
bmwrite(dev, RXRST, RxResetValue);
bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
bmwrite(dev, RXCFG, rx_cfg );
return rx_cfg;
}
static void
bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
{
bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
}
#if 0
static void
bmac_add_multi(struct net_device *dev,
struct bmac_data *bp, unsigned char *addr)
{
/* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
bmac_addhash(bp, addr);
bmac_rx_off(dev);
bmac_update_hash_table_mask(dev, bp);
bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
/* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
}
static void
bmac_remove_multi(struct net_device *dev,
struct bmac_data *bp, unsigned char *addr)
{
bmac_removehash(bp, addr);
bmac_rx_off(dev);
bmac_update_hash_table_mask(dev, bp);
bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
}
#endif
/* Set or clear the multicast filter for this adaptor.
num_addrs == -1 Promiscuous mode, receive all packets
num_addrs == 0 Normal mode, clear multicast list
num_addrs > 0 Multicast mode, receive normal and MC packets, and do
best-effort filtering.
*/
static void bmac_set_multicast(struct net_device *dev)
{
struct dev_mc_list *dmi;
struct bmac_data *bp = netdev_priv(dev);
int num_addrs = dev->mc_count;
unsigned short rx_cfg;
int i;
if (bp->sleeping)
return;
XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
bmac_update_hash_table_mask(dev, bp);
rx_cfg = bmac_rx_on(dev, 1, 0);
XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
} else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
rx_cfg = bmread(dev, RXCFG);
rx_cfg |= RxPromiscEnable;
bmwrite(dev, RXCFG, rx_cfg);
rx_cfg = bmac_rx_on(dev, 0, 1);
XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
} else {
for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
if (num_addrs == 0) {
rx_cfg = bmac_rx_on(dev, 0, 0);
XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
} else {
for (dmi=dev->mc_list; dmi!=NULL; dmi=dmi->next)
bmac_addhash(bp, dmi->dmi_addr);
bmac_update_hash_table_mask(dev, bp);
rx_cfg = bmac_rx_on(dev, 1, 0);
XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
}
}
/* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
}
#else /* ifdef SUNHME_MULTICAST */
/* The version of set_multicast below was lifted from sunhme.c */
static void bmac_set_multicast(struct net_device *dev)
{
struct dev_mc_list *dmi = dev->mc_list;
char *addrs;
int i;
unsigned short rx_cfg;
u32 crc;
if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
bmwrite(dev, BHASH0, 0xffff);
bmwrite(dev, BHASH1, 0xffff);
bmwrite(dev, BHASH2, 0xffff);
bmwrite(dev, BHASH3, 0xffff);
} else if(dev->flags & IFF_PROMISC) {
rx_cfg = bmread(dev, RXCFG);
rx_cfg |= RxPromiscEnable;
bmwrite(dev, RXCFG, rx_cfg);
} else {
u16 hash_table[4];
rx_cfg = bmread(dev, RXCFG);
rx_cfg &= ~RxPromiscEnable;
bmwrite(dev, RXCFG, rx_cfg);
for(i = 0; i < 4; i++) hash_table[i] = 0;
for(i = 0; i < dev->mc_count; i++) {
addrs = dmi->dmi_addr;
dmi = dmi->next;
if(!(*addrs & 1))
continue;
crc = ether_crc_le(6, addrs);
crc >>= 26;
hash_table[crc >> 4] |= 1 << (crc & 0xf);
}
bmwrite(dev, BHASH0, hash_table[0]);
bmwrite(dev, BHASH1, hash_table[1]);
bmwrite(dev, BHASH2, hash_table[2]);
bmwrite(dev, BHASH3, hash_table[3]);
}
}
#endif /* SUNHME_MULTICAST */
static int miscintcount;
static irqreturn_t bmac_misc_intr(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
struct bmac_data *bp = netdev_priv(dev);
unsigned int status = bmread(dev, STATUS);
if (miscintcount++ < 10) {
XXDEBUG(("bmac_misc_intr\n"));
}
/* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
