kernel-fxtec-pro1x/sound/drivers/dummy.c
Paul Gortmaker 65a772172b sound: fix drivers needing module.h not moduleparam.h
The implicit presence of module.h lured several users into
incorrectly thinking that they only needed/used modparam.h
but once we clean up the module.h presence, these will show
up as build failures, so fix 'em now.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-10-31 19:31:19 -04:00

1157 lines
30 KiB
C

/*
* Dummy soundcard
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/init.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/jiffies.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/wait.h>
#include <linux/hrtimer.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/tlv.h>
#include <sound/pcm.h>
#include <sound/rawmidi.h>
#include <sound/info.h>
#include <sound/initval.h>
MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
MODULE_DESCRIPTION("Dummy soundcard (/dev/null)");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{ALSA,Dummy soundcard}}");
#define MAX_PCM_DEVICES 4
#define MAX_PCM_SUBSTREAMS 128
#define MAX_MIDI_DEVICES 2
/* defaults */
#define MAX_BUFFER_SIZE (64*1024)
#define MIN_PERIOD_SIZE 64
#define MAX_PERIOD_SIZE MAX_BUFFER_SIZE
#define USE_FORMATS (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE)
#define USE_RATE SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000
#define USE_RATE_MIN 5500
#define USE_RATE_MAX 48000
#define USE_CHANNELS_MIN 1
#define USE_CHANNELS_MAX 2
#define USE_PERIODS_MIN 1
#define USE_PERIODS_MAX 1024
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static int enable[SNDRV_CARDS] = {1, [1 ... (SNDRV_CARDS - 1)] = 0};
static char *model[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = NULL};
static int pcm_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 1};
static int pcm_substreams[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 8};
//static int midi_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 2};
#ifdef CONFIG_HIGH_RES_TIMERS
static int hrtimer = 1;
#endif
static int fake_buffer = 1;
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for dummy soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for dummy soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable this dummy soundcard.");
module_param_array(model, charp, NULL, 0444);
MODULE_PARM_DESC(model, "Soundcard model.");
module_param_array(pcm_devs, int, NULL, 0444);
MODULE_PARM_DESC(pcm_devs, "PCM devices # (0-4) for dummy driver.");
module_param_array(pcm_substreams, int, NULL, 0444);
MODULE_PARM_DESC(pcm_substreams, "PCM substreams # (1-128) for dummy driver.");
//module_param_array(midi_devs, int, NULL, 0444);
//MODULE_PARM_DESC(midi_devs, "MIDI devices # (0-2) for dummy driver.");
module_param(fake_buffer, bool, 0444);
MODULE_PARM_DESC(fake_buffer, "Fake buffer allocations.");
#ifdef CONFIG_HIGH_RES_TIMERS
module_param(hrtimer, bool, 0644);
MODULE_PARM_DESC(hrtimer, "Use hrtimer as the timer source.");
#endif
static struct platform_device *devices[SNDRV_CARDS];
#define MIXER_ADDR_MASTER 0
#define MIXER_ADDR_LINE 1
#define MIXER_ADDR_MIC 2
#define MIXER_ADDR_SYNTH 3
#define MIXER_ADDR_CD 4
#define MIXER_ADDR_LAST 4
struct dummy_timer_ops {
int (*create)(struct snd_pcm_substream *);
void (*free)(struct snd_pcm_substream *);
int (*prepare)(struct snd_pcm_substream *);
int (*start)(struct snd_pcm_substream *);
int (*stop)(struct snd_pcm_substream *);
snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *);
};
struct dummy_model {
const char *name;