/* bmac_txdma_intr_inner(irq, dev_id, regs); */
/* if (status & FrameReceived) bp->stats.rx_dropped++; */
if (status & RxErrorMask) bp->stats.rx_errors++;
if (status & RxCRCCntExp) bp->stats.rx_crc_errors++;
if (status & RxLenCntExp) bp->stats.rx_length_errors++;
if (status & RxOverFlow) bp->stats.rx_over_errors++;
if (status & RxAlignCntExp) bp->stats.rx_frame_errors++;
/* if (status & FrameSent) bp->stats.tx_dropped++; */
if (status & TxErrorMask) bp->stats.tx_errors++;
if (status & TxUnderrun) bp->stats.tx_fifo_errors++;
if (status & TxNormalCollExp) bp->stats.collisions++;
return IRQ_HANDLED;
}
/*
* Procedure for reading EEPROM
*/
#define SROMAddressLength 5
#define DataInOn 0x0008
#define DataInOff 0x0000
#define Clk 0x0002
#define ChipSelect 0x0001
#define SDIShiftCount 3
#define SD0ShiftCount 2
#define DelayValue 1000 /* number of microseconds */
#define SROMStartOffset 10 /* this is in words */
#define SROMReadCount 3 /* number of words to read from SROM */
#define SROMAddressBits 6
#define EnetAddressOffset 20
static unsigned char
bmac_clock_out_bit(struct net_device *dev)
{
unsigned short data;
unsigned short val;
bmwrite(dev, SROMCSR, ChipSelect | Clk);
udelay(DelayValue);
data = bmread(dev, SROMCSR);
udelay(DelayValue);
val = (data >> SD0ShiftCount) & 1;
bmwrite(dev, SROMCSR, ChipSelect);
udelay(DelayValue);
return val;
}
static void
bmac_clock_in_bit(struct net_device *dev, unsigned int val)
{
unsigned short data;
if (val != 0 && val != 1) return;
data = (val << SDIShiftCount);
bmwrite(dev, SROMCSR, data | ChipSelect );
udelay(DelayValue);
bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
udelay(DelayValue);
bmwrite(dev, SROMCSR, data | ChipSelect);
udelay(DelayValue);
}
static void
reset_and_select_srom(struct net_device *dev)
{
/* first reset */
bmwrite(dev, SROMCSR, 0);
udelay(DelayValue);
/* send it the read command (110) */
bmac_clock_in_bit(dev, 1);
bmac_clock_in_bit(dev, 1);
bmac_clock_in_bit(dev, 0);
}
static unsigned short
read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
{
unsigned short data, val;
int i;
/* send out the address we want to read from */
for (i = 0; i < addr_len; i++) {
val = addr >> (addr_len-i-1);
bmac_clock_in_bit(dev, val & 1);
}
/* Now read in the 16-bit data */
data = 0;
for (i = 0; i < 16; i++) {
val = bmac_clock_out_bit(dev);
data <<= 1;
data |= val;
}
bmwrite(dev, SROMCSR, 0);
return data;
}
/*
* It looks like Cogent and SMC use different methods for calculating
* checksums. What a pain..
*/
static int
bmac_verify_checksum(struct net_device *dev)
{
unsigned short data, storedCS;
reset_and_select_srom(dev);
data = read_srom(dev, 3, SROMAddressBits);
storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
return 0;
}
static void
bmac_get_station_address(struct net_device *dev, unsigned char *ea)
{
int i;
unsigned short data;
for (i = 0; i < 6; i++)
{
reset_and_select_srom(dev);
data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
ea[2*i] = bitrev(data & 0x0ff);
ea[2*i+1] = bitrev((data >> 8) & 0x0ff);
}
}
static void bmac_reset_and_enable(struct net_device *dev)
{
struct bmac_data *bp = netdev_priv(dev);
unsigned long flags;
struct sk_buff *skb;
unsigned char *data;
spin_lock_irqsave(&bp->lock, flags);
bmac_enable_and_reset_chip(dev);
bmac_init_tx_ring(bp);
bmac_init_rx_ring(bp);
bmac_init_chip(dev);
bmac_start_chip(dev);
bmwrite(dev, INTDISABLE, EnableNormal);
bp->sleeping = 0;
/*
* It seems that the bmac can't receive until it's transmitted
* a packet. So we give it a dummy packet to transmit.