int (*playback_constraints)(struct snd_pcm_runtime *runtime);
int (*capture_constraints)(struct snd_pcm_runtime *runtime);
u64 formats;
size_t buffer_bytes_max;
size_t period_bytes_min;
size_t period_bytes_max;
unsigned int periods_min;
unsigned int periods_max;
unsigned int rates;
unsigned int rate_min;
unsigned int rate_max;
unsigned int channels_min;
unsigned int channels_max;
};
struct snd_dummy {
struct snd_card *card;
struct dummy_model *model;
struct snd_pcm *pcm;
struct snd_pcm_hardware pcm_hw;
spinlock_t mixer_lock;
int mixer_volume[MIXER_ADDR_LAST+1][2];
int capture_source[MIXER_ADDR_LAST+1][2];
const struct dummy_timer_ops *timer_ops;
};
/*
* card models
*/
static int emu10k1_playback_constraints(struct snd_pcm_runtime *runtime)
{
int err;
err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
if (err < 0)
return err;
err = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 256, UINT_MAX);
if (err < 0)
return err;
return 0;
}
struct dummy_model model_emu10k1 = {
.name = "emu10k1",
.playback_constraints = emu10k1_playback_constraints,
.buffer_bytes_max = 128 * 1024,
};
struct dummy_model model_rme9652 = {
.name = "rme9652",
.buffer_bytes_max = 26 * 64 * 1024,
.formats = SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 26,
.channels_max = 26,
.periods_min = 2,
.periods_max = 2,
};
struct dummy_model model_ice1712 = {
.name = "ice1712",
.buffer_bytes_max = 256 * 1024,
.formats = SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 10,
.channels_max = 10,
.periods_min = 1,
.periods_max = 1024,
};
struct dummy_model model_uda1341 = {
.name = "uda1341",
.buffer_bytes_max = 16380,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.channels_min = 2,
.channels_max = 2,
.periods_min = 2,
.periods_max = 255,
};
struct dummy_model model_ac97 = {
.name = "ac97",
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_48000,
.rate_min = 48000,
.rate_max = 48000,
};
struct dummy_model model_ca0106 = {
.name = "ca0106",
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.buffer_bytes_max = ((65536-64)*8),
.period_bytes_max = (65536-64),
.periods_min = 2,
.periods_max = 8,
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_48000|SNDRV_PCM_RATE_96000|SNDRV_PCM_RATE_192000,
.rate_min = 48000,
.rate_max = 192000,
};
struct dummy_model *dummy_models[] = {
&model_emu10k1,
&model_rme9652,
&model_ice1712,
&model_uda1341,
&model_ac97,
&model_ca0106,
NULL
};
/*
* system timer interface
*/
struct dummy_systimer_pcm {
spinlock_t lock;
struct timer_list timer;
unsigned long base_time;
unsigned int frac_pos; /* fractional sample position (based HZ) */
unsigned int frac_period_rest;
unsigned int frac_buffer_size; /* buffer_size * HZ */
unsigned int frac_period_size; /* period_size * HZ */
unsigned int rate;
int elapsed;
struct snd_pcm_substream *substream;
};
static void dummy_systimer_rearm(struct dummy_systimer_pcm *dpcm)
{
dpcm->timer.expires = jiffies +
(dpcm->frac_period_rest + dpcm->rate - 1) / dpcm->rate;
add_timer(&dpcm->timer);
}
static void dummy_systimer_update(struct dummy_systimer_pcm *dpcm)
{
unsigned long delta;
delta = jiffies - dpcm->base_time;
if (!delta)
return;
dpcm->base_time += delta;
delta *= dpcm->rate;
dpcm->frac_pos += delta;
while (dpcm->frac_pos >= dpcm->frac_buffer_size)
dpcm->frac_pos -= dpcm->frac_buffer_size;
while (dpcm->frac_period_rest <= delta) {
dpcm->elapsed++;
dpcm->frac_period_rest += dpcm->frac_period_size;
}
dpcm->frac_period_rest -= delta;
}
static int dummy_systimer_start(struct snd_pcm_substream *substream)
{
struct dummy_systimer_pcm *dpcm = substream->runtime->private_data;
spin_lock(&dpcm->lock);
dpcm->base_time = jiffies;
dummy_systimer_rearm(dpcm);
spin_unlock(&dpcm->lock);
return 0;
}
static int dummy_systimer_stop(struct snd_pcm_substream *substream)
{
struct dummy_systimer_pcm *dpcm = substream->runtime->private_data;
spin_lock(&dpcm->lock);
del_timer(&dpcm->timer);
spin_unlock(&dpcm->lock);
return 0;
}
static int dummy_systimer_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct dummy_systimer_pcm *dpcm = runtime->private_data;
dpcm->frac_pos = 0;
dpcm->rate = runtime->rate;
dpcm->frac_buffer_size = runtime->buffer_size * HZ;
dpcm->frac_period_size = runtime->period_size * HZ;
dpcm->frac_period_rest = dpcm->frac_period_size;
dpcm->elapsed = 0;
return 0;
}
static void dummy_systimer_callback(unsigned long data)
{
struct dummy_systimer_pcm *dpcm = (struct dummy_systimer_pcm *)data;
unsigned long flags;
int elapsed = 0;
spin_lock_irqsave(&dpcm->lock, flags);
dummy_systimer_update(dpcm);
dummy_systimer_rearm(dpcm);
elapsed = dpcm->elapsed;
dpcm->elapsed = 0;
spin_unlock_irqrestore(&dpcm->lock, flags);
if (elapsed)
snd_pcm_period_elapsed(dpcm->substream);
}
static snd_pcm_uframes_t
dummy_systimer_pointer(struct snd_pcm_substream *substream)
{
struct dummy_systimer_pcm *dpcm = substream->runtime->private_data;
snd_pcm_uframes_t pos;
spin_lock(&dpcm->lock);
dummy_systimer_update(dpcm);
pos = dpcm->frac_pos / HZ;
spin_unlock(&dpcm->lock);
return pos;
}
static int dummy_systimer_create(struct snd_pcm_substream *substream)
{
struct dummy_systimer_pcm *dpcm;
dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL);
if (!dpcm)
return -ENOMEM;
substream->runtime->private_data = dpcm;
init_timer(&dpcm->timer);
dpcm->timer.data = (unsigned long) dpcm;
dpcm->timer.function = dummy_systimer_callback;
spin_lock_init(&dpcm->lock);
dpcm->substream = substream;
return 0;
}
static void dummy_systimer_free(struct snd_pcm_substream *substream)
{
kfree(substream->runtime->private_data);
}
static struct dummy_timer_ops dummy_systimer_ops = {
.create = dummy_systimer_create,
.free = dummy_systimer_free,
.prepare = dummy_systimer_prepare,
.start = dummy_systimer_start,
.stop = dummy_systimer_stop,
.pointer = dummy_systimer_pointer,
};
#ifdef CONFIG_HIGH_RES_TIMERS
/*
* hrtimer interface
*/
struct dummy_hrtimer_pcm {
ktime_t base_time;
ktime_t period_time;
atomic_t running;
struct hrtimer timer;
struct tasklet_struct tasklet;
struct snd_pcm_substream *substream;
};
static void dummy_hrtimer_pcm_elapsed(unsigned long priv)
{
struct dummy_hrtimer_pcm *dpcm = (struct dummy_hrtimer_pcm *)priv;
if (atomic_read(&dpcm->running))
snd_pcm_period_elapsed(dpcm->substream);
}
static enum hrtimer_restart dummy_hrtimer_callback(struct hrtimer *timer)
{
struct dummy_hrtimer_pcm *dpcm;
dpcm = container_of(timer, struct dummy_hrtimer_pcm, timer);
if (!atomic_read(&dpcm->running))
return HRTIMER_NORESTART;
tasklet_schedule(&dpcm->tasklet);
hrtimer_forward_now(timer, dpcm->period_time);
return HRTIMER_RESTART;
}
static int dummy_hrtimer_start(struct snd_pcm_substream *substream)
{
struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data;
dpcm->base_time = hrtimer_cb_get_time(&dpcm->timer);
hrtimer_start(&dpcm->timer, dpcm->period_time, HRTIMER_MODE_REL);
atomic_set(&dpcm->running, 1);
return 0;
}
static int dummy_hrtimer_stop(struct snd_pcm_substream *substream)
{
struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data;
atomic_set(&dpcm->running, 0);
hrtimer_cancel(&dpcm->timer);
return 0;
}
static inline void dummy_hrtimer_sync(struct dummy_hrtimer_pcm *dpcm)