*/
skb = dev_alloc_skb(ETHERMINPACKET);
if (skb != NULL) {
data = skb_put(skb, ETHERMINPACKET);
memset(data, 0, ETHERMINPACKET);
memcpy(data, dev->dev_addr, 6);
memcpy(data+6, dev->dev_addr, 6);
bmac_transmit_packet(skb, dev);
}
spin_unlock_irqrestore(&bp->lock, flags);
}
static int __devinit bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
{
int j, rev, ret;
struct bmac_data *bp;
unsigned char *addr;
struct net_device *dev;
int is_bmac_plus = ((int)match->data) != 0;
if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
return -ENODEV;
}
addr = get_property(macio_get_of_node(mdev), "mac-address", NULL);
if (addr == NULL) {
addr = get_property(macio_get_of_node(mdev), "local-mac-address", NULL);
if (addr == NULL) {
printk(KERN_ERR "BMAC: Can't get mac-address\n");
return -ENODEV;
}
}
dev = alloc_etherdev(PRIV_BYTES);
if (!dev) {
printk(KERN_ERR "BMAC: alloc_etherdev failed, out of memory\n");
return -ENOMEM;
}
bp = netdev_priv(dev);
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
macio_set_drvdata(mdev, dev);
bp->mdev = mdev;
spin_lock_init(&bp->lock);
if (macio_request_resources(mdev, "bmac")) {
printk(KERN_ERR "BMAC: can't request IO resource !\n");
goto out_free;
}
dev->base_addr = (unsigned long)
ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
if (dev->base_addr == 0)
goto out_release;
dev->irq = macio_irq(mdev, 0);
bmac_enable_and_reset_chip(dev);
bmwrite(dev, INTDISABLE, DisableAll);
rev = addr[0] == 0 && addr[1] == 0xA0;
for (j = 0; j < 6; ++j)
dev->dev_addr[j] = rev? bitrev(addr[j]): addr[j];
/* Enable chip without interrupts for now */
bmac_enable_and_reset_chip(dev);
bmwrite(dev, INTDISABLE, DisableAll);
dev->open = bmac_open;
dev->stop = bmac_close;
dev->hard_start_xmit = bmac_output;
dev->get_stats = bmac_stats;
dev->set_multicast_list = bmac_set_multicast;
dev->set_mac_address = bmac_set_address;
bmac_get_station_address(dev, addr);
if (bmac_verify_checksum(dev) != 0)
goto err_out_iounmap;
bp->is_bmac_plus = is_bmac_plus;
bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
if (!bp->tx_dma)
goto err_out_iounmap;
bp->tx_dma_intr = macio_irq(mdev, 1);
bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
if (!bp->rx_dma)
goto err_out_iounmap_tx;
bp->rx_dma_intr = macio_irq(mdev, 2);
bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
skb_queue_head_init(bp->queue);
init_timer(&bp->tx_timeout);
ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
if (ret) {
printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
goto err_out_iounmap_rx;
}
ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
if (ret) {
printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
goto err_out_irq0;
}
ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
if (ret) {
printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
goto err_out_irq1;
}
/* Mask chip interrupts and disable chip, will be
* re-enabled on open()
*/
disable_irq(dev->irq);
pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
if (register_netdev(dev) != 0) {
printk(KERN_ERR "BMAC: Ethernet registration failed\n");
goto err_out_irq2;
}
printk(KERN_INFO "%s: BMAC%s at", dev->name, (is_bmac_plus? "+": ""));
for (j = 0; j < 6; ++j)
printk("%c%.2x", (j? ':': ' '), dev->dev_addr[j]);
XXDEBUG((", base_addr=%#0lx", dev->base_addr));
printk("\n");
return 0;
err_out_irq2:
free_irq(bp->rx_dma_intr, dev);
err_out_irq1:
free_irq(bp->tx_dma_intr, dev);
err_out_irq0:
free_irq(dev->irq, dev);
err_out_iounmap_rx:
iounmap(bp->rx_dma);
err_out_iounmap_tx:
iounmap(bp->tx_dma);
err_out_iounmap:
iounmap((void __iomem *)dev->base_addr);
out_release:
macio_release_resources(mdev);
out_free:
pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
free_netdev(dev);
return -ENODEV;
}
static int bmac_open(struct net_device *dev)
{
struct bmac_data *bp = netdev_priv(dev);
/* XXDEBUG(("bmac: enter open\n")); */
/* reset the chip */
bp->opened = 1;
bmac_reset_and_enable(dev);
enable_irq(dev->irq);
return 0;
}
static int bmac_close(struct net_device *dev)
{
struct bmac_data *bp = netdev_priv(dev);
volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
volatile struct dbdma_regs __iomem *td = bp->tx_dma;
unsigned short config;
int i;
bp->sleeping = 1;
/* disable rx and tx */
config = bmread(dev, RXCFG);
bmwrite(dev, RXCFG, (config & ~RxMACEnable));
config = bmread(dev, TXCFG);
bmwrite(dev, TXCFG, (config & ~TxMACEnable));
bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
/* disable rx and tx dma */
st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
/* free some skb's */
XXDEBUG(("bmac: free rx bufs\n"));
for (i=0; i<N_RX_RING; i++) {
if (bp->rx_bufs[i] != NULL) {
dev_kfree_skb(bp->rx_bufs[i]);
bp->rx_bufs[i] = NULL;
}
}
XXDEBUG(("bmac: free tx bufs\n"));
for (i = 0; i<N_TX_RING; i++) {
if (bp->tx_bufs[i] != NULL) {
dev_kfree_skb(bp->tx_bufs[i]);
bp->tx_bufs[i] = NULL;
}
}
XXDEBUG(("bmac: all bufs freed\n"));
bp->opened = 0;
disable_irq(dev->irq);
pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
return 0;
}
static void
bmac_start(struct net_device *dev)
{
struct bmac_data *bp = netdev_priv(dev);
int i;
struct sk_buff *skb;
unsigned long flags;
if (bp->sleeping)
return;
spin_lock_irqsave(&bp->lock, flags);
while (1) {
i = bp->tx_fill + 1;
if (i >= N_TX_RING)
i = 0;
if (i == bp->tx_empty)
break;
skb = skb_dequeue(bp->queue);
if (skb == NULL)
break;
bmac_transmit_packet(skb, dev);
}
spin_unlock_irqrestore(&bp->lock, flags);
}
static int
bmac_output(struct sk_buff *skb, struct net_device *dev)
{
struct bmac_data *bp = netdev_priv(dev);
skb_queue_tail(bp->queue, skb);
bmac_start(dev);
return 0;
}
static void bmac_tx_timeout(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
struct bmac_data *bp = netdev_priv(dev);
volatile struct dbdma_regs __iomem *td = bp->tx_dma;
volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
volatile struct dbdma_cmd *cp;
unsigned long flags;
unsigned short config, oldConfig;
int i;
XXDEBUG(("bmac: tx_timeout called\n"));
spin_lock_irqsave(&bp->lock, flags);
bp->timeout_active = 0;
/* update various counters */
/* bmac_handle_misc_intrs(bp, 0); */
cp = &bp->tx_cmds[bp->tx_empty];
/* XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
/* ld_le32(&td->status), ld_le16(&cp->xfer_status), bp->tx_bad_runt, */
/* mb->pr, mb->xmtfs, mb->fifofc)); */
/* turn off both tx and rx and reset the chip */
config = bmread(dev, RXCFG);
bmwrite(dev, RXCFG, (config & ~RxMACEnable));
config = bmread(dev, TXCFG);
bmwrite(dev, TXCFG, (config & ~TxMACEnable));
out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
printk(KERN_ERR "bmac: transmit timeout - resetting\n");
bmac_enable_and_reset_chip(dev);