{
tasklet_kill(&dpcm->tasklet);
}
static snd_pcm_uframes_t
dummy_hrtimer_pointer(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct dummy_hrtimer_pcm *dpcm = runtime->private_data;
u64 delta;
u32 pos;
delta = ktime_us_delta(hrtimer_cb_get_time(&dpcm->timer),
dpcm->base_time);
delta = div_u64(delta * runtime->rate + 999999, 1000000);
div_u64_rem(delta, runtime->buffer_size, &pos);
return pos;
}
static int dummy_hrtimer_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct dummy_hrtimer_pcm *dpcm = runtime->private_data;
unsigned int period, rate;
long sec;
unsigned long nsecs;
dummy_hrtimer_sync(dpcm);
period = runtime->period_size;
rate = runtime->rate;
sec = period / rate;
period %= rate;
nsecs = div_u64((u64)period * 1000000000UL + rate - 1, rate);
dpcm->period_time = ktime_set(sec, nsecs);
return 0;
}
static int dummy_hrtimer_create(struct snd_pcm_substream *substream)
{
struct dummy_hrtimer_pcm *dpcm;
dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL);
if (!dpcm)
return -ENOMEM;
substream->runtime->private_data = dpcm;
hrtimer_init(&dpcm->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
dpcm->timer.function = dummy_hrtimer_callback;
dpcm->substream = substream;
atomic_set(&dpcm->running, 0);
tasklet_init(&dpcm->tasklet, dummy_hrtimer_pcm_elapsed,
(unsigned long)dpcm);
return 0;
}
static void dummy_hrtimer_free(struct snd_pcm_substream *substream)
{
struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data;
dummy_hrtimer_sync(dpcm);
kfree(dpcm);
}
static struct dummy_timer_ops dummy_hrtimer_ops = {
.create = dummy_hrtimer_create,
.free = dummy_hrtimer_free,
.prepare = dummy_hrtimer_prepare,
.start = dummy_hrtimer_start,
.stop = dummy_hrtimer_stop,
.pointer = dummy_hrtimer_pointer,
};
#endif /* CONFIG_HIGH_RES_TIMERS */
/*
* PCM interface
*/
static int dummy_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_dummy *dummy = snd_pcm_substream_chip(substream);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
return dummy->timer_ops->start(substream);
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
return dummy->timer_ops->stop(substream);
}
return -EINVAL;
}
static int dummy_pcm_prepare(struct snd_pcm_substream *substream)
{
struct snd_dummy *dummy = snd_pcm_substream_chip(substream);
return dummy->timer_ops->prepare(substream);
}
static snd_pcm_uframes_t dummy_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_dummy *dummy = snd_pcm_substream_chip(substream);
return dummy->timer_ops->pointer(substream);
}
static struct snd_pcm_hardware dummy_pcm_hardware = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = USE_FORMATS,
.rates = USE_RATE,
.rate_min = USE_RATE_MIN,
.rate_max = USE_RATE_MAX,
.channels_min = USE_CHANNELS_MIN,
.channels_max = USE_CHANNELS_MAX,
.buffer_bytes_max = MAX_BUFFER_SIZE,
.period_bytes_min = MIN_PERIOD_SIZE,
.period_bytes_max = MAX_PERIOD_SIZE,
.periods_min = USE_PERIODS_MIN,
.periods_max = USE_PERIODS_MAX,
.fifo_size = 0,
};
static int dummy_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
if (fake_buffer) {
/* runtime->dma_bytes has to be set manually to allow mmap */
substream->runtime->dma_bytes = params_buffer_bytes(hw_params);
return 0;
}
return snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
}
static int dummy_pcm_hw_free(struct snd_pcm_substream *substream)
{
if (fake_buffer)
return 0;
return snd_pcm_lib_free_pages(substream);
}
static int dummy_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_dummy *dummy = snd_pcm_substream_chip(substream);
struct dummy_model *model = dummy->model;
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
dummy->timer_ops = &dummy_systimer_ops;
#ifdef CONFIG_HIGH_RES_TIMERS
if (hrtimer)
dummy->timer_ops = &dummy_hrtimer_ops;
#endif
err = dummy->timer_ops->create(substream);
if (err < 0)
return err;
runtime->hw = dummy->pcm_hw;
if (substream->pcm->device & 1) {
runtime->hw.info &= ~SNDRV_PCM_INFO_INTERLEAVED;
runtime->hw.info |= SNDRV_PCM_INFO_NONINTERLEAVED;
}
if (substream->pcm->device & 2)
runtime->hw.info &= ~(SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID);
if (model == NULL)
return 0;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
if (model->playback_constraints)
err = model->playback_constraints(substream->runtime);
} else {
if (model->capture_constraints)
err = model->capture_constraints(substream->runtime);
}
if (err < 0) {
dummy->timer_ops->free(substream);
return err;
}
return 0;
}
static int dummy_pcm_close(struct snd_pcm_substream *substream)
{
struct snd_dummy *dummy = snd_pcm_substream_chip(substream);
dummy->timer_ops->free(substream);
return 0;
}
/*
* dummy buffer handling
*/
static void *dummy_page[2];
static void free_fake_buffer(void)
{
if (fake_buffer) {
int i;
for (i = 0; i < 2; i++)
if (dummy_page[i]) {
free_page((unsigned long)dummy_page[i]);
dummy_page[i] = NULL;
}
}
}
static int alloc_fake_buffer(void)
{
int i;
if (!fake_buffer)
return 0;
for (i = 0; i < 2; i++) {
dummy_page[i] = (void *)get_zeroed_page(GFP_KERNEL);
if (!dummy_page[i]) {
free_fake_buffer();
return -ENOMEM;
}
}
return 0;
}
static int dummy_pcm_copy(struct snd_pcm_substream *substream,
int channel, snd_pcm_uframes_t pos,
void __user *dst, snd_pcm_uframes_t count)
{
return 0; /* do nothing */
}
static int dummy_pcm_silence(struct snd_pcm_substream *substream,
int channel, snd_pcm_uframes_t pos,
snd_pcm_uframes_t count)
{
return 0; /* do nothing */
}
static struct page *dummy_pcm_page(struct snd_pcm_substream *substream,
unsigned long offset)
{
return virt_to_page(dummy_page[substream->stream]); /* the same page */
}
static struct snd_pcm_ops dummy_pcm_ops = {
.open = dummy_pcm_open,
.close = dummy_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = dummy_pcm_hw_params,
.hw_free = dummy_pcm_hw_free,
.prepare = dummy_pcm_prepare,
.trigger = dummy_pcm_trigger,
.pointer = dummy_pcm_pointer,
};
static struct snd_pcm_ops dummy_pcm_ops_no_buf = {
.open = dummy_pcm_open,
.close = dummy_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = dummy_pcm_hw_params,
.hw_free = dummy_pcm_hw_free,
.prepare = dummy_pcm_prepare,
.trigger = dummy_pcm_trigger,
.pointer = dummy_pcm_pointer,
.copy = dummy_pcm_copy,
.silence = dummy_pcm_silence,
.page = dummy_pcm_page,
};
static int __devinit snd_card_dummy_pcm(struct snd_dummy *dummy, int device,
int substreams)
{
struct snd_pcm *pcm;
struct snd_pcm_ops *ops;
int err;
err = snd_pcm_new(dummy->card, "Dummy PCM", device,
substreams, substreams, &pcm);
if (err < 0)
return err;
dummy->pcm = pcm;
if (fake_buffer)
ops = &dummy_pcm_ops_no_buf;
else
ops = &dummy_pcm_ops;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, ops);
pcm->private_data = dummy;
pcm->info_flags = 0;
strcpy(pcm->name, "Dummy PCM");
if (!fake_buffer) {
snd_pcm_lib_preallocate_pages_for_all(pcm,
SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL),
0, 64*1024);
}
return 0;
}
/*
* mixer interface
*/
#define DUMMY_VOLUME(xname, xindex, addr) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
.name = xname, .index = xindex, \
.info = snd_dummy_volume_info, \
.get = snd_dummy_volume_get, .put = snd_dummy_volume_put, \