/* restart rx dma */
cp = bus_to_virt(ld_le32(&rd->cmdptr));
out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
out_le16(&cp->xfer_status, 0);
out_le32(&rd->cmdptr, virt_to_bus(cp));
out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
/* fix up the transmit side */
XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
bp->tx_empty, bp->tx_fill, bp->tx_fullup));
i = bp->tx_empty;
++bp->stats.tx_errors;
if (i != bp->tx_fill) {
dev_kfree_skb(bp->tx_bufs[i]);
bp->tx_bufs[i] = NULL;
if (++i >= N_TX_RING) i = 0;
bp->tx_empty = i;
}
bp->tx_fullup = 0;
netif_wake_queue(dev);
if (i != bp->tx_fill) {
cp = &bp->tx_cmds[i];
out_le16(&cp->xfer_status, 0);
out_le16(&cp->command, OUTPUT_LAST);
out_le32(&td->cmdptr, virt_to_bus(cp));
out_le32(&td->control, DBDMA_SET(RUN));
/* bmac_set_timeout(dev); */
XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
}
/* turn it back on */
oldConfig = bmread(dev, RXCFG);
bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
oldConfig = bmread(dev, TXCFG);
bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
spin_unlock_irqrestore(&bp->lock, flags);
}
#if 0
static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
{
int i,*ip;
for (i=0;i< count;i++) {
ip = (int*)(cp+i);
printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
ld_le32(ip+0),
ld_le32(ip+1),
ld_le32(ip+2),
ld_le32(ip+3));
}
}
#endif
#if 0
static int
bmac_proc_info(char *buffer, char **start, off_t offset, int length)
{
int len = 0;
off_t pos = 0;
off_t begin = 0;
int i;
if (bmac_devs == NULL)
return (-ENOSYS);
len += sprintf(buffer, "BMAC counters & registers\n");
for (i = 0; i<N_REG_ENTRIES; i++) {
len += sprintf(buffer + len, "%s: %#08x\n",
reg_entries[i].name,
bmread(bmac_devs, reg_entries[i].reg_offset));
pos = begin + len;
if (pos < offset) {
len = 0;
begin = pos;
}
if (pos > offset+length) break;
}
*start = buffer + (offset - begin);
len -= (offset - begin);
if (len > length) len = length;
return len;
}
#endif
static int __devexit bmac_remove(struct macio_dev *mdev)
{
struct net_device *dev = macio_get_drvdata(mdev);
struct bmac_data *bp = netdev_priv(dev);
unregister_netdev(dev);
free_irq(dev->irq, dev);
free_irq(bp->tx_dma_intr, dev);
free_irq(bp->rx_dma_intr, dev);
iounmap((void __iomem *)dev->base_addr);
iounmap(bp->tx_dma);
iounmap(bp->rx_dma);
macio_release_resources(mdev);
free_netdev(dev);
return 0;
}
static struct of_device_id bmac_match[] =
{
{
.name = "bmac",
.data = (void *)0,
},
{
.type = "network",
.compatible = "bmac+",
.data = (void *)1,
},
{},
};
static struct macio_driver bmac_driver =
{
.name = "bmac",
.match_table = bmac_match,
.probe = bmac_probe,
.remove = bmac_remove,
#ifdef CONFIG_PM
.suspend = bmac_suspend,
.resume = bmac_resume,
#endif
};
static int __init bmac_init(void)
{
if (bmac_emergency_rxbuf == NULL) {
bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
if (bmac_emergency_rxbuf == NULL) {
printk(KERN_ERR "BMAC: can't allocate emergency RX buffer\n");
return -ENOMEM;
}
}
return macio_register_driver(&bmac_driver);
}
static void __exit bmac_exit(void)
{
macio_unregister_driver(&bmac_driver);
if (bmac_emergency_rxbuf != NULL) {
kfree(bmac_emergency_rxbuf);
bmac_emergency_rxbuf = NULL;
}
}
MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
MODULE_LICENSE("GPL");
module_init(bmac_init);
module_exit(bmac_exit);