.private_value = addr, \
.tlv = { .p = db_scale_dummy } }
static int snd_dummy_volume_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = -50;
uinfo->value.integer.max = 100;
return 0;
}
static int snd_dummy_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
int addr = kcontrol->private_value;
spin_lock_irq(&dummy->mixer_lock);
ucontrol->value.integer.value[0] = dummy->mixer_volume[addr][0];
ucontrol->value.integer.value[1] = dummy->mixer_volume[addr][1];
spin_unlock_irq(&dummy->mixer_lock);
return 0;
}
static int snd_dummy_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
int change, addr = kcontrol->private_value;
int left, right;
left = ucontrol->value.integer.value[0];
if (left < -50)
left = -50;
if (left > 100)
left = 100;
right = ucontrol->value.integer.value[1];
if (right < -50)
right = -50;
if (right > 100)
right = 100;
spin_lock_irq(&dummy->mixer_lock);
change = dummy->mixer_volume[addr][0] != left ||
dummy->mixer_volume[addr][1] != right;
dummy->mixer_volume[addr][0] = left;
dummy->mixer_volume[addr][1] = right;
spin_unlock_irq(&dummy->mixer_lock);
return change;
}
static const DECLARE_TLV_DB_SCALE(db_scale_dummy, -4500, 30, 0);
#define DUMMY_CAPSRC(xname, xindex, addr) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
.info = snd_dummy_capsrc_info, \
.get = snd_dummy_capsrc_get, .put = snd_dummy_capsrc_put, \
.private_value = addr }
#define snd_dummy_capsrc_info snd_ctl_boolean_stereo_info
static int snd_dummy_capsrc_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
int addr = kcontrol->private_value;
spin_lock_irq(&dummy->mixer_lock);
ucontrol->value.integer.value[0] = dummy->capture_source[addr][0];
ucontrol->value.integer.value[1] = dummy->capture_source[addr][1];
spin_unlock_irq(&dummy->mixer_lock);
return 0;
}
static int snd_dummy_capsrc_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
int change, addr = kcontrol->private_value;
int left, right;
left = ucontrol->value.integer.value[0] & 1;
right = ucontrol->value.integer.value[1] & 1;
spin_lock_irq(&dummy->mixer_lock);
change = dummy->capture_source[addr][0] != left &&
dummy->capture_source[addr][1] != right;
dummy->capture_source[addr][0] = left;
dummy->capture_source[addr][1] = right;
spin_unlock_irq(&dummy->mixer_lock);
return change;
}
static struct snd_kcontrol_new snd_dummy_controls[] = {
DUMMY_VOLUME("Master Volume", 0, MIXER_ADDR_MASTER),
DUMMY_CAPSRC("Master Capture Switch", 0, MIXER_ADDR_MASTER),
DUMMY_VOLUME("Synth Volume", 0, MIXER_ADDR_SYNTH),
DUMMY_CAPSRC("Synth Capture Switch", 0, MIXER_ADDR_SYNTH),
DUMMY_VOLUME("Line Volume", 0, MIXER_ADDR_LINE),
DUMMY_CAPSRC("Line Capture Switch", 0, MIXER_ADDR_LINE),
DUMMY_VOLUME("Mic Volume", 0, MIXER_ADDR_MIC),
DUMMY_CAPSRC("Mic Capture Switch", 0, MIXER_ADDR_MIC),
DUMMY_VOLUME("CD Volume", 0, MIXER_ADDR_CD),
DUMMY_CAPSRC("CD Capture Switch", 0, MIXER_ADDR_CD)
};
static int __devinit snd_card_dummy_new_mixer(struct snd_dummy *dummy)
{
struct snd_card *card = dummy->card;
unsigned int idx;
int err;
spin_lock_init(&dummy->mixer_lock);
strcpy(card->mixername, "Dummy Mixer");
for (idx = 0; idx < ARRAY_SIZE(snd_dummy_controls); idx++) {
err = snd_ctl_add(card, snd_ctl_new1(&snd_dummy_controls[idx], dummy));
if (err < 0)
return err;
}
return 0;
}
#if defined(CONFIG_SND_DEBUG) && defined(CONFIG_PROC_FS)
/*
* proc interface
*/
static void print_formats(struct snd_dummy *dummy,
struct snd_info_buffer *buffer)
{
int i;
for (i = 0; i < SNDRV_PCM_FORMAT_LAST; i++) {
if (dummy->pcm_hw.formats & (1ULL << i))
snd_iprintf(buffer, " %s", snd_pcm_format_name(i));
}
}
static void print_rates(struct snd_dummy *dummy,
struct snd_info_buffer *buffer)
{
static int rates[] = {
5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000,
64000, 88200, 96000, 176400, 192000,
};
int i;
if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_CONTINUOUS)
snd_iprintf(buffer, " continuous");
if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_KNOT)
snd_iprintf(buffer, " knot");
for (i = 0; i < ARRAY_SIZE(rates); i++)
if (dummy->pcm_hw.rates & (1 << i))
snd_iprintf(buffer, " %d", rates[i]);
}
#define get_dummy_int_ptr(dummy, ofs) \
(unsigned int *)((char *)&((dummy)->pcm_hw) + (ofs))
#define get_dummy_ll_ptr(dummy, ofs) \
(unsigned long long *)((char *)&((dummy)->pcm_hw) + (ofs))
struct dummy_hw_field {
const char *name;
const char *format;
unsigned int offset;
unsigned int size;
};
#define FIELD_ENTRY(item, fmt) { \
.name = #item, \
.format = fmt, \
.offset = offsetof(struct snd_pcm_hardware, item), \
.size = sizeof(dummy_pcm_hardware.item) }
static struct dummy_hw_field fields[] = {
FIELD_ENTRY(formats, "%#llx"),
FIELD_ENTRY(rates, "%#x"),
FIELD_ENTRY(rate_min, "%d"),
FIELD_ENTRY(rate_max, "%d"),
FIELD_ENTRY(channels_min, "%d"),
FIELD_ENTRY(channels_max, "%d"),
FIELD_ENTRY(buffer_bytes_max, "%ld"),
FIELD_ENTRY(period_bytes_min, "%ld"),
FIELD_ENTRY(period_bytes_max, "%ld"),
FIELD_ENTRY(periods_min, "%d"),
FIELD_ENTRY(periods_max, "%d"),
};
static void dummy_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_dummy *dummy = entry->private_data;
int i;
for (i = 0; i < ARRAY_SIZE(fields); i++) {
snd_iprintf(buffer, "%s ", fields[i].name);
if (fields[i].size == sizeof(int))
snd_iprintf(buffer, fields[i].format,
*get_dummy_int_ptr(dummy, fields[i].offset));
else
snd_iprintf(buffer, fields[i].format,
*get_dummy_ll_ptr(dummy, fields[i].offset));
if (!strcmp(fields[i].name, "formats"))
print_formats(dummy, buffer);
else if (!strcmp(fields[i].name, "rates"))
print_rates(dummy, buffer);
snd_iprintf(buffer, "\n");
}
}
static void dummy_proc_write(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_dummy *dummy = entry->private_data;
char line[64];
while (!snd_info_get_line(buffer, line, sizeof(line))) {
char item[20];
const char *ptr;
unsigned long long val;
int i;
ptr = snd_info_get_str(item, line, sizeof(item));
for (i = 0; i < ARRAY_SIZE(fields); i++) {
if (!strcmp(item, fields[i].name))
break;
}
if (i >= ARRAY_SIZE(fields))
continue;
snd_info_get_str(item, ptr, sizeof(item));
if (strict_strtoull(item, 0, &val))
continue;
if (fields[i].size == sizeof(int))
*get_dummy_int_ptr(dummy, fields[i].offset) = val;
else
*get_dummy_ll_ptr(dummy, fields[i].offset) = val;
}
}
static void __devinit dummy_proc_init(struct snd_dummy *chip)
{
struct snd_info_entry *entry;
if (!snd_card_proc_new(chip->card, "dummy_pcm", &entry)) {
snd_info_set_text_ops(entry, chip, dummy_proc_read);
entry->c.text.write = dummy_proc_write;
entry->mode |= S_IWUSR;
entry->private_data = chip;
}
}
#else
#define dummy_proc_init(x)
#endif /* CONFIG_SND_DEBUG && CONFIG_PROC_FS */
static int __devinit snd_dummy_probe(struct platform_device *devptr)
{
struct snd_card *card;
struct snd_dummy *dummy;
struct dummy_model *m = NULL, **mdl;
int idx, err;
int dev = devptr->id;
err = snd_card_create(index[dev], id[dev], THIS_MODULE,
sizeof(struct snd_dummy), &card);
if (err < 0)
return err;
dummy = card->private_data;
dummy->card = card;
for (mdl = dummy_models; *mdl && model[dev]; mdl++) {
if (strcmp(model[dev], (*mdl)->name) == 0) {
printk(KERN_INFO
"snd-dummy: Using model '%s' for card %i\n",
(*mdl)->name, card->number);
m = dummy->model = *mdl;
break;
}
}
for (idx = 0; idx < MAX_PCM_DEVICES && idx < pcm_devs[dev]; idx++) {
if (pcm_substreams[dev] < 1)
pcm_substreams[dev] = 1;
if (pcm_substreams[dev] > MAX_PCM_SUBSTREAMS)
pcm_substreams[dev] = MAX_PCM_SUBSTREAMS;
err = snd_card_dummy_pcm(dummy, idx, pcm_substreams[dev]);
if (err < 0)
goto __nodev;
}
dummy->pcm_hw = dummy_pcm_hardware;
if (m) {
if (m->formats)
dummy->pcm_hw.formats = m->formats;
if (m->buffer_bytes_max)
dummy->pcm_hw.buffer_bytes_max = m->buffer_bytes_max;
if (m->period_bytes_min)
dummy->pcm_hw.period_bytes_min = m->period_bytes_min;
if (m->period_bytes_max)
dummy->pcm_hw.period_bytes_max = m->period_bytes_max;
if (m->periods_min)
dummy->pcm_hw.periods_min = m->periods_min;
if (m->periods_max)
dummy->pcm_hw.periods_max = m->periods_max;
if (m->rates)
dummy->pcm_hw.rates = m->rates;
if (m->rate_min)
dummy->pcm_hw.rate_min = m->rate_min;
if (m->rate_max)
dummy->pcm_hw.rate_max = m->rate_max;
if (m->channels_min)
dummy->pcm_hw.channels_min = m->channels_min;
if (m->channels_max)
dummy->pcm_hw.channels_max = m->channels_max;
}
err = snd_card_dummy_new_mixer(dummy);
if (err < 0)
goto __nodev;
strcpy(card->driver, "Dummy");
strcpy(card->shortname, "Dummy");
sprintf(card->longname, "Dummy %i", dev + 1);
dummy_proc_init(dummy);
snd_card_set_dev(card, &devptr->dev);
err = snd_card_register(card);
if (err == 0) {
platform_set_drvdata(devptr, card);
return 0;
}
__nodev:
snd_card_free(card);
return err;
}
static int __devexit snd_dummy_remove(struct platform_device *devptr)
{
snd_card_free(platform_get_drvdata(devptr));
platform_set_drvdata(devptr, NULL);
return 0;
}
#ifdef CONFIG_PM
static int snd_dummy_suspend(struct platform_device *pdev, pm_message_t state)
{
struct snd_card *card = platform_get_drvdata(pdev);
struct snd_dummy *dummy = card->private_data;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
snd_pcm_suspend_all(dummy->pcm);
return 0;
}
static int snd_dummy_resume(struct platform_device *pdev)
{
struct snd_card *card = platform_get_drvdata(pdev);
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;
}
#endif
#define SND_DUMMY_DRIVER "snd_dummy"
static struct platform_driver snd_dummy_driver = {
.probe = snd_dummy_probe,
.remove = __devexit_p(snd_dummy_remove),
#ifdef CONFIG_PM
.suspend = snd_dummy_suspend,
.resume = snd_dummy_resume,
#endif
.driver = {
.name = SND_DUMMY_DRIVER
},
};
static void snd_dummy_unregister_all(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(devices); ++i)
platform_device_unregister(devices[i]);
platform_driver_unregister(&snd_dummy_driver);
free_fake_buffer();
}
static int __init alsa_card_dummy_init(void)
{
int i, cards, err;
err = platform_driver_register(&snd_dummy_driver);
if (err < 0)
return err;
err = alloc_fake_buffer();
if (err < 0) {
platform_driver_unregister(&snd_dummy_driver);
return err;
}
cards = 0;
for (i = 0; i < SNDRV_CARDS; i++) {
struct platform_device *device;
if (! enable[i])
continue;
device = platform_device_register_simple(SND_DUMMY_DRIVER,
i, NULL, 0);
if (IS_ERR(device))
continue;
if (!platform_get_drvdata(device)) {
platform_device_unregister(device);
continue;
}
devices[i] = device;
cards++;
}
if (!cards) {
#ifdef MODULE
printk(KERN_ERR "Dummy soundcard not found or device busy\n");
#endif
snd_dummy_unregister_all();
return -ENODEV;
}
return 0;
}
static void __exit alsa_card_dummy_exit(void)
{
snd_dummy_unregister_all();
}
module_init(alsa_card_dummy_init)
module_exit(alsa_card_dummy_exit)